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This paper presents the basis of an adaptive mesh refinement technique aimed at reducing a local error,
Le. the error in a local quantity, which is defined as the integral of a stress or a displacement in a given
subregion.

Two pairs of dual solutions, one corresponding to the applied load and the other to the virtual action,
dual of the local quantity, are used to bound the local error and to provide the element error indicators
for the adaptive process.

A test case is used to exemplify the behaviour of the technique.

1. INTRODUCTION

The finite element method is widely used and accepted as a numerical tool to “solve” several classes
of problems for which an analytical solution is not available. The solutions thus obtained are, as a
matter of rule, approximate and it is therefore important to assess the accuracy of the approximation.

Whatever the approach, the lack of an exact solution implies that only an approximation of the
error may be obtained. Usually two different behaviours may be required from these approximations:
either they must present asymptotic exactness or they must bound the exact error. From a practical
point of view it is generally more important to guarantee that, for a given solution, the true error
is smaller than the prescribed tolerance. This may be ensured only if an upper bound of the error
is computed, from which an upper and a lower bound of the exact solution may be obtained.

The concept of dual analysis, developed by Fraeijs de Veubeke [7], may be used to obtain a bound
for the global error of the solution.

In practice, it is generally more relevant to know the error of the solution in specific points
or sub-regions, rather than having a global average error. It is therefore important to formulate
techniques which provide this type of information.

Greenberg [9] and Washizu [20] proved that, given two pairs of dual solutions, one pair for the
real problem and the other for a virtual action (equivalent unit load for displacements and equivalent
unit relative displacement for stresses), dual of the desired local effect, bounds of the exact value of
a displacement or a stress at a point can be obtained.

In the context of the finite element method, Yang, Kelly and Isles [22] used Washizu’s approach
to obtain upper bound estimates of the pointwise error in the finite element method and Albanese [1]
used Greenberg’s approach for electromagnetic problems.

When the goal is to obtain a more accurate approximation of the local value, but not bounds for
this value, it is sufficient to have one solution for the real problem and another for the virtual action.
This approach was followed by Babuska [4], who also used the associated element error indicators
to drive an adaptive refinement process directed at reducing the local error.
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In this paper we start by presenting the basic concepts related to static and kinematic admis-
sibility, which are used to compute the local quantities and corresponding error bounds. It is then
shown that each bound on the local error may be obtained as the sum of element contributions,
which are used as element error indicators to drive an adaptive procedure focused on the required
local quantity. A numerical example is used to study the characteristics of this technique.

Preliminary results obtained by the authors were presented in [14].

2. STATICALLY AND KINEMATICALLY ADMISSIBLE SOLUTIONS

In this paper, a subscript e (e.g. o) will imply that the corresponding field is derived from a
statically admissible solution, whereas a subscript ¢ (e.g. u.) implies that the field is derived from
a kinematically admissible solution. When none of these subscripts is used the solution is exact.

Except for particular cases, it is not possible to obtain the exact solution of a given problem
using the finite element method, but it is possible to establish formulations which provide either
statically or kinematically admissible solutions.

Kinematically admissible solutions may be directly obtained using both the conventional formu-
lation of the finite element method [19] and a hybrid displacement formulation [3, 11, 17].

Equilibrium finite element models [7] and hybrid stress finite element formulations [2] may be
used to directly obtain statically admissible solutions.

It is also possible to indirectly derive a statically admissible solution from a kinematically ad-
missible finite element solution [13] and wvice versa [15].

3. CALCULATION OF LOCAL QUANTITIES

A local quantity is a weighted integral of a field in a subregion. If the weighting function is a unit,
constant function, the local quantity is equal to the average value of the field, multiplied by the
volume/area/length of the subregion, but other functions may be used. If the subregion is a point,
the local quantity is the value of the field at that point. In this paper, the local quantity will always
be computed on a region that has the dimensions of the boundary of the domain: on an area for
solids and on a line for plane problems. To distinguish it from the original boundary this region will
be denoted T

Interpreting the weighting function as a virtual action, it is possible to indirectly compute the
local quantity using the principle of virtual work, resulting in Eq. (1) for stresses and (2) for
displacements. In the following, to distinguish the virtual action an overbar will be used, e.g. &
corresponds to the stresses due to the virtual action.

Olocal = _ﬁ_ ﬁ_}:t dr

= —/zjad9+/ﬁfbd9+/ altrdl, (1)
9) n I
Olocal = /_ uTEF ar
Lt
= / £1G,d2 — / upt.dr. (2)
n u

As a consequence of having different solutions available from the dual analyses, more than one
approximate value may be computed for each local quantity, e.g. o<, and aﬁfcal, the first obtained
from a pair of compatible solutions and the second from a compatible solution of the virtual problem
and an equilibrated solution of the real problem.

This paper will focus on the computation of local stresses, but the extension of the results
presented to local displacements is straightforward.
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4. SOLUTION ERROR

The pointwise error is defined as the difference between the approximate and the exact fields, e.g.
ec=0c,—0 and e, = 0, — 0.
Similarly, the local error is the difference between the approximate and the exact local quantities.
The most common global measure to assess the error in finite element approximations is the
distance, in the energy norm, between the approximate and the exact solutions:

llecll = (ecyec)*?, (3)
leell = (ee,ee)/?, (4)

where (ey,e3) = [ el feodf2 and € = fo.
The energy norm of the error of each solution is bounded by the energy norm of the difference
between the dual solutions [18]:

lleell = lloe — ol < lloe — ocll = ¢, (5)

”eC” == "0' W GC“ S “Ue —= 0'3” = €. (6)

Following Washizu [20], given a pair of dual solutions corresponding to the “real problem”, whose
error is bounded by ¢, and a pair of dual solutions corresponding to the “virtual problem”, bounded
by €, an upper bound of the error in the local quantity is given by:

€local = € X E. (7)
For a local stress, as shown in [14],
|Ulocal = Ulzocceﬂ' < "a'_c e Ee" X ”Ue - O'c” = €local, (8)

and, when o, is a solution obtained from an equilibrium finite element model and &, may be
represented using the same model,

|o10cal — Ulaoecall < [T = Gell X ||oc — Tl = €10car- (9)

From each approximation of the local quantity and from the corresponding upper bound of the
local error, an interval containing the exact value of the local quantity may be defined.
The intersection of each of the two pairs of intervals yields, for a local stress:

cc C : C ce
max (Ulocal, Ulc:cal) — €local < Olocal < mln(alcoccal’ Ulocal) + €local - (10)

5. ELEMENT ERROR INDICATORS FOR LOCAL QUANTITIES

The goal of an adaptive refinement is to find, at a minimal cost, a finite element solution that
satisfies a required tolerance, which for most of the research on this subject is defined in terms of
the relative global error.

The selection of optimal regions for refinement may be based on the contribution of each element
or degree of freedom to the estimate of the error. The mesh is then refined by using smaller elements
and/or by increasing the degree of the approximations used.

Most of the research in this field has focused on conventional, compatible, finite element models.
In the initial work by Babuska [5] and Gago [12], the error was estimated from the equilibrium
residuals, but later work by Zienkiewicz and Zhu [23] established a framework based on an improved,
recovered, stress field which is now commonly used [24].
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Another alternative is to compute an upper bound of the global error using dual principles. Then,
as the error bound in (5) and (6) may be expressed as a sum over all the elements,

1/2 1/2
€= |loe — ol = (Z lloe - O'cn%i)) T (Z 6?1’)) ) (11)

(3

naturally yielding element error indicators.

The pair of dual solutions may be obtained from the parallel analysis of an equilibrium and a
compatible finite element model, as used by the authors [15]. Alternatively, the primal solution may
be used to derive the dual field.

This approach has been used by Ladeveze [13], who devised a procedure to derive equilibrated
stress fields from compatible solutions, and by the authors [15], who derived compatible displacement
fields from equilibrated solutions.

In adaptive processes focused on the global error, the tolerance is normally expressed relative to
the strain energy norm of the solution.

In this paper, the tolerance used in the adaptive process is related to a local quantity, which in
general is measured as an absolute quantity. This is justified, from a practical viewpoint, because
the designer is generally concerned that the variable provided by the finite element mesh is within
given material or design bounds and, from a theoretical viewpoint, because the local quantity may
be zero.

The error in the local quantity, €jocal, which was defined in Eq. (7), may be rewritten:

€local = ”Ge - 0'c“”a:e = Ec”

((z4) (%)

1/2
= (a e Z ety +(1-a) EZZ E%i))
1 1
1/2
(Z (a ey +(1- ) 623%1-))) . (12)

(3

As the local error may be written as the square root of the sum in (12), the terms therein may
be used as element error indicators. Factor & may be used to adjust the relative importance of each
solution. Setting « to one corresponds to adapt only for the real solution and setting it to zero will
optimise the mesh for the virtual solution.

We will use the mean value, by setting « to 0.5. The following element error indicator is thus
obtained:

Vg, L
€(iylocal = 3 (626%1) + 625?1')) : (13)

6. ADAPTIVE STRATEGIES

Given a finite element mesh and an estimate of the relevant error, the h-adaptive procedure will
attempt to provide a new, optimal, mesh for which the error does not exceed a required value.

In the present context, the relevant error is either the bound of the error of the local quantity
or the size of the interval containing it. The procedure adopted is a generalisation of the algorithm
presented in [8] and [16] in the context of the global error, which provides a size reduction ratio
that must be applied to each element in the given mesh.
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The strategy presented aims to provide an optimal mesh for only one real and one virtual action.
More complex situations, e.g. more than one real action or more than one local quantity, are not
considered in this paper.

Admitting that the global convergence rate of a given solution, with respect to the total number
of elements, is optimal:

loe = ocll = C NE7P/P;

where NE is the number of elements in the mesh, p is the lowest degree used in the approximation
of 0. and 0., D is the dimensionality of the domain and C is a constant. Then, the error in the
local quantity has a similar convergence, with rate —(p + p)/D, where p is the equivalent of p for
the virtual action.
In general, the same model will be used for all loadings, solving a governing system with multiple
right hand sides. In that case, the convergence rate will be —2p/D.
In order to obtain the required error, the number of elements in the new mesh, M, must be
related to the number of elements in the given mesh by:
T ke
€local

Assuming that the convergence rate within each element, in terms of its size, is the same through-
out the new mesh, it will be optimal if:

req \2
62 . (elocal)
local(e) — M :
As the increase in the number of elements is O(h~P), the corresponding size reduction ratios
are:
1/(p+p+D)

req

€local . (1 4)

€local D/(w+r) "
€local(i) | NE (efo;)
ocal

In problems with singularities, the convergence rate within each element will not be uniform
throughout the mesh, but the formula presented will be adapted, following a procedure similar to
the one presented in [16].

>
Py

S
&=

7. EXAMPLES

The plane stress problem, presented in Fig. 1, inspired by a structural model used in the design of
the Sleipner oil platform [10], where the integral of the tangential stress along line BE, i.e. the shear
force, is the local stress, was used to test the proposed error bound and the adaptive technique.
Sides AGF and CD are sliding supports and an uniform normal pressure is applied on side ABC'; an
uniform elasticity modulus and a Poisson’s ratio of 0.15 were assumed. The units of the quantities
involved are not explicitly stated, but it will be assumed that they are consistent.

Hybrid stress and hybrid displacement formulations of the same degree were used to obtain
the statically and kinematically admissible solutions, respectively. An initial mesh, consisting of 44
triangular elements was used.

In Figure 2 the deformed solutions for this mesh, using hybrid displacement elements of degree 5,
are presented for the real action, indicated in Fig. 1, and for the virtual action, which is an imposed
unit relative tangential displacement along line BE.
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Fig. 1. Adaptation of the structural model used in the Sleipner platform

o

Fig. 2. Deformed shapes of the initial finite element mesh

For elements without singular vertices the adaptive process used the size reduction ratios provided
by Eq. (14). This equation was modified for elements with singular vertices to:

1/(A+X)

req

€local
g , (15)
(i) couas\ 2/ ®+P) 1/2
€local(i) NE (ei‘eq 1)
oca

where the strengths of the singularities, A = X = 0.61573106 for point B and A = X = 0.75197455
for point E, were computed according to [21]. In these example p was always equal to p.

The tests presented focus on the influence of the target error reduction in each adaptive step
on the efficiency of the process, which can be measured by expressing the error bound for the local
quantity as a function of the total number of elements, the total number of degrees of freedom or
the total accumulated computational cost.

Normally, a smaller reduction step will provide better individual meshes, but implies a higher
accumulated computational cost.
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Two alternzrietive types of formulae were considered to select the most appropriate error reduction
factor, €ocal/€jgey), in €ach iteration:

2p/2;2p;22p and  2p?; 4p?; 8p?.

The first set of formulae corresponds to fixing the multiplying factor which is applied to the
number of elements to obtain the optimal convergence rate. The second set is based on an heuristic
formula suggested by Beckers [6].

The analysis of all results indicated that the differences between the alternative error reduction
factors are more visible when the error bound is plotted versus the number of elements, as presented
in Fig. 3.
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Fig. 3. Convergence of the adaptive process for all error reduction factors and p = 1..5
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When the efficiency is measured in terms of the number of elements in the final mesh it is always
better to use the smallest error reduction factor. But when the total accumulated time is considered,
this is no longer the case.

Inspection of the results indicates that, for these tests, the growth of the optimal error reduction
factors follows the formula proposed by Beckers [6], 4p?.

In Figures 4 and 5 the convergence, for these optimal error reduction factors, is presented as a
function of the total number of degrees of freedom and of the total accumulated time, respectively.
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Fig. 5. Convergence of the adaptive process, as a function of the total accumulated time, for the “optimal”
reduction factors, p = 1..5

These figures show that, though elements of higher degree have better convergence, they only
outperform when a small error is required. Furthermore, the comparison in terms of number of
degrees of freedom is biased towards high degree elements.

The convergence to the exact solution of the real error and of the error bounds, are presented
in Figs. 6 and 7, where the smallest of the six reduction factors that were previously tested was
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Fig. 6. Error of the approximated local stresses, smallest reduction factors, p = 1,2, 5
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Fig. 7. Bounds of the local stress, smallest reduction factors, p =1,2,5

applied, to provide as many points as possible. The midpoint of the smallest interval computed
using Eq. (10) was used as the exact value. Figure 6 shows that, as expected, the convergence of the
local stress is not necessarily monotonic. It is important to point out that, as shown by the vertical
axes in these figures, the error bounds are about one order of magnitude higher than the real error.
This indicates that the proposed approach, which is designed to guarantee an error bound, yields a
poor error estimator.

8. CONCLUSIONS

A successful implementation of an adaptive refinement process aimed at reducing the error in a
local stress was achieved.

The use of a formulation based on duality ensured that true upper bounds of the local error were
obtained, which is an advantage from the viewpoint of safety.

As the upper bounds are quite large, the corresponding effectivity ratio is much larger than unity,
causing unnecessary refinement steps.

Other test cases, namely where the singularities of the real and virtual actions do not overlap,
should also be considered, together with alternative error indicators based on duality.
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