Computer Assisted Mechanics and Engineering Sciences, 10: 223-238, 2003.
Copyright © 2003 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Sensitivity analysis for viscoelastic bodies
in object-oriented finite element environment!

Piotr Tauzowski, Michal Kleiber

Institute of Fundamental Technological Research, Polish Academy of Sciences
ul. Swietokrzyska 21, 00-049 Warsaw, Poland

(Received October 25, 2002)

In this paper the constitutive model of thermoviscoelastic model is presented. To obtain the parameter
sensitivity equations the direct differentiation method is applied. The paper also deals with the finite
element for equilibrium and sensitivity analysis problems. Consistent tangent operator for the model
is derived. To integrate the creep evolution equation the backward-Euler scheme is efficiently applied.
The thermoviscoelastic model with parameter sensitivity analysis is implemented in object-oriented finite
element system. Many advantages of the object-oriented approach in FE programming are described in the
paper. Two numerical examples are solved. Very good agreement between the FE and analytical results
is observed.
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1. INTRODUCTION

Constitutive modelling of materials exhibiting thermo-viscoelastic behaviour, together with object-
oriented applications of the finite element method to solve corresponding initial-boundary value
problems, can now be considered as a classical subject with some three decade history.

The sensitivity formulation is a crucial ingredient in working out effective, numerical procedures
for solving practical problems of structural optimization, parameter identification, optimal control,
structural reliability, etc.

For better transparency of the formulation, we confine ourselves to mechanically and thermally
isotropic materials characterized by only two distinct sets of relaxation behaviour: one associated
with the shear modulus and the other, with the bulk modulus. No difficulties arise if more complex
behaviour is considered.

2. THERMO-VISCOELASTIC MATERIAL MODEL

The standard model is taken as the constitutive equation defining the class of linear viscoelastic
materials on hand,

: d
0ij(1) = / Cijui(€ ~€) o [Ekl(‘r’) - eg)(r’)] dr’ )
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where 7 is the time coordinate, ¢ is a reduced time coordinate defined as
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¢’ has a similar definition with integration extending up to the time instant 7’

g =¢lr i ©
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A(0) is a given temperature dependent shift factor and €;; 1s the thermal strain assumed as

el (1) = af6(r) — 60]0i; . (4)

with «(@) being the instantaneous thermal expansion coefficient, # — the absolute temperature and
0o = 6(0) — the natural state temperature.

To make the presentation more compact, still we shall be explicitly considering from now on
materials with only one relaxation time

Cijki(r) = Cy + Cijkiexp [—?] ; (5)

Tkl being the so-called equilibrium moduli, 5’,-jk, — the magnitudes of
transient decay and g — the relaxation times. Consequently, all the derivations below based on these
assumptions can easily be extended to cover more general situations. At 7 =0 (i.e. also £ = 0) the
moduli Cjjr; become the glassy moduli of the form

with the given parameters C73

Cijki(0) = Cijiu + Ciju - (6)
The fundamental constitutive equation can be presented in the form

oi(T) = Ciojkl [Ekl("') = Ekl ( )] (C)( ),

where the fictitious “creep” stress (difference between the purely elastic stress C?jkl[Ekl(T) - 555)(7')]
based on the glassy moduli and the actual stress o;;) is defined as

or) = [ G [1- exp [-ZE]| L feute!) - )] o @)

The temperature distribution 6(z,7) is obtained by solving the transient heat transfer problem
consisting of the field equation

00
v(AVTe) + g = pess (z,7) € QA x[0,7], (8)
where the boundary conditions
A a0 5
=8, A%ni=q, (z,7) € 0N x [0,7], (9)

and the initial condition

0 = @, (z,7) € Q x {0}, (10)
in which V = {2 ot 622 > 6z3} g is the internal heat generation, p is the material density, c is the
material specific heat, d€, and 92, are the boundary parts with prescribed temperature 6 and
heat flux §, respectively and n = {n;} is the unit outward-drawn vector normal to the boundary

surface. We assume that the temperature distribution is not affected by the mechanical behaviour
of the material while — as seen from the previous discussion — the latter does depend on the former.
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Differentiating Eq. (7) with respect to time to obtain

da(?)('r) 1 i
ij £ i Ui (8)
4 = iy |Comiua(r) ~ o ()] (11)
where
E'z] d:ef Eij - EEJG) (12)

Equation (11) is a useful form of the time evolution equations for the creep stress oz(;).
The constitutive description based on Egs. (7), (11) allows its easy incorporation in the standard
time stepping finite element algorithms. The stresses ag) are treated as some internal parameters

whose time evolution is governed by Eq. (11).

3. FINITE ELEMENT FORMULATION

Box 1. Basic solution philosophy

(a) solve the heat transfer problem (8)-(10) at that instant for 6(7)
(b) find the thermal strain sgg) at 7 by Eq. (4)
(c) find the reduced time coordinate ¢ at 7 by Eq. (2)

)

(d) compute the integral in Eq. (1)

According to Box 1 the first problem to be solved at the given time step is the heat transfer equa-
tion (8). The regular FEM discretization procedure applied to that equation leads to the following

(possibly nonlinear [5]) system of N first order time differential equations,
CO+Ko=P. (13)

in which the N x N matrices K and C (both possibly dependent on 6) are known as the capacitance
and conductance matrices, @ is the N-dimensional vector of nodal temperatures while P is the
N-dimensional “load” vector due to the action of the internally generated heat and externally applied
surface heat flux.

The system (13) may be solved by replacing the time derivative of the vector @ with the finite
difference scheme. We may use, for instance, expressions

Hadtg — (1 - )0 + att2ie, a € [0,1]

. 4i43 (14)
traAty _ L +Atg _t
9= At( 0-'9),
which, substituted into Eq. (13) specified at time ¢ + At, give
ttaltye t+Atg _ t+aAtp (15)
where
~ 1
tHaltyr . | = t+HaAt t+aAt
K_[At C+a Ky (16)

t+aAtf) = t+aAtP = [Zl_{t—i—aAtC ko (1 o CY) t+aAtK] te' (17)
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These equations may be solved for the unknown vector ‘+4t@ by using any available iterative
scheme in which *@ is assumed to be known, while the matrices *+*AtC and t+*AtK are approximated
by using the last available temperature **2t@. For the linear problem in which both C and K are

temperature-independent, no iterations are clearly needed.

The basic ingredients required by the solution of the mechanical part of the problem are the time
integration scheme and the consistent (algorithmic) stiffness matrix. The implicit time integration
of the creep evolution equation to be performed at each spatial integration point within the FEM
methodology may be based on the backward-Euler scheme to compute the end-of-the-step value of

01(;) by Eq. (11) according to

t+At 5 (c) _ ty(c) 1 s
3 +Atx _ t+At_(c)
At = p tHAt4 [C * " ]

resolved for 1+t (€) to yield

51 = S
t+Ata.(C) — i + 1 to-(C) + C t+At€
At t+AtAg At t+AtAQ

The constitutive equation (7) is used as

t+Ata_ B CO t+At'€V__ t+Ata,(c).

The tangent operator consistent with the time integration scheme has the form

ot @ e o AtC
T QtHAtg T T A+ A4,

The system of equation governing the thermo-viscoelastic problem has the form
ttaltgg t+Atg t+aAtp
KS K* [ Aq ] = t+AtQ .
where
K = / BTc'BdQ,
Q
K = [/ EBTéBdQ] ,
Q
K* = / B7C*BdQ =K’ - K,
Q
Ks = / N o’C*BdQ,
Q
T BTy
HALQ = [/ (ff+ Af) Ndﬂ] £ [/ (t?+ At) NdaQ,] ,
Q o
F’ = [ / B”C’B dﬂ] tq,
Q

FO = / a’9,C*BdQ,
Q

(18)

(19)

(22)
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v [/QEBTéBdQ} tq=K'q, (30)
AF = [/QEBT(: BdQ} Aq =KAq, (31)
FO [ / DE BT te© dQ] : (32)
tp©)  _ t}‘;:_ FO, (33)
t+AtQ e t+AtQ = tFO +tF© 4 F(”), (34)
“AD = At +?IAtAQ J e T At fiﬁng ; (35)

The system (22) consists of two subsystems which can be solved in succession.

4. PARAMETER SENSITIVITY ANALYSIS

We assume now that our interest lies in finding a computationally effective technique of evaluating
the gradient of any response functional with respect to a material parameter (say, h) entering the
theory — such a gradient is referred to as the first order sensitivity response. It has been shown in
the literature, see [6] for instance, that the gradient of any response functional can be expressed
in terms of the displacement sensitivity g—;:. Thus, our objective now is to develop a system of
equations to be used for the computation of g;l‘ — in the context of the FEM methodology the goal

is clearly fulfilled once a technique is developed to determine the value of 34,; ;

In this paper, the so-called direct differentiation (DDM) method is used. The method requires
differentiation of the governing equation with respect to the parameter h — any material parameter
entering the theory can be substituted for A in specific applications.

4.1. Temperature sensitivity

Using DDM we obtain from Eq. (13) the equation governing the heat transfer sensitivity problem
as

0K dd acC . d§ 0P
E9+Kaﬁ+7ﬁ9+caﬁ‘a_h' (36)

Using the same difference scheme as used in the heat transfer problem (14), this equation may be
rewritten as

t+At t+aAtp t+aAtie
t+alte d 0 = d F s K t+Atg

dh ¢. -8 (37)
4.2. Displacement and stress sensitivity
Using the above results we differentiate Eq. (22) with respect to h to obtain
dt+atg d t+aAtf) d t+aAtR
K 0 TR NG e e SN ST S (38)
ALK . K* dAq d t+AtQ ALK dHHAK* Aq

dh dh dh dh
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where
dK° ¢8G2
e —/QB el sl
dK o |dD de e
S N i £ Bdan
dh /QB [d& (anillieey :
dK* #aC"
= Q
dh /QB e o
dKS =l dC* dé (6) *dE de
o e — e I HA0
dh /QN & | aecan”® a0 dh :
gtatp® rgrar [4CT 0 g de® do
~AELETE — ) + C* Z1Bdn
an /Qa W5 agban s s Tagw an )
dt+AtF0 TdC Odt
—e— = [/QB - Bdﬂ] at+Ki=r,
d'F ol de oy dtq
b = BT DCBdn| =2
dh [/QB do(DC)thdQ] [/Q ] dh
180 35 = K= 39
dAF Fd 2 df i dAq
e i = B dQ BT DCBdQ
3k [QB #POF ]A(HM ] ah
=%(I~{Aq)—%%£\ +KddAhq,
4F® d a6 dtel® do
* () Tt () / Do BT 9 10
dh [/Q a6 (D )th dﬂ] N
th(C) th(c) dtif\
e - camade o
dt+AtQ
dh o
dt+AtQ diF°  qttatple qt+Atgpd
ooilancs sdhiE] Bl s dlical

System (38) containing two subsystems can be calculated separately in succession.

5. OBJECT-ORIENTED APPROACH
5.1. Introduction

Application of object-oriented approach in the finite element method has already a decade long his-
tory. Especially in recent years we have observed an increasing popularity of object-oriented finite
element implementations which is due to their efficiency for building and analyzing of computational
models for complex engineering problems. Increasing complexity of finite element programs requires
the use of efficient tools for their analysis [3], design [4] and programming [2]. The traditional
structural programming emphasizes particular algorithms while data structures are not treated as
crucial. For example, the nodal coordinates or the stiffness matrix are stored in the same type of
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vector; nevertheless, they are completely different entities from the conceptual point of view. There-
fore, the natural language of the problem is far away from the implementation one. Moreover, any
changes require modifications throughout the whole program and make the program maintenance
very expensive and time-consuming. The object-oriented approach gives the possibility of combining
the variables and subroutines in the complete bodies. This advantage allows to create the model
of real-world problems very efficiently. In this paper, the thermo-viscoelastic material model with
sensitivity analysis has been implemented in an object-oriented VFEM++ program.

5.2. Object-oriented model

In structural programming variables and subroutines are declared separately. This is however, related
to a common entity. One of the fundamental concepts of the object-oriented approach is connection
of variables (so-called attributes) and procedures (so-called methods) in one data structure (so-
called class). This approach (so-called encapsulation) allows to create the data structure which
completely models the entity selected from a considered problem domain. Attributes allow to store
the properties of the entity and the methods usually acting on these attributes and its activities are
conceptually assigned to the entity. Having the class declared we can define an object which is the
variable of programming language defined similarly as the simple variables.

Considering as the problem domain the finite element analysis we can easily identify the entities
that can be represented by classes. For example, a single element. A set of nodes is the attribute of
the element. The class element contains also several methods. For compactness, we give one example
of the method which calculates the element stiffness matrix named GetStiffnessMatrix.

Another most prominent concept of object-oriented modelling is its ability to create structures
of classes. The mechanism called inheritance allows to make a structure of classes called hierarchy of
classes. The hierarchy is a kind of graph similar to the genealogical tree. We discuss this structure
on the basis of the example of the hierarchy of the finite elements classes shown in Fig. 1. The
connection between classes i.e. inheritance, means that the lower class (so-called subclass) inherits
the attributes and method from the upper class (superclass). It allows efficiently to utilize common
properties of classes. In the case of elements classes the common attribute is the vector q containing
nodal displacements, the results of FEM analysis. Because all elements must have this vector, it is
declared in the base class and thanks to inheritance all classes posses it.

Another common property of each finite element is GetStiffnessMatrix method. All elements must
have it; however, the algorithm of calculation of stiffness matrix in the case of a particular finite
element (Truss, Frame, Isoparametric) is different. Thanks to the mechanism called polymorphism
the inherited method can be redefined by declaring this method in the class once again and defining
its own version of the body. It allows to cope easily with differences between classes. That class
structure is also called a generalization-specialization (gen-spec for compactness) because the base
class declares most general behaviours of the object while the descending classes are getting more and
more specific. This structure reflects the natural classification of objects in the problem domain and
assumes the object-oriented model is very close to the real problem domain allowing to effectively
utilize all common features of particular hierarchy members and it easily gets along with differences.

It is clear that many entities in a real world consist of parts. The whole-part structure allows to
reflect this obvious property of real entities in the object-oriented model and gives the mechanism
for assembling composite objects. The whole-part structure is realized by calling member function
of both objects (master object and parts). We can easily identify objects and its parts in the finite
element analysis. For example each finite element is composed of an approximation, nodes, material
and element load. In Fig. 2 the element and its parts are presented.

It is an interesting advantage of combining whole-part and gen-spec being essentially important
in object-oriented approach. Let us consider Approximation, the base class for approximations. This
class declares a member function GetShapeFunctionValues. This function calculates the values of the
shape functions at a point. Thanks to polymorphism, each particular, implemented approximation
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derived from the base class, has its own version of this function. The object element has only
a pointer to the approximation object and “doesn’t have to know” what kind of approximation
it actually cooperates with because all approximations must have the functions declared at the
top of hierarchy of approximation. Thus a new approximation may be added to the system and
no changes are necessary in the element class. In the case of implementing new finite elements we
are also sure that the new element will cooperate with all already implemented approximations.
Thus the structure allows to extend the system easily without many changes at many points of
code.

Similar considerations apply to other parts of the object-oriented finite element system. In Fig. 3,
we can see the main structures of VFEM++-. Structure is the object containing all data of the
structure such as nodes, elements, materials etc. These objects are, as we can see the parts of
the structure (whole-part structure). Structure also cooperates with the Analysis objects which are
responsible for performing the analysis. Gen-spec structure has been applied to implement several
types of analyses. More details about object-oriented approach in FEM are presented in [7].

6. NUMERICAL EXAMPLES
6.1. Uniaxial temperature-dependent relaxation test

The problem modelled by means of 15 Lagrange-type 4-node plane-stress elements is shown in
Fig. 4. Prescribed displacement ug = 1 is removed after 7o = 12. 200 equal time steps. The material
constants are taken as E® = 500, p =1, v = 0.3, k = % =1, the heat flux at the free end of the
rod ¢ = 5. The shift factor function A(6) of Eq. (3) is considered as either temperature-independent
in the form A(f) = 2.5 or temperature-dependent in the form A(f) = 0.2 - T + 2.5 or A(f) =
0.5-T + 2.5. Analytical displacement and stress solutions appear difficult even for this academic
problem. Thus, among the sensitivity results obtained numerically, only those corresponding to

isothermal conditions are compared against the analytical solution (taken from [1]) given by

ugx

u(z,7) = == [H(0) - H(m)], (40)

o(z,7) = % ; [E°° +E-exp<—£)] A H(To)‘% - [E‘” 4 E-exp(f ;T")] , (41)

where H(7) is the Heaviside function. In Figs. 5-7 an excellent matching is obtained. In temperature-
dependent case, a good convergence to the temperature-independent results is observed when tem-
perature influence becomes less and less significant thanks to the shift factor function A(6). In-
creasing the shift factor function, we observe a softening of the material. Numerical stress results
in Fig. 5 confirm this fact.

u(t) - prescribed displacement
0.2 i

Fig. 4. Uniaxial test example with 15 Lagrange-type 4-node elements
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6.2. Thick walled cylinder

One quarter of the problem analyzed is shown in Fig. 8. The analytical solution (without thermal
effects) has the form [8]

2
poa“b(l—v)(1—-2v) (b r
= 2k idel))s 42
. a? + (1 — 2v)b? ¥:naol? (t) (42)
where
: o _ BoA((®)e rash
D(t)=Do+Dy(1-¢7%), A==5%,  Do=g,
Ey =Ex+FE B IR
0 — Loo 1, s Eoo EO .

The numerical data were taken as v = 0.3, Eo = 100, Ey = 500, o = 1, ¢t € [0,40]. 100 time
steps of At = 0.4 were considered. The time-constant internal pressure is taken as p = 0.1. The
function is taken as in the previous example: A(f) responsible for the thermal effect is considered
as respectively A(f) = 2.5 — no thermal effects, A(f) = 0.2-T + 2.5 and A(f) = 0.5-T + 2.5.
Similarly as in the previous example, by decreasing thermal influence we observe (Figs. 9,10) good
convergence of results to the analytical ones with no thermal effects.

7. CONCLUSIONS

In the present paper, a thermo-viscoelastic finite element formulation has been developed. Direct
differentiation method has been used to derive the analytical parameter sensitivity equations. The
derived equations allow to analyze the heat transfer problem and — coupled with it — the mechanical
viscoelastic problem. The parameter sensitivity allows to calculate the first order gradient with
respect to various parameters such as material constants. This equilibrium and sensitivity solutions
can be directly used in gradient-based optimization methods. The comparison of the analytical and
numerical results of equilibrium and sensitivity analysis shows that the two solutions are in very
good agreement.

Object-oriented approach has been used in numerical implementation of the developed FEM
equations. Also, the potential of the object-oriented approach in the implementation of finite element
method has been presented and discussed in the paper. Application of the object-oriented methods
has many advantages:

e Possibility of creation data structures which reflect direct dependencies of a real-worlds problem.

Better modelling tools allow to cope with more complex problems the traditional structural
approach does not.

Flexibility of code allows to introduce easily some changes in the code.

e Order in structures of data enables faster searching of errors in the code.

Object-oriented code, through the better data structures causes that the code is more reliable.
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