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Time integration and the Trefftz Method
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The finite element method is applied in the time domain to establish formulations for the integration of
second-order and hyperbolic (dynamic) problems. Modal decomposition in the space domain is used to
recover the well-established method for uncoupling the equations of motion, which is extended to include
general time approximation bases. The limitations of this approach in the implementation of large-scale,
non-linear problems while preserving the uncoupling of the equations of motion are overcome by using the
alternative concept of modal decomposition in the time domain. Both single- and double-field formulations
are presented and the associated Trefftz formulations are established.
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1. INTRODUCTION

The paper addresses the formulation of two basic time integration methods that preserve the hy-
perbolicity of structural dynamics problems [1]. The first is based on modal decomposition in the
space domain and the second in modal decomposition in the time domain.

The basis of the first method is well established. The first step consists in discretising in the space
domain the local hyperbolic problem using the conventional formulation of the finite element method
where the nodal displacement vector is assumed to be time dependent. The resulting second-order
system of equations is subsequently uncoupled through modal decomposition in the space domain
and solved using one of the available (implicit or explicit) time integration methods.

This method of numerical integration is formulated here in a more general way, through the
implementation in the time domain of two standard finite element formulations, namely a single-
field and a double-field (or mixed) formulation. In the first formulation the velocity vector field is
taken as the derivative of the displacement approximation in time, while in the second the velocity
field is approximated independently. The time approximation bases that can be used are general,
in the sense that they are not constrained to solve the governing equations of motion.

The single-field formulation is used to recall that the standard modal decomposition in the space
domain corresponds to the application of the Trefftz concept in the time domain. It is used to
show also that the generalised VIP method of Tamma et al. [2] is fundamentally a Trefftz method.
The double-field approximation is used to show how to circumvent the numerical implementation
difficulties inherent to the double-field formulation suggested by the same authors. It serves also the
purpose of showing that the original version of the VIP method is an incomplete Trefftz approach.

The main advantage offered by the method of modal decomposition in the space domain is the
derivation of uncoupled equations of motion with known closed form solution. However, this formal
simplicity is gained at the generally very high cost of solving a large-scale eigenvalue problem, as
its dimension is dictated by the number of degrees-of-freedom of the finite element discretization in
the space domain of a given application.



466 J.A.T. de Freitas

Besides this limitation and the difficulties found in its extension into non-linear applications,
modal decomposition in the space domain inhibits the implementation a priori of the Trefftz dis-
cretization of the space component of the governing hyperbolic equations. To open the possibility
of using the Trefftz method in space discretization is the main target of the second method of time
integration reported in the paper.

The standard method of modal decomposition in the time domain is recalled first to equate
Fourier analysis with the Trefftz method. This approach leads to the solution of dynamic problems
in the frequency domain, where the Trefftz method has been used with remarkable success, e.g. [3, 4].
This method is extended here to the time domain, to remove thus the strongly limiting assumption
of periodicity (periodic extension) of the solution.

As in the case of modal decomposition in space, this method of modal decomposition in the
time domain develops from the basic simplification of separating the space and time fields of the
solution. A mixed finite element formulation is then established to model the time response in the
time domain independently of the of the formulation eventually used to model the space component
of the response.

Still as in the case of the modal decomposition in space, the numerical efficacy of the resulting
time integration procedure depends directly on the possibility of uncoupling the equations of motion.
The distinction now is that this uncoupling targets only the time component of the model.

This is achieved by solving an eigenvalue problem in the time domain that depends uniquely on
the time approximation basis being used. Consequently, the dimension of this problem is in general
very small (of order n+1 if a polynomial time basis of degree n is used). Moreover, this eigenvalue
problem is solved only once, for a given basis, and used subsequently in the implementation of differ-
ent classes of structural applications. Although it is not particularly relevant in terms of numerical
implementation, it is possible to establish closed analytical definitions for the amplification matrix
and for the load vector low-degree time approximation bases [1].

Modal decomposition in the time domain is applied first to second-order systems of equations to
establish its relation with the alternative technique of modal decomposition in space discussed in the
first part of the paper. It is subsequently applied to the hyperbolic equations governing structural
dynamics problems to illustrate its implementation with alternative space discretization formula-
tions, namely the standard finite element method displacement formulation and the alternative
stress and displacement models of the hybrid-Trefftz finite element formulation.

2. STANDARD INTEGRATION PROCEDURE IN THE TIME DOMAIN

Linear structural dynamics problems are governed by hyperbolic equations of the form,
DkD*u+f=mii+cu inV and 0<t<T, (1)

where ¢ is the time parameter and V the structural domain referred to a Cartesian system x,
u(x,t), i, and 1 are the displacement, velocity and acceleration fields, respectively, D is a linear
differential operator in the space domain and D* denotes its conjugate, m, ¢ and k are (local) mass,
damping and stiffness matrices, which are assumed to be symmetric and with constant coefficients
for simplicity of the presentation, and vector f defines the forcing load and the effect of eventual
residual strains and stresses.

Besides the initial conditions of the problem, which are written as follows,

up(x) =u(x,0) inV andt=0, (2)
vo(x) =u(x,0) inV andt=0, (3)

the solution of the governing system (1) depends also on consistent boundary conditions, which are
simplified here to the usual Neumann and Dirichlet forms:

NkD*u=tr onl, and0<t<T, 4)
u=ur onl, and0<t<T. (5)
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The standard integration procedure consists in approximating the displacement field by separa-
tion of variables in time and space,

u(x,t) =U(x)d(t) inV and0<t<T, (6)
to reduce system (1) to a second-order differential equation in the time domain,
Ma + Cv + Kd = F(t), (7)

where a = d and v = d are the acceleration and velocity vectors, respectively. The definitions of the
(symmetric) mass, damping and stiffness matrices M, C and K, respectively, and of the consistent
forcing load vector, F, are recalled in Appendix A.

These definitions show that the domain and boundary equilibrium conditions (1) and (4) are
enforced on average, in the sense of Galerkin. C"~! continuity is then enforced for nth-order problems
(n being the order of the space differential operator D) and by ensuring locally (in space and in

time) the Dirichlet condition (5). It is assumed that conformity applies also to the initial conditions
(2) and (3),

uo(x) = U(x)d(0) inV andt=0, (8)
vo(x) =U(x)v(0) inV andt=0, 9)

although these conditions may also, and in general, be enforced on average.

System (7-9) can be integrated using a wide variety of methods. They are usually classified as
explicit and implicit integration schemes, the latter being the most commonly used. The central
objective of these schemes is to establish (approximate) solutions of equation (7) at instant t =T,
in form (10), where A is the amplification matrix and L the load vector:

{ ;\E?’) } W A{ 71‘“1\5?3) } L (10)

3. TIME INTEGRATION USING MODAL DECOMPOSITION IN SPACE

Under conditions (12) and (13), the closed form solution of Eq. (7) is defined by,

8
R SRR (11)
n=1

where 7 = t/T is the non-dimensional time parameter (0 < 7 < 1), X,, represents the n-th
eigenvector of the (undamped, free vibration with normalised frequency wp) eigenvalue problem,

KX, ~ (“’—I?)ZMxn (12)

and Y,, is the solution of the scalar second-order equation:
Y 4+ 2%,wiYi + WiY, = T2XSF(7). (13)

A (Rayleigh) damping orthogonality condition is assumed to hold for M-orthonormal eigenvec-
tors:

CXp = %a (‘%) MX,, (14)

Xt MXy, = 6mn- (15)
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The closed-form solution (11) is relatively costly in terms of numerical implementation, as it
involves the solution of the eigenvalue problem (12) for each application, as its dimension is dictated
by the number of degrees-of-freedom, 3, of approximation (11). In addition, its extension to non-
linear problems is not trivial.

However, the modal decomposition in the space domain (11) is useful to inspire the development
of numerical methods for the integration of both linear and non-linear second-order problems en-
coded in form (7). This is shown below using a finite element approach applied now to the time
domain, using two formulations, namely a single-field and a double-field formulation.

The single-field formulation is implemented on the displacement approximation (11) in form (16),
where functions 7, () define a (complete, linearly independent) time approximation basis and the
weighting parameter d,, represents a generalised displacement:

B
d(t) =Y XnTy(7)dy. (16)
n=1

In this formulation the velocity field is determined by direct differentiation of the displacement
approximation (20):

B
sifies % 3 Xn T (7). (17)
=1

What distinguishes the second formulation is that the velocity is approximated independently of
the displacement approximation (16):

B
Vit %— 3 X T (r)n. (18)

n=1

The resulting formulation qualifies as mixed, as it involves the simultaneous approximation of
two fields in the (time) domain of the analysis.

3.1. Single-field approximation in the time domain

As in the standard (Galerkin) procedure for the integration of elliptic equations by the conventional
(conforming) finite element method, the approximation functions are used to enforce on average the
equilibrium Eq. (7), to yield,

T
X;/ Tn[Ma+ Cv + Kd — F(t)]dt = 0, (19)
0

where fn denotes the conjugate of (the eventually complex) approximation function 7T},. It is recalled
that, due to symmetry, the eigenvectors X,, are real.

Equation (19) is integrated by parts, once on the velocity term and twice on the acceleration
term, in order to force the emergence of the boundary terms and thus enforce explicitly the initial
conditions. The following result (see Appendix B) is obtained after implementing the displacement
approximation (16) in domain 0 < 7 < 1 and at instant 7 = 1, and the velocity approximation (17)
at the same instant:

Dydy, = Andy(0) + Tp,(0)Tvn (0) + T2F,. (20)

After solving Eq. (20) for a given time step, T, definitions (16) and (17), computed at instant
7 =1, can be used to construct the amplification matrix and of the load vector present in Eq. (10).
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3.2. Mixed approximation in the time domain

The mixed formulation develops from the independent approximations (16) and (18) for the displace-
ment and velocity fields. The motion Eq. (7) is still enforced on average, in form (19). Consequent
upon the independent approximation of the velocity field, this equation is now integrated by parts
only once. The initial conditions are enforced and approximations (16) and (18) are implemented in
domain 0 < 7 < 1 and at instant 7 = 1, to yield the following result, where definitions (B3)—(B5)
in Appendix B are used:

Qntn + (26n0wn 2 + W2 Hy) dn = 260wn T3 (0)dn (0) + T (0)T'vy (0) + T2 Fy, (21)
1
AR / . Tndr, (22)
0
1
2 = To()Tn(1) = / T/ Tdr. (23)
0

Consistency of the independent displacement and velocity estimates (16) and (18) is enforced
also on average in the following form, to exploit the orthogonality condition (15):

Xt /0 "iM (v = d) dt = 0. (24)

Similarly to the procedure used to obtain result (21), this equation is integrated by parts to
enforce the initial condition on the displacement field. After implementing approximation (16) at
instant 7 = 1 and in domain 0 < 7 < 1 and the velocity approximation (18) in the same period, the
following result is obtained:

Un = Q*ndn i W*ndn (0), (25)
Qun = H10,, (26)
Wen = H 1T, (0). (27)

The solving equation is obtained substituting result (25) in Eq. (21), see Appendix B:

Dandn = Aunwendn(0) + wanTn(0) + T2 Fyy, (28)
Fun = H'F,. (29)

Results (28) and (25) are enforced in approximations (16) and (18) at instant t = T'(7 = 1) to
establish the definitions of the amplification matrix and of the load vector in Eq. (10).

3.3. Trefftz method

To recover the Trefftz method it suffices to constrain the time basis used in the single-field approx-
imation to satisfy locally the homogeneous equation of motion in conjugate form, see Eq. (13):

Pl DT 02 T .0, (30)

After implementing the general solution (31), where i is the imaginary unit and wg, is the (under-)
damped free frequency,

T, = exp [(fnwn s iwdn)'r] ) (31)

Win = wnV/1 — &2, (32)
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the domain integral present in the solving Eq. (28) vanishes, see Eq. (B1), as it is typical of the
Trefftz method. The resulting Trefftz expressions for parameters D,, and A, in Eq. (28) are given
in Appendix B.

It can be verified that this solution corresponds to the closed form solution of system (7). This
becomes particularly obvious when a real description for the time basis (31) is adopted and approx-
imation (16) is extended to include a particular solution of Eq. (13), written, for instance, in the
form of the Duhamel integral:

d(t) = ZX 7)dn + Upn) - (33)

3.4. VIP method

It can be easily verified that the Trefftz result presented above corresponds to the generalised VIP
method of Tamma et al. [2]. The original version of this method is recovered if the integration
by parts of Eq. (19) is not implemented on the damping term. This implies the approximation of
the velocity field, meaning that the original VIP method is, indeed, a double-field approximation
method.

To avoid the integration on the load term, see Eq. (B5), K. K. Tamma and his co-authors assume
a linear approximation of the forcing load over the time interval 0 < 7 < 1. The same approximation
is assumed for the velocity field in the original VIP method.

The mixed formulation presented above is conceptually distinct from the explicitly double-field
approximation suggested in [2], which develops from the equivalent first-order expression of the
equation of motion (7), at the cost of doubling the dimension of the problem under analysis, see
Appendix B:

}"* + A*Y* =F.. (34)

Similarly to the procedure followed here, this equation is enforced on average using weighting
time functions W(t), and integrated by parts to enforce the initial conditions:

W(T)y.(T) — /0 ' (v’vt ~ WA ) y.dt = / WHF, dt. (35)

This is formally equivalent to the coupling of Eqgs. (19) and (24) used in the mixed formulation
described above. However, two fundamental distinctions remain. The first is that the 3 velocity
degrees-of-freedom are not treated explicitly as dependent variables, as stated by Eq. (21). The
second distinction is that Tamma et al. [3], still in the manner of Trefftz, constrain the basis to
solve the conjugate homogeneous equation of motion (33):

Wt - WA, = 0. (36)

This Trefftz condition and its associated solution (37), see Egs. (30) and (31), are then enforced
in system (35), to yield result (38):

W = exp [Alt], (37)

9!
exp [ALT] y«(T) = y.(0) + /0 exp [ALt] F.(t)dt. (38)

It is obvious that the double-field approximation method proposed in [2] collapses to the Trefftz
method with modal decomposition in space, that is, to the generalised VIP method, when the exact
solution (37) is implemented in Eq. (35). Instead of following this option, K. K. Tamma and his
co-authors generate approximate solutions based on the decomposition of matrix A, weighted by
convergence tuning parameters. This decomposition is developed under the condition that modal
decomposition can still be applied in linear dynamic systems in order to use the Lax equivalence
theorem, as stated in [2].
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4. STANDARD INTEGRATION PROCEDURE IN THE FREQUENCY DOMAIN

In order to clarify the presentation in Section 5 of the integration method based on modal decompo-
sition in the time domain, it is convenient to recall first the standard procedure for integration in the
frequency domain by addressing separately second-order problems of the form (7) and hyperbolic
problems governed by Egs. (1) to (5).

4.1. Second-order problems

To avoid its implicit dependency on modal decomposition in space, let the displacement approxima-
tion (16) be written in the following form, where d,, is now a weighting vector and « is the dimension
of the time basis (thus opening the possibility of using a < 3, the dimension of vector d):

d(t) = )., Tu(r)d. (39)

The method of Galerkin is still used to enforce Eq. (7) on average, thus replacing Eq. (19) by
Eq. (40), which is integrated by parts twice:

¥
/ 7, [Ma + Cv + Kd — F(£)]dt = 0, (40)
0

T » ~ Py 398 DI 14 T T

/ [TnM —T.C+ TnK] ddt + [TnMd — T,Md + TnCd] = / T,Fdt. (41)
0 0

Substitution of approximation (39) in the integral term of Eq. (41) and of its value at instant

t = T in the boundary term leads, in general, to coupled equations of motions. Uncoupling can be
gained, without calling upon modal decomposition in space, by using a Fourier time basis,

T = expliuwgt); (42)

which represents the undamped form of definition (31) and where now w, = 2n7. As this basis
implies periodic solutions, the boundary term in Eq. (41) is identically null, and the well-known
governing equation for Fourier analysis in the frequency domain is recovered:

[K e (%) 0 (‘%)21\/1] dy=F, (43)
Fp= /0 1 T.Fdr. (44)

4.2. Hyperbolic problems
The same procedure can be applied to the hyperbolic problems. The displacement approximation
(38) is now written as,

a

alict) =% Tt mV,; (45)

n=1

to reduce the system of Egs. (1), (4) and (5) to the following Helmholtz problem:

[DkD* -1 (%) c+ (%_n)z m] Up(x) +f,(x) =0 inV, (46)
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NkD*u,(x) = trp(x) on I, (47)
W kX) = M RalX) &0y, (48)
Fofgis / F 8, 7)dr, (49)
0

frilot) = /0 B T (50)
1

i oekoss /0 Frnlosot)don (51)

System (46)—(48) can now be solved in the space domain using, for instance, one of the variants
of the finite element method, namely the alternative displacement and stress models of the hybrid-
mixed, hybrid and hybrid-Trefftz formulations presented in [5, 6].

5. INTEGRATION USING MODAL DECOMPOSITION IN TIME

The procedure described below is designed to preserve the hyperbolicity present in systems (43)
and (46) while avoiding the periodicity implied by the Fourier time basis (42). For simplicity, the
second-order and hyperbolic problems are still analysed separately.

The basic distinction with respect to the frequency domain analysis presented in the previous
section is that a mixed formulation is now used, meaning that the displacement approximations
(39) and (45) for second-order and hyperbolic problems are now complemented with independent
approximations for the velocity field:

v(t) = % S T () v, (52)
n=1

V&= % ST (F)va (). (53)
n=1

Moreover, the time approximation basis is no longer assumed to be periodic, orthogonal to itself
and to its derivative, as it is implied by definition (42). Any complete and linearly independent time
basis may therefore be used to implement the integration procedure in the time domain described
below.

5.1. Second-order problems
The time approximation functions present in definitions (39) and (52) are used as weighting functions

in the average (Galerkin) enforcement of the equations of motion, in form (40), and of the velocity
definition, thus replacing Eq. (24) by the following:

TA o
/0 i (v & d) dt = 0. (54)

It can be readily verified that integration by parts of Eqgs. (40) and (54) yields the following
generalisation for Egs. (21) and (25),

e e e e e e s
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o]

Y [2mnMVy + T (2mnC + THpnK) dy] = TTin(0) [Mv/(0) + Cd(0)] + T°Fm, (55)
=2

na a .

Z Hpn Vi = Z matn =~ Tm(o)d(0)1 (56)
n=1 n=}

where result (44) holds and where the following expressions replace Eqgs. (22) and (23):
1
B / T Todr, (57)
0
1.
Qo = Ton(1) T (1) — / TTadr. (58)
0

As it is stated in Part I, the key idea to uncouple systems (55) and (56) is to define the time
approximation basis so as to ensure that the following relation between matrices H and matrix €2,
defined by Egs. (57) and (58), holds for a diagonal matrix €, as in Eq. (26):

Q = HQ,. (59)

Matrices H and €, are formed by pairs of complex conjugate eigenvectors vectors and eigenval-
ues, respectively, whenever a complete basis is used. Consequent upon result (59), Egs. (56) and
(55) uncouple into form,

[K + (%’:”) C+ (Q;")QM} d, w}" KC EE Q—#M) d(0) + Mv(O)] + Fun, (61)

in the manner of Egs. (25) and (28), respectively, and where the following definitions replace results
(27) and (29), with H,,. representing the coefficient of the inverse of matrix H:

Wam = ZH LU () (62)

Fum = Z H;lF,. (63)
n=1

The displacement and velocity estimates at instant ¢t = T" are obtained substituting the solutions
of systems (61) and (60) in approximations (39) and (52), respectively.

5.2. Hyperbolic problems

The time integration procedure described above for second-order problems can be readily extended
to hyperbolic problems. Approximations (45) and (53) for the displacement and velocity fields are
used now and the average enforcement of Egs. (1), (4) and (5) is still implemented in the sense of
Galerkin using the time functions as weighting functions to obtain the solving systems equivalent
to the second-order problem Eqgs. (60) and (61):

Va(x) = Q*nun(x) 5T "‘)*nu(xv 0), (64)

[DkD* - (%—) c— (Q}")Qm] Uy (x)

LY [(c + Qj’:" m) HOEOY Y B, 0)] Sss Sy (65)

'
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This equation preserves the hyperbolicity of Eq. (1), in the sense of Helmholtz, and replaces the
spectral analysis equation of motion (46), with:

o)
S By (66)
n=1
Results (49) to (51) still hold, and the boundary conditions that replace Eqs. (47) and (48) are:
NkD*u,(x) = tpan(x) on [, (67)
Up (X) = Apsn(x) on I, (68)
(o3
trem="Y Hottire, (69)
n=1
[0
Ursm = Z H;nllul"n- (70)
n=1

Equation (65) under boundary conditions (67) and (68) may now be solved numerically using
any of the available methods for the solution of elliptic equations, namely the variants of the finite
element method. This is illustrated below for the conventional formulation of the finite element
method and for its hybrid-Trefftz variant.

5.3. Finite element solution in the space domain

The conventional (single-field, conforming) finite element formulation develops from approxima-
tion (6), written now in form:

u,(x) =U(x)d, inV. (71)

The solving system (61) for second-order problems is recovered applying the procedure recalled in
Section 2, provided that Eqgs. (8) to (10) are used to define the mass, damping and stiffness matrices
of the finite element mesh, and that nodal force definition (63) is replaced by the equivalent form
of Eq. (11):

F., = / UtV + / Vhrdly. (72)

To establish the solving equation for the displacement model of the hybrid-Trefftz finite element
formulation, it is convenient (but not necessary) to extend approximation (71) to include a particular
term as in Eq. (33):

uy(x) = Up(x)dy + dpn(x) in V. (73)

Moreover, this approximation is now complex, in general, and frequency dependent as the dis-
placement approximation function U, (x) is constrained to solve the homogeneous form of the
Helmholtz Eq. (65),

TDRD* e (Q*n)zm' Un(x) = 0 )

T g

and vector dpp(x) is assumed to be a particular solution of the same equation:
(8 AR
(DkD —( }")c— (—T*ﬂ) m | dpp(x)

+w; [(c + %m) u(x,0) + mv(x, O)] + fin = 0. (75)
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As for the conventional formulation, the equilibrium Eq. (65) is enforced on average using the
(complex conjugate) displacement functions, U, as weighting functions.

Consequent upon the Trefftz constraints (74) and (75), the displacement approximation (73) will
not, in general, lead to conformity. It becomes necessary to approximate also the surface forces (on
the element interfaces and) on the Dirichlet boundary of the mesh (thus the hybrid labelling):

4, (xX) =P(X)py . o013 (76)

The (complex conjugate) of the functions used to approximate the surface forces are used to
enforce conformity on average. The Dirichlet Eq. (68) is thus relaxed to form (77), for the assumed
displacements (73):

/ P* (u, — upsn) dI, = 0. (77)
The following description is found for the solving system,
dn } { Pn }
={ X 78
{ Pn d, ( )

where all intervening arrays are defined by boundary integral expressions, as it is typical of the
Trefftz method:

D, -P,
Bt 0

D, = / U NkD*U,dT, (79)
P, = / UL Pdr,, (80)
P, = / U NkD*up,dI" + / Ctraadly, (81)
@ = [ B (upn — urwn)dT. (82)

A detailed derivation of the results presented above can be found in [5, 6], where the alternative
stress model of the hybrid-Trefftz finite element formulation is also considered.

6. CLOSURE

The results presented in Section 3 generalise the well-established method of modal decomposition
in space to establish uncoupled equations of motion.

It is shown that this method can be understood as the Trefftz variant of the finite element
method. The generalised VIP method proposed in [2] is recovered using also the Trefftz concept.
However, it is shown here how to implement the single-field formulation using general bases, that
is, bases that are not included in the set of the solutions of Eq. (30).

The double-field or mixed approximation used here is assessed in [1], where the results obtained
using non-Trefftz bases are compared with the solutions reported in Tamma et al. [2] using the
quasi-Trefftz method recalled in Section 3.

The major limitation of these methods for integration of the equations of motion is their direct
dependency on the solution of the eigenvalue problem (12) and on the orthogonality conditions (14)
and (15), as they raise major difficulties in generalisation, particularly to non-linear applications.

The computational costs that the modal decomposition methods imply suggest the frequent use
of incomplete (low-frequency) modal bases. However, it is well established that this simplification
may induce unacceptable estimates for stress and force fields, as they are not weakly dependent on
the high-frequency modes.
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As it is shown in Section 5, these limitations can be overcome introducing a fundamental change
in the modal decomposition concept, that is, using modal decomposition in the time domain and
not (or not necessarily) in the space domain.

This decomposition is constructed so as to preserve hyperbolicity without relying on periodic
time bases, thus encoding the solving Egs. (61) and (65) in the format that typifies the Eqs. (43) and
(46) of spectral analysis. The analysis of the stability of this basis obtained by modal decomposition
in time and the assessment of the performance of the resulting time integration method are reported
in [1].

The dimension of the eigenvalue problem implied by modal decomposition in the time domain
is strongly reduced, as it depends now on the dimension of the time basis and not on the number
of degrees-of-freedom of the equation of motion.

Moreover, orthogonality is not called upon, which releases the approach from direct dependency
on the structural material properties. Finally, and equally relevant, the time integration method is
independent of the method used for discretization of the structural problem in the space domain.
Therefore, the solution of the resulting Helmholtz elliptic problem can be solved using any of the
available methods for the solution of elliptic equations.
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APPENDIX
A. STANDARD INTEGRATION PROCEDURE IN THE TIME DOMAIN

The definitions of the (symmetric) mass, damping and stiffness matrices M, C and K, respectively,
and of the consistent forcing load vector, F, present in equation (7) are:

M= / U'mUdV, (A1)
C= / U'cUdy, (A2)
K= / (D*U)' k (D*U)dV, (A3)
F= / Utfdv + / Uttpdr,. (A4)

B. TIME INTEGRATION USING MODAL DECOMPOSITION IN SPACE

The terms present in the solving Eq. (20) for the single-field formulation are defined by:

1
O / [T,’; Bt ngn] T,dr + (TnT,’L Bk 2£nwnTnTn) ' (B1)
0 T=
An = 2%, TH(0) = T (0), (B2)

dn(0) = X' Md(0), (B3)
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v, (0) = X! Mv(0), (B4)
1
g = / T, X F(t)dr. (B5)
0
The terms present in the solving Eq. (28) for the double-field formulation are defined by:

Din = -an + 2€*nwn-Q*n + wrzw (B6)
A*n = Q*n + 2£*nwn- (B7)

According to definitions (B1) and (B2), the terms present in the solving Eq. (20) for the single-
field formulation under the Trefftz constraint (30) are defined by:

D, = 2A, exp(2¢,wy), (B8)
Ap = Epwn + twan. (B9)

The following identifications hold in the equivalent first-order Eq. (34) that supports the devel-
opment of the double-field VIP formulation

»={%} (B10)
m=[Mﬂth%], (B11)
F, ={ o i } (B12)

It is noted that it is not strictly necessary to call upon the explicit inversion of the mass matrix.
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