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Two types of Trefftz (T-) functions are often used — fundamental solutions with their singularities outside
the given region and general solutions of homogenous differential equations. For elasticity problems the
general solution of the homogeneous differential equation (equilibrium equation in displacements known
as Lame-Navier equations) can be found in the polynomial form.

In this paper we present the first type of T-functions. The paper deals with the investigation of accuracy
and stability of the resulting system of discretized equations in relation to the position of the source
(singularity) point. In this way non-singular reciprocity based boundary integral equations relate the
boundary tractions and the boundary displacements of the searched solution to corresponding quantities
of the known solutions.

It was found that there exist an optimal relation of the distance of the singularity to the distance of
the collocation points where both the integration accuracy and numerical stability are good.

Keywords: point and line Hertzian contact, infinitesimal displacements, large element/sub-domain con-
cept, FEM/BEM technique.

1. INTRODUCTION

If spherical bodies in contact have much different curvatures at least in one direction, like it is in
roller bearings, the contact area is very small and under normal loading the contact pressure may
occur in order of several thousands N/mm?. The contact area can be small in both contact surface
directions (called point contact) or in one direction only, when the difference of the curvatures in
the other direction is small (called line contact). For detail description of the problems, see the
references [1-14].

The detail distribution of the load over the individual rolling elements and the pressure distri-
bution in the contact area of each element requires a very fine element mesh, high performance
computers and effective software for the numerical modelling of the problem.

The solution of such problem can be split into two solutions, the first one, which contains the
large gradients, is solved very precisely using the known Boussinesq’s solution, and the second, which
is smooth enough, is solved by BEM. Such procedure reduces the numerical model considerably.

The present paper deals with an effective modelling of the second problem. The direct reciprocity
based BEM formulation is used in the solution. The unknown field, which is looked for, is related to
the known solutions, which are defined by fundamental solutions having the source (singular) points
outside the domain. In this way, effective procedures can be used for the numerical integration. The
fundamental solutions introduce the Trefftz (T-) functions satisfying the solution of homogeneous
governing equations in the whole domain.

*Corresponding author.
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The aim of our contribution is to show the influence of position of singular points on the accuracy
and stability of numerical procedure in the solution of problems with smooth boundaries and smooth
boundary tractions.

2. LOCAL FIELD SOLUTION

Very efficient formulation for modelling of displacement and stress fields in the contact regions can
be obtained using Trefftz type reciprocity based boundary elements. In all cases the sub-domain
solution is presented by the reciprocity based BEM [15-18]
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where u; and b; are displacements and body forces, respectively and ¢; are tractions acting on the
domain boundaries I" of the domain §2. This equation expresses the reciprocity of works done by
two systems of forces, the one without stars which is sought, or given on the domain boundaries,
or inside of the domain, and another, reference state (for which all, displacements, stresses and
tractions are known inside and on the domain boundaries), denoted by letters with stars.

The reciprocity equations are well known from the BEM formulations, where the Kelvin fun-
damental solutions are used for reference state and lead to the singular integral equations. Using
T-polynomials, or Kelvin solutions with the singular points located outside the domain, all inte-
grals are regular and can be computed more effectively using the numerical quadrature formulas.

Three types of problems leading to large local gradients can be considered [19]:

e Local loads and local contact problems,
e Holes, cracks, elastic inclusions and other types of geometric concentrators,
¢ Rigid and quasi-rigid inclusions.

As we need to compute all displacements and stresses on and near the boundaries, the problem
is defined as follows:

A. Solve the problem (2) for unknown displacements from prescribed tractions on the boundary
nodes (located on points on the radius R as shown in Fig. 1 for 2D problem) using the Kelvin’s
functions with source points y located outside the domain (on radius Rp). In Kelvin’s type
solution the reciprocal state is defined by the unit force acting in the source point y (outside the
domain) in direction y;. The equation (1) is written then in the form
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where for 2D problems Trefftz functions for displacements are

1
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and for tractions they are

Uij (y,z) = — {B—4v) dijin (r) — 7,75} (3)
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Fig. 1. 2D rolling element

B. The displacements in points y (radius R;) inside the domain are computed from the boundary
displacements and tractions using Eq. (5)
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C. For computation of stress components in a point of interest (POI) it is necessary to know
the derivatives of displacements. They are computed using Trefftz polynomial interpolation of
displacements from the displacements at the closest discrete points. For this purpose even low,
second order interpolation gives very good results. Taking into account the traction boundary
conditions improves the quality of results for computation of stresses near or on the domain
boundaries [19].

The complex problem is decomposed into the local solution (an auxiliary domain, if the local
problem is more precisely solved in such domain) and another smooth solution defined on large
sub-domains/elements (Fig. 2), giving

fszL+fS (f:uiaaijati)) (6)

where the indices R, L and S denote the resulting (total), local (particular solution) and smooth
part of the corresponding field, respectively.

The local field is described in an auxiliary region, which can only partially coincide with the real
region (Fig. 2). The auxiliary region contains the local fields solution, whereas the real region is
solved numerically with prescribed smooth boundary conditions and thus, it does not require very
fine discretization.

When the intensity of the local field is known, then the problem can be split into local and smooth
part according to (6) and solved separately for each of them, whereas in the case, when its intensity
is unknown (e.g. cracks, or other geometrical concentrators), then both the local displacements and
traction boundary conditions have to be included into the formulation. As the local solution satisfies
the governing equations in a strong sense, the accuracy of the solution will not be destroyed by the
large gradients and the fineness of discretization is dictated by the smooth field part of the solution.
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Fig. 2. Real and auxiliary region

As an example of the local problem we can show the 2D problem of Hertz contact of a cylinder
with a half plane or with some cylindrical raceway. The local problem can be described using the
Boussinesq solution [12-14].

For 2D problem with normal load the stresses are given by
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and the displacements
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with (@ = 1, 2), where z3 is the normal direction of the surface of the half space.

The resulting local stresses and displacements are obtained by integration over the loaded surface
and replacing the force by traction in corresponding quadrature point. Singular integrals have to
be evaluated and so, some technique known from BEM can be used [17, 18]. Another possibility for
evaluation of integrals is to use potential functions, which reduce the order of singularity by one.
However, in that case the stresses are obtained from second derivatives of the potential functions,
which require some special treatment, usually defined by a discrete numerical procedure.

Further it is assumed that the local problem is described by accurate enough functions and a
domain with smooth boundaries is solved numerically. Also the tractions are considered to be smooth
enough. The boundary integral Eqgs. (1) or (2) are solved by collocation method with equispaced
integration points. Such a rule gives the highest numerical accuracy, if the integrands are harmonic
functions. However, the kernel functions are the singular Kelvin’s functions and sufficient accuracy
is obtained only if the singularity is far enough from the integration surface. On the other side, the
kernel functions serve also as weighting functions for satisfaction of the equilibrium in integral form
and thus, unlike the previous functions, need to give different values in order to result in a stable
numerical system of equations. The stability decreases with increasing distance of the source points.

The next section describes a numerical experiment to find the optimal distance of the source
points from the domain.
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3. NUMERICAL RESULTS

The numerical accuracy and stability was studied for a circular domain under two loading states:
the hydrostatic pressure and unilateral tension. For both states the fields of displacement, traction
and stress are simple and the error can be easy obtained.

Figure 3 shows the boundary loaded by hydrostatic pressure, where the blue color corresponds
to unloaded boundary and the red color is the boundary deformed by hydrostatic pressure. Figure 4
shows the deformed and undeformed shapes by the uniaxial tension in direction y. The accuracy is
studied in Figs. 5 to 8 for both kinds of load. -

In both loading cases we have changed both the distance of the singular points from the boundary
domain and the number of collocation points. We tried to find the area where the solution of good
numerical accuracy is found. When the point of the singularity is placed too far from the boundary,
the numerical stability decreases. If the point of the singularity is too close to the boundary, the
result of the solution is not accurate enough because of the errors in numerical integration.

If the collocation points are close to each other and the distance of singular points from the
boundary domain is too large, the values of both functions in integration points differ too little and
the numerical stability decreases.

Figures 6 and 7 contain the results when the classical boundary elements were used and the
boundary displacement and tractions were interpolated by quadratic shape functions.

Fig. 3. Hydrostatic pressure Fig. 4. Uniaxial tension in direction y

Fig. 5. Uniaxial tension in direction y, collocation Fig. 6. Uniaxial tension in direction y, quadra-
method tic BE
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Fig. 7. Hydrostatic pressure, collocation solution Fig. 8. Hydrostatic pressure, quadratic BE

4. CONCLUSIONS

We studied influence of position of singular points on the accuracy and stability of numerical pro-
cedure in the solution of problems with smooth boundaries and smooth boundary tractions.

When the singularity of corresponding Trefftz fields is too close to the boundary, the quasi-
singular integrals require use of a special integration, which is not effective and increases the solution
time. If the point of the singularity is placed too far from the boundary, the numerical stability
decreases.

Optimal placement of singularity points was found in dependence from the numerical of collo-
cation points and of the size of boundary elements. It was found that the collocation procedure
for evaluation of integrals gives comparable accuracy as the quadratic boundary elements, but it is
more effective technique of the solution (later research showed even better accuracy of the solution
by collocation for the problems like inhomogeneous materials).

Figures 5 to 8 show that there exists an optimal distance of the singularity to the distance of
the collocation points where both the integration accuracy and numerical stability are good. This
is an important result for modeling problems of contact, inclusions, etc.
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