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The biomechanics of atherosclerosis development
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In this paper, we investigate the bio-mechanics of atherosclerosis development in human physiology. Blood
is modelled as an incompressible fluid of variable viscosity flowing in a slightly diverging channel (i.e. large
artery) of small aspect ratio [15]. The hypothetical viewpoint in this work is the existence of relation-
ship between the atherosclerosis development, blood viscosity, flow separation and turning points in the
flow field. The problem is tackled by asymptotic approximation and the graphical results are discussed
quantitatively.
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1. INTRODUCTION

Atherosclerosis is a common disorder of the arteries in which fatty material is deposited in the
vessel wall, resulting in narrowing and eventual impairment of blood flow. Cerebrovascular disease,
peripheral vascular disease, high bloods pressure and kidney disease involving dialysis are also
disorders that may be associated with atherosclerosis. The arterial blood flow provides a way for
glucose, oxygen and hormones to reach various organs around the body. Blood is a suspension of cells
in plasma and can be separated into microscopically visible elements and liquid plasma. The elements
are red cells or erythrocytes, the white cells or leukocytes, and the platelets or thrombocytes. It is
very evident that blood viscosity depends largely on its composition. In the large blood vessels it is
a good approximation to consider whole blood as a Newtonian viscous fluid [10]. Blood viscosity and
its major determinants such as plasma viscosity, fibrinogen (a protein involved in clotting) and red
cell volume (hematocrit), may be important risk factors for the early development of atherosclerosis.
The process starts from the build-up of cholesterol, fats and biological debris in the tissue lining the
inside of blood vessels. This build-up can obstruct blood flow to the heart and brain and thereby
cause heart attack or stroke. Recently, Lee [9] conducted a bio-statistical survey and concluded that
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blood viscosity is related to risk of early atherosclerosis in [8] indicate that in the arterial systems
static zones occur, which are due to separation of the main flow from the walls of the arteries. It
is suggested that in these separation zones there is an interaction of platelets and fibrinogen to
form a mesh in which lipid particles become trapped, with the subsequent formation of a plaque
of atheroma. Certain thrombus formation is one of the major complications of prosthetic heart
valves, and many investigators have suggested that stagnation zones near the valve contribute to
the formation of thrombi.

Mathematically speaking, several authors, e.g. [3, 4, 11, 12, 14, 16-21, etc.], have studied such
flows with reference to physiological situations. In all these studies, the existence of separation in
the flow field is observed and blood viscosity is taken as constant. However, in many situations, the
blood viscosity varies due to elevated level of certain blood substances and this variation in blood
viscosity is certainly going to affect the general flow structure as well as the bifurcation that occur
in the flow field as the flow Reynolds number increases including the internal flow separation which
ultimately may lead to early development of atherosclerosis disease.

The complexity of the dynamics of arterial blood flow made it very difficult to handle mathemat-
ically with a single model. For instant, the deformability of arterial wall, the unusual pulsatility of
the flow, non-uniform blood viscosity, absorption of nutrients through arterial wall, etc., contributed
to its mathematical complexity. However, in the present paper, we shall improve on the steady flow
analysis of [14, 17| by including variable blood viscosity and the bifurcation study. Our objective
is to demonstrate the intimacy that exist between the blood viscosity, flow field turning points
and atherosclerosis development. We employed the technique of extending a regular perturbation
series to high order by computer, and then analysing the coefficients to reveal the structure of the
solution [6]. In the following sections, the problem is formulated, analysed, solved and discussed.

2. MATHEMATICAL FORMULATION

In the large arteries, we regard blood as an incompressible fluid with variable viscosity [18]. It is
assumed that the flow is fully developed and the blood vessel is modelled as a two-dimensional
symmetrical channel. Take a Cartesian co-ordinate system (z,%) where Oz lies along the centre
of the artery, and y is the distance measured in the transverse direction. Let u and v be the
velocity components in the directions of z and y increasing respectively, a(z) defines the arterial
wall geometry. Following [8], the continuity and Navier-Stokes equations governing the flow are
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where oy , 04z, 0y are the usual stress components, i.e.
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and p is the blood dynamic viscosity defined as

u=uo[1+( - (5)

P is the blood pressure, p the blood density, a the blood viscosity variation coefficient such that
a = 1 corresponds to the case of uniform blood viscosity, pg is the blood reference dynamic viscosity,
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and ag is the arterial characteristic half width. In Eq. (5), we have assumed a small transverse
variation in the blood viscosity i.e. between the arterial inner wall and the center region of the
artery. This assumption is physiologically justify in the large artery, since the concentration of red
blood cells seem to be higher near the arterial inner wall where the exchange of oxygen and nutrient
to the body tissue takes place [18]. The appropriate boundary conditions are

1. Symmetric condition along the arterial centreline i.e.

%=0, = on y = 0. (6)
2. There is no tangential fluid motion at the wall i.e.,
u+v§Z——0 on y = a(z). )
The fluid flux across any cross-section of the artery is described as
a(zx)
Q= /0 udy. (8)

The arterial half width (y = a(z) = a9S(z/L)) is assumed to vary slowly with axial distance such
that 0 < § = ag/L < 1, and L is the characteristic length. We introduce the stream-function ¥ and
vorticity w in the following manner,
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Eliminating pressure P from Egs. (2) and (3) and using Egs. (5), (9) and (10) we get
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where vy = pg/p is the blood reference kinematic viscosity coefficient. The following dimensionless
variables are introduced,
2 ) ) 1\
el g g o (1)
Q ao ao Q
The arterial aspect ratio is very small, hence we can neglect terms of order 62 and higher power
in the dimensionless governing equations. We obtain (neglecting primes for clarity),
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where Re = Qao/Lvg and B = (a—1)1yL/aoQ are the flow Reynolds number and the blood viscosity
variation parameter respectively.

3. PERTURBATION EXPANSION

The problem posed by Egs. (16)-(19) is non-linear and therefore not amenable to analytical treat-
ment. For low Reynolds number flow, we shall seek asymptotic expansion of the form

(o] o0
¥ =) Re¥;, w=) Rew. (20)
1=0 1=0

Substituting the above expressions (20) into (16)—(19) and collecting the coefficients of like powers
of Re we obtained and solved the equations governing ¥ and w as follows,

Zeroth Order:
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Higher Order (n > 1):

n—1
B2 ey At )
&, = —a;;" ; (25)
v, =0, 8;‘;112” =0 ony =0, (26)
ai/”:o, U, =0 ony=35. (27)

Since it seems cumbersome to obtain many terms of the solution series manually, we have written
a MAPLE program that calculates successively the coefficients of the solution series. In outline, it
consists of the following segments:

(i) Declaration of arrays for the solution series coefficients. ¥ = array(0..30), w = array(0..30)
(ii) Input the leading order term and their derivatives (i.e. solution of Eqs. (21)-(23)).

(iii) Input the modelled arterial geometry slope (i.e. dS/dzx).

(iv) Using a MAPLE loop procedure, iterate to solve Egs. (24)—(27) for the higher order terms.

(v) Compute the wall shear stress and the axial pressure gradient.
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Some of the solution for stream-function and vorticity obtained initially manually and also by
using the above MAPLE procedure are then given as follows,

1 3ReS. ReS
V=27 = 3n) - e (" =T + 110’ = 5n) + —é-é(zn“ =3t Hm) e (28)
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where S, represents the derivative of S with respect to  and n = y/S. The shear stress at the wall
of the artery is given by

1

] [(0yy — 02z)az + (1 + a2)ogy] on y = a(z/L), (30)
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where where oy, , 04¢, 0zy are the usual stress components, i.e.
Oy = (Tyy = Vae), Oyy — Oz = —4p¥zy . (31)

The subscripts (z,y) denote partial differentiation with respect to (z,y), respectively. The dimen-
sionless form of wall shear stress can be written as

L L s U, — 62U, ) (1 + 6252) — 4625,
——mﬂu——m@[( yy — zz) (1 +0°5;) — T :cy] (32)

and we obtain

% 125;Re ’) 3SBRe b
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From axial component of the Navier-Stokes equation (2), we can determine the blood pressure
distribution. The solution for the pressure field is taken as

P=‘;—?q (34)

where q is given as

1
q=3P0+P1+6P2+O(62)+---. (35)

The blood pressure gradient in the longitudinal direction is given as

7R i B TS 54S,  3(140y — 1055)8
am_(SAP_(SSB{ 3+[ i 140 R s (36)

The solution for the pressure field is

1 T
d= 3/0 VP daz. (37)

4. COMPUTER EXTENSION AND BIFURCATION STUDY

We shall assume a linearly diverging arterial geometry defined by S = 1 + mz, where 0 < m < 1
represent the arterial slope. This is valid in the large artery especially near the aortic valve, as the
heart pumps out oxygenated blood to the aorta. In order to investigate the effect of inertial forces
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Table 1. Computation showing the coefficients of wall shear stress G [n] for various values of viscosity

variation parameter

N B =0, G[n] B = —0.05, G|n] B = —0.1, G[n]

0 3.00000000000000 3.00000000000000 3.00000000000000

1| —0.34285714285714 —0.30535714285714 —0.26785714285714

2 | —0.02345083487940 —0.35182977736549 —0.04372762059369

3 | —0.00268009541478 —0.00440344667290 —0.00690190953816

4 | —0.00034963897656 —0.00057383332687 —0.00103171741713

5 | —0.00004866740259 —0.00007687414215 —0.00014547412140

6 | —0.7064052946-10~° | —0.00001061052555 —0.00001957187484

7 | —0.1057210166-10~> | —0.1512047004- 10> | —0.2562038386 - 10—
8 | —0.1620051989-10=6 | —0.2221646521-10=% | —0.331576840 -10-©
9 | —0.252966029 -10~7 | —0.335874907 -10~7 | —0.429626424 - 10~
10 | —0.4010840998-10—% | —0.5209280564 - 10~% | —0.5716366253 - 103
11 | —0.6440269362-10~° | —0.8249779771-10~° [ —0.8077109705- 10~°
12 | —0.1045178200-10~° | —0.1328333584-10° | —0.1225257987- 10~
13 | —0.171162579 -10~10 | —0.21671970 -10~1° | —0.199209425 -10~10
14 | —0.282497644 -10~*' | —0.357080701 - 101! | —0.344904046 - 1011

Table 2. Computations showing the flow separation position and the bifurcation points using D-T method

B 0
Rd (turning points) | 5.4581086861
Rd (separation) 4.712388903846

-0.05 —0.1
5.269995742 | 5.154377742
4.418569188 | 4.113917191

and the variable viscosity on the flow characteristics as well as the position of separation in the flow
field, we expand G (i.e., the wall shear stress) in powers of Rd to obtain

3Rd 35Sﬁ Rd2 S,B S2ﬂ2
el 7y = 24 — 22984522
il (16+ m ) 862400 (202 4~ 220845~ — 549780
Rd3 SB 5262 3,33
= o 4732
S (647168 5760685 + 58147320=—>- + 138091800 ) 3 (38)

where Rd = Rem i.e. the product of flow Reynolds number and arterial slope parameter. Without
loss of generality, we let = (m — 1)/m and compute the first 15 coefficients of the above series for
different small values of viscosity variation parameter j, (see Table 1). The signs of the coefficients
are the same and are monotonically decreasing in magnitude; hence the convergence of the series
may be limited by a singularity on the positive real axis of Rd. Following [6], we seek a polynomial of
degree d > 2, both in the dependent and independent variables (i.e. a special type of Hermite—Padé
approximants) from the obtained partial sum given in order to analyse the solution structure of the
problem. Let

d.-m
FiRE€) = Y. ¥ fopu R R (39)
m=1 k=0

such that

0Fy

40

a6 %0 = (40)

and

Fy(Rd,G) = O(Rd"*!)  as Rd — 0. (41)
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The requirement (41) reduces the problem to a system of N linear equations for the unknown
coefficients of F;. The entries of the underlying matrix depend on the N given coefficients of G.
Henceforth we shall take

%(d2+3D—2), (42)

so that the number of equations equals the number of unknowns. The bifurcations for the new
polynomial can then be analysed locally by means of Newton’s diagram. Details of bifurcation
point classification are summarised in Chapter 2 of Drazin’s book [5]. We compute the bifurcation
points, the asymptotic behaviour of G as Rd — 0 on the secondary solution branch and the Reynolds
numbers at which separation occur in the flow field i.e. G — 0, as shown in Table 2.

N =

5. GRAPHICAL RESULTS AND DISCUSSION

From our analysis, it is noteworthy that a negative increase in the value of 3 represents an increase
in the blood viscosity. Figure 1 shows the transverse variation of blood axial velocity profile, a
parabolic profile of Poiseuille flow is observed i.e. velocity is maximum at the arterial centreline and
minimum at the walls. However, it is interesting to note that the blood moves faster when § = 0 as
compare to the case when 8 = —50, —100. This can be attributed to a general increase in the blood
viscosity.

Figure 2 shows the variation in the arterial wall shear stress. We observe a decrease in the wall
shear stress with an increase in axial distance. This can be attributed to the diverging nature of
the large arterial geometry under consideration. However, high wall shear stress at the arterial
wall is observed when 8 = —5,—10 due to high blood viscosity, this may lead to early damage of
the inner lining of the blood vessel i.e. the intima and the media. Figure 3 shows a sketch of the
bifurcation diagram for the problem obtained using the D-T method for g = 0,—0.05, —-0.1. Two
major solution branches (I and II) are observed and a turning point exist between the two solutions.
On the secondary solution branch G — —142.44828/Rd as Rd — 0. Meanwhile, the magnitude of
the bifurcation point together with the Reynolds number at which separation occur in the flow field
decreases with an increase in the blood viscosity i.e. from 8 = 0 to —0.1, (see Table 2). Hence, an
increase in the blood viscosity may preferentially cause early buildup of fat deposit at the stagnation
zone of the blood vessel (separation position) that can eventually lead to the formation of a plague
of atheroma [15].
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Fig. 1. Axial velocity profile of the flow, Re = 1.0, Fig. 2. Variation in wall shear stress with axial
=01 m=0.01 distance, Re = 1.0, m = 0.01
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Fig. 3. A sketch of the bifurcation diagram for wall shear stress with Rd

6. CONCLUSION

The mathematical simulation of the arterial blood variable viscosity effect on the arteriosclerosis
development is presented. The analysis reveals the existence of turning points in the flow field,
however, a slight increase in blood viscosity may lead to early occurrence of flow separation in the
blood vessel and subsequent the development of the atherosclerotic diseases. Finally, several factors
like, high cholesterol diet, cigarette smoking, age, blood pressure, etc., can lead to elevated level
of certain blood substances and thereby cause a rapid variation in the blood viscosity which may
invariably lead to the. These events can increase the risk of heart attack or stroke.

APPENDIX

The MAPLE procedure to solve the system of equations (24)-(27) and the values of the coefficients
of wall shear stress.

#  Declaration of arrays for the solution series coefficients
¥ : = array(0..18): w:=array(0..18): ty:=array(0..18): 1x:=array(0..18):
wy:=array(0..18): wx:=array(0..18): wyy:=array(0..18):

#  Input the leading order term and their derivatives
Bl0k=(3*y/5-(y/5) 3)/2: wlO}=(3*y/5)/s 2
Yy[0]:=diff(4[0].y): ¥x[0]:=sx*diff(1[0],s): wy[0]:=diff(w[0],y):
wx[0]:=sx*diff(w[0],s): wyy[0]:=diff(wy[0],y):

Input the slope
SX;=im:

#  Solving Egs. (24)—(27) for the higher order terms
for n from 1 by 1 to 18 do
Al:=Re*sum(yy[i]*wx[n-i-1]-9x[i| *wy[n-i-1],i=0..n-1):
A2:=-Re*pB*(y*wyy[n-1]4+2*wy[n-1]): A:=(A1+A2):
gll:=int(Ay)+K:
gl:=int(gll,y):
fl1:=int(-gl,y)+M:
fl:=int(f11,y):
y:==§i
K:=solve(f11=0,K): M:=solve(f1=0,M):
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ye='y":
Y[n]:=f1: w[n]:=gl: Py[n]:=diff(x)[n].y): Px[n]:=sx*diff(x[n],s):
wy[n]:=diff(w[n],y): wx[n]:=sx*diff(w[n],s): wyy[n]:=diff(wy[n].y):
K:="K"s M:="M":

#  Computing the wall shear stress coefficients
print(evalf(sub(y=s, w[n]*s2)));
od:
quit();

REFERENCES

[1] G.A. Baker Jr. Essentials of Padé Approzimants. Academic Press, New York, 1975.
[2] G.K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967.
[3] H. Blasius. Laminare Stromung in Kanalen wechselnder Breite. Z. Math. Phys., 58: 225-233, 1910.
[4] J.C.F. Chow, K. Soda. Laminar flow and blood oxygenation in channels with boundary irregularities. J. Appl.
Mech. (Trans. ASME), 40: 843, 1973.
[5] P.G. Drazin. Nonlinear Systems. Cambridge University Press, 1992.
[6] P.G. Drazin, Y. Tourigny. Numerical study of bifurcation by analytic continuation of a function defined by a
power series. SIAM Journal of Appl. Math., 56: 1-18, 1996.
[7] M. van Dyke. Computer-extended series. Annual Rev. Fluid Mech., 16: 287-309, 1984.
[8] J.A. Fox, A.E. Hugh. Localization of atheroma: a theory based on boundary layer separation. Br. Heart J., 28:
388-399, 1966.
[9] A.J. Lee. Blood viscosity related to risk of early atherosclerosis in men. Circulation, 97: 1467-1473, 1998.
[10] M.J. Lighthill. Physiological fluid dynamics: A survey. J. Fluid Mech., 52: 475-497, 1972.
[11] R.D. Lucas. A perturbation solution for viscous incompressible flow in channels. Ph.D. dissertation, Stanford
Univ., Stanford, Ca., USA, 1972.
[12] O.D. Makinde. Laminar flow in a channel of varying width with permeable boundaries. Rom. J. Phys., 40:
403-417, 1995.
[13] O.D. Makinde. Steady flow in a linearly diverging asymmetrical channel. CAMES 4: 157-165, 1997.
[14] O.D. Makinde. Extending the utility of perturbation series in problems of laminar flow in a porous pipe and a
diverging channel. J. Austral. Math. Soc. Ser. B, 41: 118-128, 1999.
[15] O.D. Makinde. Effect of variable viscosity on arterial blood flow. Far East J. Appl. Math., 4(1): 43-58, 2000.
[16] M.J. Manton. Low Reynolds number flow in slowly varying axisymmetric tubes. J. Fluid Mech., 49: 401, 1971.
[17] D.A. McDonald. Steady flow in tubes of slowly varying cross-sections. J. Appl. Mech., 4: 475, 1978.
[18] T.J. Pedley. The Fluid Mechanics of Large Blood Vessels. Cambridge University Press, Cambridge, 1980.
[19] Ch. Peeyush, J.S.V.R. Krishna Prasad. Low Reynolds number flow in tubes of varying cross-section with
absorbing walls. J. Math. Phys. Sci., 26: 19-36, 1992.
[20] F.T. Smith. Flow through constricted or dilated pipes and channels, Parts I and II. Quart. J. Mech. Appl.
Math., 29: 343 and 365, 1976.
[21] R.I. Tanner. Pressure losses in viscometric capillary tubes of slowly varying cross-section. Brit. J. Appl. Physics,
17: 663-669, 1966.






