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The work presents a process of analytical identification via a standard steel frame example. Some experi-
mental tests are made to verify the identification process. Under controlled external loadings the values of
displacements and strains are recorded and an approximate FEM-based model is formulated. The poly-
optimization approach is employed to analyze that model. The compatibility criteria for comparison of
theoretical and experimental models are assumed as square sums of differences between displacements and
strains. The whole problem is proceeded in three cycles of evolution suggested by the authors.

1. INTRODUCTION

The first stage of designing process is working out an analytical model of structure. The computer
implementation of such a model has a great influence on analysis and output data processing.
Usually, some simplified schemes are adopted to solve the governing equation. In the case of more
complex structure, however, even the smallest simplifications may be a source of wrongdoing. In
such a situation the most appropriate computational model of structure is required. As an example,
real support conditions frequently go far beyond those conventional schemes. The reason for those
discrepancies may occur due to hinge friction or/and mismatching. Such parameters are difficult to
compute without identification analysis.

The identification procedure may establish more precise conditions according to requirements
for the structural system at hand. The whole problem can then be modelled and solved for as an
optimization problem. In other words, it seems to be reasonable to create the best possible model
in terms of optimization techniques [10]. They are particularly useful when complex objects are
analyzed. Additionally, an identification-based process some characteristic features of the optimiza-
tion problem should be taken into account. It is known that the identification procedure is usually
considered as monocriteria problem, but the multicriteria approach may give better results in ac-
cordance with the real structure. A typical property of the multicriteria problem is co-operation of
criteria. The converge criteria of the theoretical model and real object are expressed via an objec-
tive functions vector, defined usually as a square sum of differences of experimental and theoretical
results. Identification parameters such as supports flexibility, range of local stiffening, stiffness of
connections, etc. form a vector of decision variables. The block scheme of identification procedure
is shown in Fig. 1 [4].

Another fact that makes the identification process more complicated is that each structure must
be analyzed separately. At the beginning of each analysis the available knowledge concerning the
design parameters is usually insufficient, since there is no information returning from the existing
objects that stands for the basic reason for the lack of data. Some guesses and assumptions are thus
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Fig. 1. Block scheme presenting quasi-evolutionary identification process

required at the start of the optimization process. More precise parameters of the considered object
can then be find out only by further analysis. The process often requires some assumption to be
successively modified during analysis. This fact implies the idea of a quasi-evolutionary approach
to optimization process [10].

The quasi-evolutionary optimization process consists of few cycles, each of them stands for a stan-
dard numerical problem. The term ‘quasi’ is used here to avoid misleading with the traditional
evolutionary optimization procedure in which the genetic algorithms are required. In the quasi-
evolutionary formulation each solution gives information and experience that allow one to obtain
more precise assumptions and select more effective solution methods excluding any insignificant
elements of solution. On the base of the former results the problem is analyzed again in the next
cycle. In this context, the quasi-evolutionary approach is similar to the evolution of the outer world,
where only those better and more adaptive forms give good start to next generation.

2. PROBLEM STATEMENT

The main idea the identification formulation proposed in the text is best presented through a steel
frame model. Its dimensions are shown in Fig. 2a. The cross-sections of the cold-formed profiles
are shown in Fig. 2b. The goal is to simulate the load-carrying structure of a real one-bay hall by
a loaded frame structure, that, in turn, is modelled as a plane system. This system is a part of
a test-stand shown in Fig. 3.

The model consists of a symmetric two-sloped spandrel beam, jointed at the roof ridge using
a screw M16 and two posts. The support area of the posts may be modelled alternatively as fixed
(Fig. 2a-A) or hinged (Fig. 2a-B) to obtain three static schemes — the frame without or with
one or two posts with the hinged supports. The connections between the spandrel beam and the
posts are made fixed with an additional steel plate inside the posts. The test-stand includes two
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Fig. 3. Analyzed frame in test-stand
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symmetric quasi-rigid frames, i.e. of stiffness much larger than that of the analyzed frame. After
some tests performed on the stand’s frames it turns out that their deformations are insignificant
when compared with those of the frame model and can be neglected in further analysis; some friction
effects of joints are ignored as well.

Clearly, the frame may be loaded by various kind of test loadings. There exist special pockets
for precisely imposing vertical loads at the roof ridge and in the mid-point of each spandrel beam
as well as horizontal loads at the upper part of the posts. The values of test loads are controlled
by force gauges connected to the Hottinger Baldwin Messtechnik MGCplus [1] bridge. Inductive
and resistant strain gauges connected to the bridge are used to measure displacements and strains
due to controlled external loadings [7]. The output data of stresses and internal forces, and their
sensitivity to the change of loading are provided by the test.

3. EVOLUTIONARY IDENTIFICATION OF THE FRAME MODEL
3.1. The scope of the problem

The identification process consists of many stages. First, the frame is loaded. Next, a numerical
model is formed with the identification parameters defined as our decision variables. Further, the
values of the decision variables are employed to minimizing the objective functions as an optimization
problem already defined. The result is a structural model that best reflects reality [4].

At the first stage, the frame is loaded alternatively by three concentrated forces — the two
vertical forces act on the roof ridge and in the spandrel beam’s mid-point, while the horizontal one
in the upper part of the posts. Their values are 2 and 1 kN, respectively. For each external loading
displacements and strains at selected points of same cross-sections are measured according to the
procedure given in [7], cf. Fig. 4. The approximate FEM-based model can now be formulated and
analyzed via the numerical code Micro-Strains [5]. It is shown via the displacement and strain results
obtained from the experimental and theoretical models this the relative differences are about 30%.
They will be used as the basis for the polyoptimum evolutionary identification process as discussed
bellow.

LT TLLS. Ve o

Fig. 4. Specified cross-sections of the frame

3.2. First evolution cycle

At this stage the local stiffenings of frame nodes (shown in Fig. 5) are considered as the main
reason for the differences between theoretical and experimental test results. Since the dimensions
of the cross-sections are rather small the connections between the plates and the posts may be
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Fig. 5. Local stiffening of the frame node

non-monolithic due to the difficult welding conditions. Because of the stiffening plates and the
welding conditions, it is difficult to evaluate the influence and range of local stiffening with no
additional specific analysis. As the modelling process requires information about the influence of
stiffening plates on the frame’s nodal stiffness [4, 10] the identification optimization problem can be
formulated as follows.

In the first cycle of evolution the static scheme of the frame model with one post hinged and the
second fixed is analyzed. The stiffness of the upper and lower parts of the frame posts are defined
by the decision variables vector

%51 2%} (1)

where 71 denotes the effective thickness and x5 the effective length of the nodal plates (the length
of welds). In this way the real connection conditions between nodal plate and the wall of posts are
considered in the model. The upper and lower bounds of their allowable values are given in Table 1
with n; and ng being positive integers.

Table 1. Bounds of feasible domain

Cube restrain [mm)] | Discrete restrain [mm]
0S.’L‘1§30 z1=n1‘0.3
0 S D) S 150.0 T2 =Ny - 5.0

For the variable z; the upper restrain, being the real thickness of the nodal plates, describes
the full monolithic connection between the plates and the posts, while the lower one with the zero
thickness describes the zero connection and zero local stiffening. For the decision variable z5 the
upper restrain is the real height of the nodal plates (150 mm), while the lower one — zero height.
The code Micro-Strains requires discretizing of the decision variables. The thickness z; and length
x5 are changed with the increments 0.3 mm and 5.0 mm, respectively. By those restrains the solution
and valuation spaces stand for the discrete ones and the problem stands for a discrete optimization
one.
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In accordance with the optimization techniques the problem is stated with two optimization
criteria, defined by the objective function vector

£(x) = { fi(x) fa(x) } (2)
where
=Yy Ho sl ®
=121 + 6k x ]2 :
3 n
vl Z [501._‘S X]2 (4)

k=1i=1 [£Oz+£ x)]?

with dp; and d;(x) being the displacement at the i-th node of the experimental and numerical model,
respectively, so as does for the strain £¢; and €;(x). The symbol k indicates the load scheme number.
It is noted that the quantities in the above equations are expressed in the non-dimensional form;
the denominators can be interpreted as squared averages.

The numerical algorithm to this problem consists of two steps. The first is to find out the
solution %X; that minimizes function f;(x) by using an iterative procedure typical of the Gauss-
Seidel method [2]. An optimum solution that minimizes the objective function is to be searched in
the orthogonal contiguity of the start point. When the contiguity contains a solution that decreases
the value of the objective function the direction of the search is determined. If such a solution does
not exist, the direction of the search is changed in the orthogonal way. At the second step the sets
of non-dominated solutions and valuations are calculated by ortho-diagonal method [8, 10]. Both
the orthogonal and the diagonal contiguity are now analyzed to get a solution that decreases the
value of the other function(s). From the set of obtained solutions the ones that cannot be uniquely
improved are selected. They create a set of non-dominated solutions and its inverse images, i.e. the
set of non-dominated valuations.

The Gauss—Seidel and ortho-diagonal solutions include three-entry set of the non-dominated
solutions and valuations, as shown in Fig. 6, points 16, 17 and 19. The preferred valuation y,; is
selected from the set of non-dominated valuations by using the distance function method with norm
llpll = 2 [9, 12]. The inverse image of y, is the preferred solution x;7 = {2.7,150.0}, whose physical
interpretation is that the connections between nodal plates and posts are non-monolithic, and the
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Fig. 6. Set of valuations in the first evolution cycle
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range of the local stiffening equals to the real height of the plates. This solution conforms both the
criteria in best way.

It is pointed out here, after the first cycle of evolution, that the displacements and strains obtained
numerically are as a whole larger than those obtained empirically. Another important conclusion
is that all the elements belong to the set of non-dominated solutions are positioned at the upper
bound of the cube restrain for zs. Clearly, there may be other important factors not taken into
account yet.

3.3. Second evolution cycle

Since the solutions obtained by the first evolution cycle are not satisfying yet the above-mentioned
formulation of the problem is to be modified. It is turned out from the comparison of numerical and
experimental results that the stiffness of the real frame is much larger than that of its numerical
model. It is because the values of Young modulus E and dimension of the cross-section have been
assumed smaller than the real ones. In the first evolution cycle the stiffness parameters are taken
into account according to the values given in the code [11] and the catalogue [3]. As an example,
Young modulus E = 205 GPa is set from the Polish steel code under the condition of the probability
of its exceeding being large enough. Moreover, the experiment carried out for testing bars sampled
from the same elements as the analyzed model shows that the value of E for the samples are about
215 GPa. The real cross-sectional dimensions measured in several sections are also differed slightly
from those in the catalogue. That is why the stiffness of cross sections may be greater than that
from the first cycle.

To modify the cross-sectional stiffness at the second stage of evolution, a scale coefficient £ is
introduced as the additional third entry of the vector of decision variables

x={ w25 T35} (5)

The z3 is defined to take uncertainties of E and I into account. It is available then to create better
model. Both the bending and longitudinal stiffnesses are to be scaled by multiplying by z3. As
before, z3 is also to be restrained with appropriate lower and upper bounds. The lower limit is 1
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Fig. 7. Set of valuations in the second evolution cycle
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and that means zero probability for the event that both values of E and I are smaller than those
from the code and the catalogue [3, 11]. The upper limit appears to be Eexp/Enorm = 1.22, Eexp
and FEyorm being the experimental and ‘normed’ values, respectively. Since the value 5 GPa is a
precision for E in the Polish code z3 has to be changed at step 5/205 = 0.024. Apart from the
vector (5) other quantities involved in formulation remain unchanged.

In order to improve the analysis procedure and graphical interpretation of results the vector x
can now be decomposed [10] into two local vectors x = { x(!) x® }, with x() = {z; z; } and
x(?) = { 23 }. The solution proceeded with a few local stages, with the z3 assumed as a parameter
each successive problem is solved for x(!) employing both the Gauss-Seidel and ortho-diagonal
methods. The results obtained at each stage stand for the local sets of non-dominated solutions and
valuations. The global 7-elements sets of non-dominated solutions and valuations will be the sum of
the local ones (Fig. 7). The preferred valuation is selected via the distance method. Three elements
with the highest values of objective functions have to be withdrew in that process. The preferred
solution is the vector xgg = { 3, 90, 250/205 } shown in Fig. 7. This means that the connections
between the nodal plates and the posts are monolithic with the range 90 mm. The total stiffness of
the structure is of 22% larger than that from the norm and catalogue. The values of the objective
functions are lower than those of the first cycle of evolution.

3.4. Third evolution cycle

In the third cycle of evolution two additional static schemes are taken into account (Fig. 2a). For that
purpose the experimental tests are made on the real model with appropriate support conditions.
Also the numerical models are prepared for the real frame with three hinges and two post fixed
supports. These models are built in the way so that the results can be best verified. In accordance
with these modifications the objective functions can be defined as:

M kz=19=1 i=1 66‘:1 s 6::()()]2 ,
;ST T
31 ek, — et
f2( ) b kz::l; p [6151 i Ef(X)]Z ) (7)

where s is the static scheme number.

The analysis is performed in the same line as in the second cycle of evolution, resulting in the
two-element sets of the non-dominated valuations (Fig. 8) and solutions. Because of the small size
of those sets the preferred valuation is to be selected by discuss. It is observed in the valuations
belong to the non-dominated set that there exist large differences in the values of function f2(x) and
much smaller of function f1(x). Thus y44 is chosen as the preferred valuation (Fig. 8), the inverse
image of the preferred valuation is the preferred solution x44 = { 3, 115, 250/205 }. This result is
close to that of the second cycle of evolution. The connections between the nodal plates and the
posts are also monolithic, but the range of the local stiffening equals to 115 mm, i.e. 25 mm larger
than that of the second cycle. The result concerning the total stiffness of the frame is the same as
in the former stage.

The convergence of the results in the second and the third cycle of evolution indicates that the
formulated mathematical model reflects well the real structure. After the third cycle of evolution
another experimental tests are made to control the numerical model. The frame is subjected to
different test loadings and the difference of the structure the mathematical models are about 5%.
This means that by employing the results of the identification process much better numerical model
than the starting one can be obtained.
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Fig. 8. Set of valuations in the third evolution cycle

4. SENSITIVITY ANALYSIS

The sensitivity of the objective functions to the changes of the decision variables is analyzed by
using finite difference method. All the decision variables are assumed mutually independent to
evaluate influence of the decision variables on the objective functions. The results are illustrated in
Fig. 9.

It is seen from the results that the variable z3 has a great influence on both the functions fi(x)
and fy(x). Since the variables z; and z5 determine only measures of local nodal stiffness the function
f1(x) and f(x) are more sensitive to the variation of the z3 than the z; and z9 . The z3 determines
total stiffness of structure and that is the basic reason of its significance.

In addition, the function fy(x) is more sensitive to the decision variables in comparison with
the function f1(x), because the stiffening plates affects significantly strains in the measuring points
around to the nodes. These affects are more clearly seen when the measuring points are in the range
or out of range of the nodal plates. The great changes of objective functions occur when z, exceeded
120 mm, at the point where the strain gauges are mounted.

5. CONCLUDING REMARKS

The evolution concept in the identification problem implies static analysis of the frame under con-
trolled loadings more precisely than in the traditional way. It can be seen that in the first cycle it is
difficult to appropriately formulate the problem, in particular when the real structure is analyzed.
The numerical results obtained on the illustrative example show that the idea of evolution should
become essential in forming an effective tool for both the optimization as well as identification
problems, resulting in low-cost numerical algorithms.

It is shown that the preferred solution of the analyzed polyoptimum identification problem is the
vector x, = {3, 115, 250/205 }. This means the full monolithic connections between the posts and
the stiffening plates are of the range of 115 mm. The total stiffness of the frame is about 20% larger
than given in the catalogue and code. The discrepancies are of the 5% when compared with the
analytical solutions for displacements and strains. These results are much better than those from
the starting model. The remaining differences between numerical and experimental results should
be treated as effects of the random character of other values that are not taken into account in the
analysis yet.
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