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This paper presents a simple computing procedure for the analysis of the wave motion in infinite layered
waveguides via the analysis of the propagating wave modes. Waveguides may have irregular inclusions,
which yields complicated reflections of waves, and an analytical solution is practically not feasible. The
section of the waveguide, where we want to analyze the displacements and stress waves, is modelled
by finite elements using standard programs for FEM. The external problem is solved as an internal
one, while the radiation conditions are satisfied exactly. The procedure only some simple mathematical
manipulations and is performed in the frequency domain. It yields exact results and a clear insight into the
propagating wave modes. The results of the first presented numerical example are compared to the exact
ones, while in the second example the foundation represents an irregularity in the waveguide composed of
two layers

1. INTRODUCTION

In infinite waveguides the waves propagate only in the direction away from the source of excitation.
When there are inhomogeneities and/or variation of the boundary conditions present in a section
of the waveguide, the solution of the wave equation, which requires the fulfilment of the radiation
conditions, is feasible only numerically [1, 2]. A variety of methods are available for this purpose.
If we glance over them, we could describe them roughly as follows. Boundary element methods
satisfy radiation conditions, but are not simple to apply for complex cases, see for example [3, 4].
By finite-element methods the radiation conditions are satisfied only by using special elements on
the fictive boundary, or by evaluating certain computational phases analytically, see for instance
[4-6]. Operator methods require the implementation of special operators on the fictive boundary, for
instance [7-12]. A special approach using an original definition of Sommerfeld conditions is presented
by [13]. We can classify the available methods superficially and briefly as being either a great deal
sophisticated and in certain cases exact, or simple and considerably approximate. Unfortunately, a
simple and exact method, which in addition yields the results that are easily understood and used
by engineers, is not available.

We are demonstrating a computing procedure, performed in the frequency domain, which yields
exact results for the wave motion in layered waveguides, while the case of homogeneous wave guide
is presented in [14]. The procedure is performed in conjunction with the finite-element-method.
Therefore, the modelling of a complex waveguide can be carried out by the aid of the standard
FEM computer routines. The basic underlying theory is well known, and practically requires only
the knowledge of the standard graduate study in engineering.
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2. BASICS AND THE OUTLINE OF THE COMPUTING PROCEDURE

When we are analysing wave motion in an infinite waveguide by the aid of finite elements, we
can model only a finite section. The lateral boundaries of such a section are the so-called fictive
boundaries, Fig. 1, and the displacements of waves are governed by Eq. (1).
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Fig. 1. Disposition of the layers, the foundation, and cell

In this formulation of the wave motion we used the co-called dynamic stiffness matrix of the
section to get a system of linear equations. K and M are the stiffness and the mass matrices,
respectively, while ug, u and u, are known nodal displacements of the excitation, the unknown
displacements of internal nodes and the radiating nodal displacements on the fictive boundary,
respectively. The nodal forces P are marked analogous to displacements. Equation (1) is easily
solved on displacements u by some simple mathematical manipulations, providing we know the
radiating displacements. It is worth noting that in such a case we have a correctly posed problem,
where all needed boundary conditions are known. Clearly, in the computing approach we have to
compute the radiating displacements as they are not known in advance. This is done as follows. The
radiating displacements and stresses are first presented by the superposition of only the radiating
wave modes, Eq. (2). These wave modes propagate only outwards of the section, which is suggested
by the sign +, and they are denoted by WJ’ . and W;,':k for the displacements and nodal forces on the
fictive boundary, respectively. It is worth noting that their typical characteristic is that each of them
propagates with a constant velocity, which formally applies also to standing waves, occurring below
the cut-off frequency, as well. They are computed first. Their amplitudes a, which may be complex,
are of cause also not known in advance. Substituting Eq. (2) into Eq. (1) we get a modified equation
where amplitudes represent some of the unknowns. These amplitudes are also termed modal or
weighting factors.

(b= (L f

Wave modes are computed from the FE discretized “cell”, which is adjacent to the fictive bound-
ary, Fig. 1, by using the advantage of two facts. The first is that wave modes preserve their shape
during propagation [3]. This yields Eq. (3), where indexes f and c¢ stand for the values on the
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first cross-section of the cell, the fictive boundary, and for the values on the second lateral one,
respectively. A\r are distinct factors of proportionality, and N is the number of nodal points on
the cross-section. There are altogether 2N wave modes and eigenvalues because the radiating is in
general in both directions.

{ Siu,k } :)\k{ g“xk } , k=12 2N, (3)
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The second fact follows from the uniqueness of the wave equation solution: the displacements and
nodal forces on both lateral surfaces of the cell are interrelated by the transfer matrix T, Eq. (4).

{ Wu’k } =T{ Wu,k }’ k:1,2"'2N' (4)
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This transfer matrix T is computed either from the dynamic stiffness, or from the dynamic
flexibility matrix of the cell. Both facts together yield the equation of the eigenvalue problem,
Eq. (5), which has distinct solutions representing the waves modes, and the belonging eigenvalues
Ank=12.,.2N,

(T—AI){E}:O. (5)

However, the solution yields all the wave modes, but those propagating in the positive direction,
radiating modes, are easily distinguished from the other ones. They have either the negative value
of the imaginary part of the belonging eigenvalue, or they have diminishing amplitudes represented
by the real eigenvalues, which are less than a unit.

The practical course of the computing approach of the complete analysis may be performed
stepwise and in several ways. However, the computation of the wave modes is always a detached
computing step and is performed first. Substituting Eq. (2) into the Eq. (1) the unknowns are the
internal displacements u and modal factors a of radiation displacements on the fictive boundary.
In addition, the unknowns are also either ug, or Pg, which depends on whether the excitation
is given by displacements or by nodal forces. Such a system of equations may be solved directly
to yield entire displacements filed, or indirectly by using transfer function of the segment, which
yields radiating displacements. Specifically, in the later case we first get the modal factors, and then
by Eq. (2) the radiating displacements and forces on the fictive boundary. Eventually, having all
boundary conditions of the segment, the displacement field is solved in a standard way.

3. NUMERICAL EXAMPLES

We are considering, for the sake of simpler analytic verification of the numerical results, only 2-D
case for antiplane shear wave motion, yet the approach is valid for the case of general wave motion
in parallel waveguides. For two-dimensional case the displacements in a layered soil are governed
in the frequency domain by the wave equation, Eq. (6), of course with distinct wave numbers k for
different layers.

VZu 4 k?u = 0. (6)

The analyzed case is symbolically presented in Fig. 1. The soil consists of two layers over rigid subsoil.
The characteristic data are in the figure. The contact between layers and the sub-soil is considered
as firm. Excitation is given by displacements, distributed according to quadratic parabola, with the
amplitude a unit, as suggested in Fig. 1. The frequency of excitation is a unit. The fictive boundary
is 25 from the excitation cross-section, which makes the considered section 25 meters long. The
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width of the cell is 0.33333 meters and is chosen arbitrarily. Finite elements are simple linear ones.
The mesh has 40 x 50 nodal points.

First, we consider the case where there is no foundation and excavation in order to compare the
analytical results to the numerical ones. The analytical solution for the displacement field is in the
form:

u(z,y) =Y an Un(y).e "), )
n=1

¥, (y) and a, are the wave modes and their weighting factors, respectively. These weighting factors
are represent the complex amplitudes of the wave modes. The z, are the roots of the equation:

f(2) = p2 /K3 + 22 sin(hy /R + 22). sin(ha/RF + 27)
+ p1/kE + 22 cos(h1 /KT + 22). cos(ha /K3 + 2%) = 0,

k1 and ks are the wave numbers of the lower and the top layer, respectively. This equation originates
from the continuity conditions on the contact surface between the two layers. The relation between
the roots 2, and the eigenvalues )y, in Eq. (3) is

(8)

dn = £ RAL) (9)

where AL is the width of the cell. Some of the results for the case considered are presented in Fig. 2
demonstrating very good resemblance between the first five analytical and numerical values. All
eigenvalues that belong to radiating standing wave modes, the diminishing ones, are situated on
the real axis between zero and one. The propagating outgoing wave modes have negative imaginary
parts. Eigenvalues are marked by numbers, separately for the standing and the propagating wave
modes. These numbers occur also in Fig. 3 in order to see to which eigenvalue the wave-mode
belongs. Other values, which are real, belong to standing waves, which decay very rapidly. Closer
consideration shows, that the accuracy of these waves has utterly negligible role on the results of
the radiating conditions on the fictitious boundary.
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Fig. 2. Eigenvalues belonging to radiating wave modes
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The analytical formulas for the wave modes, regarding the notations and the data according to
Fig. 1, are presented by Eq. (10) and (11).

Un(y) = 2i.sin(y\/kf +22), 0<y<h, (10)

_sin(hy/k2 + 22) [ ]
n(y) = 2 cos |(y — hy — ho)y\/ k2 + 22|, hi1 <y < hy+ hs. 11
n(y) COS(h2\/k_22_+—Z,,2L) (y 1 2) 2 1 ) 1 2 ( )

It is important to note that wave modes can be normalized in various ways, that is, multiplied
by different constants. Consequently, the amplitudes in Eq. (7) depend on the normalization used
and, of course, on the given excitation. First five displacement wave modes computed analytically
and numerically are presented in Fig. 3. They are normalized to yield extreme displacement a real
unit, which serves for clearer graphical presentation.

These wave modes are used to compute their amplitudes a,, in order to match the given excitation.
In our case we solved the Eq. (12).

I
h1 + hg

o0
up(z = 0,y) = V=) an¥n(y), O0<y<hy+h (12)
=]

Clearly, only finite number of wave modes can be considered. The number of wave modes depend
on the number of mesh nodes in the discretised model. There are 40 wave modes in our case.
On the other hand, we have computed only twelve wave modes for the analytical results, but it
already yields very high accuracy of analytically computed radiating displacements on the fictitious
boundary - the estimated accuracy is certainly better then 0.1 percent, as higher modes vanish very
rapidly. There will be no observable improvement in the graphical presentation of the analytical
results when more wave modes are employed. The results of the radiating displacements on the
fictitious boundary are presented in Fig. 4. The observable discrepancy between the analytical and
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the numerical results in the graph is in this case solely due to the FE discretization. Using finer
mesh improves the results. However, the detailed discussion on the FE approximations exceeds the
aim of this paper.
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Fig. 4. Excitation displacements and displacements on the fictive boundary for the case when there is no foun-
dation and no excavation. Analytical solutions are presented by solid lines, and numerical by the dashed ones
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The first twelve dominant roots z, of the Eq. (8) and the weighting factors a, in Eq. (7), that %
yield analytical results presented in the Fig. 4, are displayed in Table 1. Note that the first three j
roots are imaginary and belong to the propagating wave modes whilst the others belong to standing |
i
ones. |

Table 1. The roots of the Eq. (8), and the weighting factors (complex amplitudes) of the first twelve wave
modes normalized as presented by Egs. (10) and (11)

root weighting f.
n 2n an
1 0.4591i -0.19341
2 0.34531 +0.33361 |
3 0.2376i ~0.26611 i
4 0.3440 +0.0925i |
5 0.5399 ~0.04601 |
6 0.7003 +0.0143i |
7 0.9171 ~0.00151
8 1.1168 +0.0019i
9 1.2390 ~0.00331
10 1.3945 +0.0035i
11 1.5939 ~0.00291
12 1.7776 +0.0033i

!
The entire displacement field of the foundation-soil interaction, which is the second example,
is presented in Fig. 5. It is computed using mesh having 20 x 25 nodal points. The excitation
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displacements and the radiating displacements on the fictive boundary are presented in the left
graph in Fig. 6. Their amplitudes are presented in the right graph of this figure. It is neccesary to
note that the amplitudes are computed according to the normalization of the wave modes, which
are presented in the Fig. 3. Figure 6 demonstrates how the contents and the intensity of wave modes
have changed during propagation from the excitation site to the fictive boundary. It is worth noting
that all standing waves have practically vanished.

X/
Nz
W&

Fig. 5. Displacements field in the analyzed section of the waveguide with the foundation
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Fig. 6. The case with the foundation: the displacements of the excitation and of the fictive boundary, left
figure. The weighting factors, right figure
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4. CONCLUDING REMARKS

The presented computing procedure is in principle much like the well-known modal analysis applied
to a finite structure [15]. Of course, in our procedure we have propagating waves, which are computed
in the above presented way. The computing approach yields wave modes and their amplitudes of
the excitation, and of the waves passing the fictive boundary. This information yields the possibility
to study effectively the influence of various kinds of excitation on the distribution and the intensity
of waves in the analyzed segment. Moreover, the propagation of waves through the segment and
towards distant locations is easily analyzed. When using standard computer programs, which are
available for the analysis of the dynamics by FEM, only limited additional computing manipulations
are necessary in order to perform the presented procedure. This includes the usage of the standard
routine to solve the eigenvalue problem. It is worth noting that the procedure is applicable to other
cases than the layers, e.g. spherical cavity, moreover material damping can also be encountered.
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