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The variational theory is the theoretical basis of the finite element method, meshfree particle methods
and other modern numerical techniques. The present paper establishes a family of variational principles
for nonlinear piezoelectricity. A new constitutive relation is suggested, which is deduced as a stationary
condition of a generalized variational principle.
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1. INTRODUCTION

The phenomenon of piezoelectricity was first discovered by the Curie brothers, Pierre and Jaques in
1880 when Pierre Curie was only 21 years old. The brothers [6] discovered that a crystal of sufficiently
low symmetry develops an electric polarization under the influence of an external mechanical force,
and about one year later the inverse effect was predicted, i.e. deformation of a crystal experiences
an electric field. Piezoelectricity is one of the basic properties of crystals, ceramics, polymers, liquid
crystals and some biological tissues (e.g. bone and tendon). Recent interest in piezoelectric materi-
als stems from their potential applications in intelligent structural systems, and piezoelectricity is
currently enjoying a greatest resurgence in both fundamental research and technical applications.
Much achievement has been made in recently years [1-3, 5, 19, 20, 13, 17].

The rapid development of computer science and the finite element applications reveals the impor-
tance of searching for a classical variational principle for the piezoelectricity, which is the theoretical
basis of the finite element methods. Recent research also reveals that variational theory is also a
powerful tool for meshless particle method or element-free method [9]. The present author has
successfully established variational theory for linear piezoelectricity [17] and linear thermopiezoelec-
tricity [13], and in this paper we will establish a variational functional for nonlinear piezoelectricity
by the semi-inverse method [7-18].

2. MATHEMATICAL FORMULATION
The basic equations for nonlinear piezoelectric media can be written in the forms [5, 13, 17]
a) Equilibrium equations
oij; + fi =0, (1)

in which o;; is the symmetric stress tensor, oy;; = 0o0i;j/0x;, fi represents the mechanical body
force.
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b) Constitutive equations
1 1
Oij = QijkiTkl — emijEm + 'icijklpqul"'pq i gmijklEmTkl i §QijmnEmEm (2)

k .
Dy = emiEj + emijrij + o ImigkiTij Tkl + §€mannEz + Qmnij Enrij, (3)

in which r;; is the symmetric strain tensor D; is the vector of the electric displacement, E; is the vec-
tor of the electric field. a;jx; and Cjjkipg — second and third-order moduli of elasticity are respectively
fourth and sixth-rank tensors being measured on condition that electric field is constant(zero); ey,
and €,y — second and third-order dielectric penetrabilities which are second and third-rank tensors
being measured on condition that deformation is constant(zero); en; are the piezoelectric moduli
which are third-rank tensor components; gm;jr are elastoelectric coefficients which are fifth-rank
tensor components; Qijmn are electrostriction coefficients which are fourth-rank tensor components.
For linear piezoelectric media it follows

Cijklpq =0, Imijkl = 0, Qijmn =0, and eppy =0.

¢) Strain-displacement relations

i
E(ui,j + uj4), (4)

Tij =
where u; is the vector of the elastic displacement.

d) Mazwell’s equations for piezoelectric materials

Diz =0-. or-V-D=0, (5)
Ei =6; or E =V, (6)

where & is the electric potential.

f) Boundary conditions
On A; surface displacement is prescribed

Uj =U; (on Al) (7)
and on the complementary part A, the traction is given
OijNj = P; (01’1 Ag) (8)

where A; + Ay = A covers the total boundary surface.
Suppose that on As, the electric potential and on A4, the surface charges are given as

[ = 5 (on A3) (9)

D,-ni =En (on A4) (10)

where A3z + A4 = A covers the total boundary surface.

Our aim of this paper is to establish a generalized variational principle for the above discussed
problem, whose stationary conditions should satisfy all the field equations and boundary conditions.
The present paper deals in facts with the very difficult inverse problem of the calculus of variations,
and the semi-inverse method of establishing generalized variational principle will be applied hereby.
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3. GENERALIZED VARIATIONAL PRINCIPLE

The traditional approach to establishing generalized variational principles is the well-known La-
grange multiplier method. By such method the constraints of a known functional can be eliminated.
In sometime, however, the variational crisis (some multipliers become zero) might occur during the
derivation of generalized variational principles [4, 11, 12]. On the other hand, the Lagrange mul-
tiplier method is not valid to deduce a variational representation directly from the field equations
and boundary conditions for the present problem.

We will use the semi-inverse method [7-18] to search a variational functional for the present
study. The basic idea of the semi-inverse method is to construct an energy-like integrate with some
an unknown function as a trial-functional. There are various methods to construct trial-functionals
for practical problems. Details can be found in Ref. [7].

If we want to establish a functional with 6 kinds of independent variations
(0ij, Tij, ui, Di, E;and @), we can construct an energy-like trial-functional as follows

J(Jij,rij,ui,Di,Ei, @) = /// LdV + IB, (11&)
where
Ir= 0iTij + F, (11b)
4
IB= Z// GrdA, (11c)
k=1 Ay

in which F and G; (i = 1 ~ 4) are unknowns, L is a trial-Lagrangian.
Now we will identify the unknowns step by step.

Step 1
Calculating variation of functional (11) with respect to oy; results in the following trial-Euler
equation:

OF

r,-j + 8'0_—1] = 0, (12)

where 0F /8 ¥ is call variational derivative, which is defined in zyz coordinates as
BB OF B fOFN. O cli} 0 [OF
50 0¥ 0z \0¥.) Oy\o¥) 0z\0¥.)

We search for such an F' that the above trial-Euler Eq. (12) satisfies one of its field equations,
saying, the Eq. (4).

If
OF 1
5y = "‘2‘(ui,j + uj i), (13)

then the Eq. (12) turns out to be (4). From (13) the unknown F' can be identified as
1
F = —noij(ui; + ugi) + poijui + F1, (14)

where 1 and p are constants and should satisfy the identity 7 + p = 1, F} is a newly introduced
unknown function, which should be free from o;;.
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The trial-Lagrangian, therefore, can be renewed as follows

1
P 04535 — 5770’,‘]'('114',_7' + ’U,j,i) + poggju; + Fi. (15)

Step 2
Making the renewed trial-functional (11) stationary with respect to u; yields the following trial-
Euler equation

0F,

(n + p)oijj + e 0. (16)

Supposing that the above equation is the field Eq. (1), we can identify the unknown F; as follows

P = fiu; + P, (17)

where Fj is free from wu;.
The substitution of the Eq. (17) into the trial-Lagrangian (15) yields a new one, which reads

1
L = oijrij — 5noij (i + uji) + poijjus + fivi + Fa. (18)
Step 3
The stationary condition with respect to r;; reads
0Fy
0ii + — =0. 19
(¥ 67‘” ( )
We set
0F, 1 1
5r = ~(Gikire = emijEm + 5 CijripgiTog = mighi Emtit = 5 Qigmn EmEn) (20)
ij

in Eq. (19), so that the Euler equation (19) becomes (2). From (20), one can readily obtain

F, = —5TijGijkiTkl + Tijemij Em — 6Tijcijkzpq7"kl7“pq
1 1
+§7'ijgmijklEm7'kl 4 ErijQijmnEmEn + I, (21)

The trial-Lagrangrian (18), therefore, can be further renewed as

1 1
L = oijrij — é'noij(ui,j + uji) + poijgui + fiui — 3 TiiGijkiTkt + Tij€mij Em

) 1 1
—grijcijkzpquﬂpq + ErijgmijklEm"'kl 4 ErijQijmnEmEn + F3 (22)

where Fj is free from r;;.
Step 4

Processing as the previous steps, the trial-Euler equation for § E,, reads

1 OF:
Tijemij + o TiigmigkiTkl + 7ijQijmnEm + ﬁ =0. (23)
m

We set

0F;3 1

m = '—Dm + €mJEJ + ‘éemnlEnEl (24)
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so that Eq. (23) satisfies the field Egs. (3). From (24) we have
1 1
F3 == _EmDm + EEmE’m]E] + éEmsmnlEnEl + F4. (25)
We, therefore, obtain the following renewed trial-Lagrange function

1 1
L = oyjrij — =n0oij(uij + ujq) + poij ju; + fiti — 5Tij0ikarkl + Tijemij Em
2 2

1 1 1
“grijcijklpq'rkl"'pq + §TijgmijklEm7'kl o §TijQijmnEmEn
1 1
—EnDy + EEmEijj + gEmEmnlEnEl + Fy, (26)
where F} is free from F;.
Step 5
The stationary condition for 6 D; and 6 read
0Fy
ME. L —— =, 27
i+ 55, (27)
0F,
— = 0. 2

The above two equations should satisfy the Egs. (6) and (5) respectively. So we can determine the
unknown Fjy as

Fy=¢D;®; —sD;;® (29)
with £ +¢ = 1, where ¢ and ¢ are constants. The Lagrangrian, therefore, has the following final form
1 1
L = oyjri5 — 577%‘(%‘,3' + uj4) + poijiui + fing — S Tii GighITkl + Tijemij Em

1 1 1
—grijcijkzpquﬂpq + =Tijmijki Emrr + irijQijmnEmEn — EpnDp,

2
1 1
+§Em€ijj + EEmEmnlEnEl +£D; Q,i — gDi,i . (30)
Applying the Green’s theory, on the boundaries, we obtain the following trial-Euler equations:
oG
St —noin; 4 =k = k=142, (31)
8ui
0
0oij :  puing + 141 =il R =1 R) (32)
00yj
09 : §Dmi+% =0 (h=3~4) (33)
TR St s S (k=3n~4). (34)

0D;

On A,, the above trial-Euler equations should satisfy the boundary condition (7) or an identity, so
the unknown G can be identified as follows

G1 = noijnj (’U,i . ﬂi) n ;Ufo'ijnjﬂi- (35)

It is easy to prove that the stationary conditions for du; and do;; on the A; are an identity and
the Eq. (7) respectively.
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By the same manipulation, we have

G2 = np;u; — pui(oiyn; — ), (36)

G3 = —¢(® — 8)Din; + sPDin;, (37)

G4 = —£ @En = g@(Dini = —.ljn) (38)
Note: If the electrical and heat effects are not taken into consideration, then we have

J(O’ij, Tij, 'u,,;) = /leth + IB’ (393.)
where

) 1 1 1

L' = o375 — “énaij(ui,j + uji) + poj ju; — 5 Yid Gijkt Yt + fiui + 5 PUi Ui (39b)
and

IB’= // {noijn;(u; — @) — poijna; }dA + // {npyui — pui(oijn; — p;) YdA. (39¢c)

A Aa

Setting n = 1, p = 0 in Eq. (39) results in the well-known Hu-Washizu principle of elasticity
[21]. So we obtain Hu-Washizu-like principle for nonlinear piezoelectricity by setting n = 1, u = 0,
§ =1, ¢ = 0. The Lagrangian of Hu-Washizu-like principle can be expressed as

1 Il
Ly = 0ij|rij — 5(uij +uji) | + fivi — 574505507k + Tijemi Em
2 2

1 1 1
_g"'ijcijklqulepq + ErijgmijklEm"'kl + §TijQijmnEmEn —Dp(Em — Om)

1 1
+§Em€ijj = gEmEmnlEnEl- (40)

For simplicity, we introduce a generalized strain-piezoelectric energy density defined as

1 1

A= 5 Tij GijkiThl = Tijemij Bm + gmjcijklpquzrpq = ‘2'TijgmijklEm7'kl
1 1 1

_ETijQijmnEmEn = §Em5ijj - é‘EmEmnlEnEL (41)

From (41), we have the following relations

0A 1 1

By = GigklTkL ~ emij Em + §Cijklpqul7'pq — Imijkl EmTir — §QijmnEmEn = 0jj, (42)
ij

0A 1 1

a7 = —Tijemij — 5TijImijkiThi — TijQijmnEn — €miEj — c€mmEnE; = —Dp,. (43)

OF, 2 2

Constraining the functional by selectively field equations (1), (6) and boundary conditions (7)
and (9), we can obtain

J(ui, &) = / / / (A~ fins el = / / Sl / / 6D, dA, (44)
A A2z

which is the minimum principle for nonlinear piezoelectricity.
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4. CONCLUSION

In the paper, we have succeeded in obtaining a generalized variational principle with some arbi-
trary constants, from which various variational principles (including the minimum principle) can be
obtained by constraining the functional by selectively field equations or boundary /initial conditions.
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