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We would like to show how to perform shape optimization and state control at a cost comparable to the
one of analysis. To this end, we propose to only use informations available for cost function evaluation
and incomplete sensitivities not requiring the solution of the linearized state equation. The application of
the method is presented for microfluidic MEMs design and control.

1. INTRODUCTION

Control of distributed systems has various possible industrial applications as we are often interested
in keeping complex multi-disciplinary systems in some given states. Control space definition or
parameterization is the first main issue we face when targeting to formulate a control problem.
Usually, one wishes to keep the parameterization space dimension as low as possible and hence limit
the complexity of the problem. In addition, for any control approach to be efficient, it has to be
realizable during the time the system is still controllable. Computational cost is therefore another
essential issue. Our aim through the paper is to discuss alternatives to these two difficulties.

Our aim through this paper is to discuss the behavior of our design and control platform on
two complementary situations: where the number of control is small (basically one) and where the
number of control is large. We present our sub-optimal control technique using accurate gradient
evaluation for the first class of problem and for the second class of applications, we show that the
sub-optimal control is also efficient using incomplete evaluation of the gradient, but this only for
some class of cost functions. Our motivation here comes from the fact that for a control algorithm
based on gradient methods to be efficient, we need the design to have the same complexity than
the direct problem. We need therefore a cheap and easy gradient evaluation somehow avoiding the
adjoint equation solution.

The problem being multi-disciplinary, we need to couple different state equations during control.
In that context, the gradient-based minimization algorithm is reformulated as a dynamic system as
is considered as an extra state equation for the parameterization. This formulation makes easier to
understand the coupling between the different ingredients. Hence, we look for the solutions of our
optimization problem as stationary solutions of a second order dynamic system. In addition, for
the system to have global search features, we use the natural instability of second order hyperbolic
systems [1].

This is an extended version of a paper presented at the conference OPTY-2001, Mathematical and Engineering
Aspects of Optimal Design of Materials and Structures, Poznan, Poland, August 27-29, 2001.
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2. DYNAMIC SHAPE OPTIMIZATION AND STATE CONTROL

Consider the following optimization or control problem,

win J(z(t),q(z),U(q), VU(q)), (1)

E(.’E(t), Q(z), U(Q)a VU(q)) = 01 gl(a"(t)) < 0, g2(q) p 0, g3(Qa U(Q)) < 0,

where J is the cost function, z € R™ describes the parameterization ¢ describes geometrical entities
(normals, surfaces, volumes, ...). U € R" denotes the state variables. E € R is the time dependent
state equations. g; defines the constraints on the parameterization, g those on geometrical quantities
and g3 state constraints. Details on the definition of the control and design configurations are given
in [9].

2.1. State equations

The problem of interest here concerns separation of small suspended quantities in buffer solutions
using their difference of mobility in an electric field.

The electric field E = —V¢ (V/m) is a solution of the following Poisson-Boltzmann equation
for the potential ¢ (V),

V il ol ok i )
€-€0
¢(Fin) =", ¢(Pout) =v3,
¢ .
¢=¢3 or n =0 on other boundaries.

where pe = 37", 2;C; is the net charge density (C/m?3), z; € Z is the valence number for specie 1
of molar concentration C; (mol/m?). F is the Faraday constant (F = 96500) and €, and e, are
permitivity constants (resp. called relative and vacuum permitivities). The dielectric constant
F/(ere0) ~ 10%. It is important to notice that for most applications, the net charge density is
nearly zero.

The flow motion is described by the Navier-Stokes equations with Lorentz forces,

pa—[tj — pAU + Vp = p. V¢, in the channel
U=0 on walls

ou : ;
—ﬂ% +p-n=0 in and outflow boundaries.

One difficulty in electro-osmotic flows is the computation of a sharp boundary around walls called
the electric double layer (EDL) appearing due to the polarization of the walls. The boundary layer
is only a few nanometer thick which implies a very fine mesh normal to the wall. We would like
to avoid computing this area using the following more sophisticated boundary condition in place of
the classical no-slip boundary condition above at the edge of the EDL,

—€oer B¢
L ’

U= (2)

where 4 is the dynamical viscosity (kg/(ms)), p the flow density (kg/m?), p the pressure (Pa) and
U the flow velocity (m/s).

((Ci) is called the zeta potential (V) and is a function of the local species concentration and
characterizes the wall polarization due to external electric field and local ions.
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The species are advected using the following advection-diffusion-reaction equations,

aC;
ot

where

=nomoy

ji = =z FC;V¢ — D;VC; + C;U + Ri(C),

and with v; being the mobility (mol-s/kg), D; the diffusivity (m?/s) and R; the reaction term for
specie 1.

The net charge in the flow is find solving the following general Ohm law obtained after a sum-
mation of the species equations,

0pe

-é—t-':—V'Z:O,

with 4 the current charge density,

n
PEEPNE A,
=1

and j; is the molar flux (s-mol/m?) for specie 1,
ji = —v;z; FC;V¢ — D;VC; + C;U,

and with v; being the mobility (mols/kg) and D; the diffusivity (m?/s) of specie i. This equation
being conservative, its solution permits to correct any loss of conservation due to the solution.

For the particular case of electric neutral flows (i.e. p. = 0), from equations above, we have a new
equation for the potential ¢ instead of the Poisson-Boltzmann equation,

el ((é ViziC’i> v¢) =V. (i D,-z,-VC,—) .

1=1

This ensemble is therefore quite complex and it would be interesting not to use it for sensitivity
evaluation. This is the motivation of using incomplete sensitivities presented below [8].

2.2. Closure equation for z(t)

In our approach minimization algorithms are seen as closure equation for the parameterization. In
other words, we introduce a new time dependent problem for z(¢). This can also be seen as an
equation for the structure. We can show that most linear or quadratic gradient based minimization
algorithms can be put under the following form,

—i+ed =FI, MY, (Vi) L, V), (3)

where F is a function of the exact or incomplete gradient and of the inverse of the Hessian of the cost
function. It also takes into account the projection over the admissible space II and the smoothing
operator we use when using the CAD-free parameterization [5, 8]. Usually, IT does not depend on p
except when using mesh adaptation.

Let us consider the particular case of € > 0, where we recover the so called heavy ball method [1-3,
7, 8]. The aim in this approach is to access different minima of the problem and not only the
nearest local minimum by helping to escape from local minima after introduction of second order
perturbation term. The difference with the original heavy ball method is based on the fact that here
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the method is seen as a perturbation of the first order derivative while in the original heavy ball
method the steepest descent is seen as a perturbation of the hyperbolic second order system. This
reformulation is suitable for numerical experiences as it enables to tune the perturbation to be the
weakest possible. Indeed, otherwise especially for complex applications, the optimization process
becomes hard to control.

Another interesting feature of dynamic minimization algorithm is a possible coupling between
several balls (point in the admissible control space) to improve the global search ability of the method
by communicating informations between balls on their respective state. The idea is therefore to solve
the pseudo-unsteady system (3) from different ball positions and to couple the paths using cross
informations involving a global gradient [2, 3, 8]. Consider, ¢ balls z;, j = 1,...,q, following the
motion prescribed by ¢ pseudo-unsteady systems,

-Z;+ ez = —(F; + Gj), (4)

where Fj is as in Eq. (3) and Gj a global gradient representing the interaction between balls (recall
that each ball is a design configuration). To be able to reach the global minima, the number of balls
has to be enough large. A good estimation for this number is given by the dimension of the design
space (n). Even with this number the complexity is negligible compared to those of evolutionary
algorithms. Our experience shows that the following choice of G; gives satisfaction (see example
below),

q
Z||:Ei—2:]:||2 (®5; = Ty for. 221 010" #2102 %
k#j

However, in CAD-free parameterization, n can be quite large and, due to the required computational
effort for one simulation, we cannot afford for more than a few (say 3 or 4) shape evolutions at the
same time. This approach can be seen therefore as an improvement of the search capacity of the
original algorithm. In addition, the process is suitable for a distributed treatment as in evolutionary
type minimizations.

We show below the behavior of the pseudo-unsteady systems (4) with two balls and constant A

and e for the minimization of a function having several local minima (the global minimum is reached
at (0,0)). For (z,y) € ]—10,10[ x ]—10,10[ consider J defined by

J(z,y) = 1 — cos(x )cos(\g/”_) 510 ((m—- %)2+1.75y2). (5)

The aim is to show that heavy ball method improves global minimum search by helping to escape
from local minima. Finding the global minima requires however several trials. But coupling several
heavy balls can help finding the global minima using balls not converging to the global minima
individually.

3. SENSITIVITIES AND INCOMPLETE SENSITIVITIES

Consider the general simulation loop, involved in (1), leading from shape parameterization or control
variables to the cost function,

J(z) : z = q(z) = Ulq(z)) = J(z,q(z), U(q(2))).
The gradient of J with respect to z is

4] 01 07 0q 070U o o
dz 0z O0q 0z OU 0q Oz
If the following requirements hold, we can introduce incomplete evaluation of this gradient, reducing
its evaluation cost:
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Fig. 1. Left: graph of J(z,y) given by Eq. (5); right: convergence histories for the steepest descent and
heavy ball methods starting from two different points, all captured by local minima
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Fig. 2. Left: paths for the steepest descent and heavy ball methods starting from two different points; right:
when coupling the two balls in heavy ball method using the global gradient, the global minimum is reached
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e If both the cost function and control space are defined on the shape (or a same part of it),

e If J is of the form

J(z) = / 1@ d

e If the local curvature of the shape is not too large.

The incomplete sensitivity approach means that we can drop the last term in Eq. (6). This
does not mean, as seen below, that a precise evaluation of the state is not necessary, but that for
a small change in the shape the state will remain almost unchanged, while geometrical quantities
have variations of the same order than for the shape.

3.1. Illustration on a few simple examples

This argument behind incomplete sensitivities has already been successfully used in the classical
equivalent injection velocity to take into account for small deformations. Recall the implicit relation
for the slipping velocity on a fixed shape (subscript f) reproducing its displacement (subscript m).
If we suppose that uny, ~ uf, which means that the sensitivity with respect to the shape dominates,
we have (see [6]):

uf - ng = —ug(nm —ng) + V- npm, (7)

where V is the speed of the moving shape in the fixed frame attached to the fixed shape. In the
same way, sensitivity analysis for the product u - n with respect to the shape z gives

d _ Ou on on
where as for the transpiration condition above we supposed that % <L g% . We see that the state
has to be accurate and that it is more important to have an exact state evaluation and an approx-
imate gradient rather than a precise (in term of operators accounted in the linearization) gradient
evaluation based on a wrong state. This remark is essential, as usually users are penalized by the
cost of sensitivity evaluations which forces them to use coarser meshes in optimization than the
meshes they use for pure simulation.
Consider as cost function J = aug(a) and as state equation the following steady advection-
diffusion equation,

Uy — Pe uzy =0, on -la,1f; u(a) =0, wu(l)=1.
The solution of this equation is

_exp(Pe"!a) — exp(Pe! z)
e = exp(Pe~la) — exp(Pe™1)

We are looking for J,(a) = uz(a) + a(uz)s(a). We are in the domain of application of the
incomplete sensitivities, where the cost function involves products of state and geometrical quantities
and is defined at the boundary,

Pe! exp(Pe 'a) )

Ja(a) = uz(a) (1 T xp(PeTa) — exp(PeT)

The second term in the parenthesis is the state linearization contribution which is negligible for
large Peclet number. In all cases, the sign of the sensitivity is always correct.
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The analysis also holds for nonlinear PDEs such as the Burger equation. Indeed, consider as cost
function J(a) = au,(a) and as state the steady solution of the Burger equation seen before, with a
being the left boundary location,

ug + 0.5(u?) = 0.3z, on_ 14,1}, .ule) =1,  ull) =08

We have J,(a) = uz(a)+ a(uz)q(a). We are in the domain of application of incomplete sensitivities,
where the cost function involves products of state and control based quantities having the same
support. In view of the Burger equation, we have uz(a) = 0.3a and the exact gradient (J,(a) =
0.3a+a0.3) can be compared to the incomplete one (0.3a). We can see again that the sign is always
correct and there is only a factor of 2 between the exact and incomplete gradients.

Another example concerns the sensitivity analysis for the debit of a Poiseuille flow in a channel
driven by a constant pressure gradient (p;) with respect to the channel width. The walls are at
y = +a. The flow velocity satisfies

Uy = % . u(—a)=u(a) = 0. (8)

The analytical solution satisfying the boundary conditions is

p
u(a,y) = 222 - a?)

The flow debit is given by

J(a) = / Zu(a,y) dy (: "23”5“3).

The gradient is given by (using the boundary conditions in Eq. (8))

a __22
S s .U (a,y) dy = —2=

da 10 v

while the incomplete sensitivity vanishes. Indeed, in this example we are not in the validity [8]
domain of sensitivity analysis requiring for cost functions to involve product of state and geometrical
entities.

Now consider the following cost function obtained multiplying the flow rate by a,

ie a
J(a,u) = / au(a,y) dy,
-a
which has sensitivity given by

dj_ dJ_—pxa?’ 2
da—J+ada_ v (3+2)’

and where the incomplete sensitivity is :—%'f—"a which has always the right sign. This is a good
example of how to reduce the cost of sensitivity evaluation by an appropriate redefinition of cost
functions.

4. REDUCED COMPLEXITY MODELS AND INCOMPLETE SENSITIVITIES

As we said, we drop the sensitivity with respect to the state in incomplete sensitivities. One way to
cheaply improve this approximation is to use reduced models to provide these sensitivities. In other
words, consider the following reduced model for the definition of U ~ U,

2 4) - Ulata)) (7).
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where U is the solution of a reduced low-complexity model (wall-functions for instance). The last
term is an identification term for the reduced model to produce the same results that the full state
equation.

The incomplete gradient of J with respect to z can be improved adding the lost part from the
exact gradient, but computed based on this model,

dJ dJ(U) i 8J(U) g  dJ(U) 8U dq U 0
dz oz dq Oz U 08q 0z U~

We can see that, U is never used, but only 8(7/ 0q. It is also important to notice that the reduced
models need to be valid only over the support of the control parameters. We see below an example
of such simplification.

5. COST FUNCTION AND ITS REDEFINITION

The original cost function we consider is designed to minimize the skew and band dispersion for
the advected species and uses the fact that the iso-contours of an advected specie C need to remain
normal to the flow velocity, :

J(z) = / (VC x U(a))? dz.

We see that we are not in the admissibility domain of incomplete sensitivities as the cost function
is defined over the whole channel.
To be suitable for incomplete sensitivities we introduce the following approximate cost function
based on migration time along the walls of the channel to minimize the skew,
2
Ly ) ,
s

2
> ( A Ud-sf*"/p Ud-sf’>2+</n _/r? ) +(/F

where s is the curvilinear coordinate and (7,7) a local orthonormal basis. The two last terms have
been introduced to control wall regularity. Indeed, we noticed that loosing regularity increases band
dispersion. We can see that the new cost function is much more complicated, but it is suitable for
incomplete sensitivity reducing the cost of gradient calculation.

Finally, to reduce the dependency on the state, we express the velocity along the wall using
Eq. (2). Hence, we rewrite the first term as

/ —pds _/ —pds ’
r; e0er((T-E) Jr, eoer((7-E) )’

where ¢ dependency with respect to the concentration is neglected for sensitivity evaluation. Also,
we deliberately left the dependency on 7 and not used the fact that E is parallel to the wall.

@
Js

?_@'
0s

@
Os

@
0s

6. APPLICATION TO MICROFLUIDIC DEVICES

The control and design problem we consider concerns MEMs microfluidic configurations for which
we are interested in the reduction of advected species band skew and dispersion [4, 10, 11]. These
systems are designed for the separation and identification of microscopic quantities present in a
buffer solution submitted to an electric field. The aim is to set up the longest channel occupying
the smallest surface using 180 turns. Before the band to be convected, we need to consider the
problem of minimization of the dispersion of the initial extracted band. This is performed tuning
the external electric field in a cross geometry. Once this band is obtained, it is convected and the
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aim is to find 180 turns keeping the initial dispersion and skew unchanged. Indeed, the skew and
dispersion are only due to changes in the curvature of the channel. The control parameterization
is therefore based, for shape optimization, on a geometrical CAD-free model [5] and for the initial
control problem on the external applied electric field. Hence, in the first case, the size n of the
control space is large while it is small for the second case.

Fig. 3. Extraction algorithm — left: extracted band without controlling through the external field; right:

with control the band dispersion has been reduced

Fig. 4. Design of 180 turns minimizing the band skew — left: the original turn; right: optimized. The initial
band geometry is almost conserved enabling for the separation mechanism to be the only one involved
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7. CONCLUDING REMARKS

The main ingredients of our minimal complexity control and optimization platform, namely in-
complete sensitivity evaluation and dynamic minimization algorithms, have been presented. The
minimal complexity has to be understood in the sense that design or control have the same cost
that the solution of the direct problem. Applications concern the control and design of microfluidic
devices to reduce advection species band dispersion and skew in microscopic channels. Current effort
concerns the extension of the present platform to the control of sample stacking used for the iden-
tification of species having molar concentration below the observable level. This is a main challenge
in chemical assets and pollution detection.
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