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A study of the capabilities of artificial neural networks in respect of selected problems of the analysis
of mine-induced building vibrations is presented. Neural network technique was used for the prediction
of building fundamental natural period, mapping of mining tremors parameters into response spectra
from ground vibrations, soil-structure interaction analysis, simulation of building response to seismic-
type excitation. On the basis of the experimental data obtained from the measurements of kinematic
excitations and dynamic responses of actual structures, training and testing patterns of neural networks
were formulated. The obtained results lead to a conclusion that the neural technique gives possibility
of efficient, accurate enough for engineering, analysis of structural dynamics problems related to mine-
induced excitations.
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1. INTRODUCTION

Structural vibrations induced by ground motion can be caused not only by earthquakes but also
by human activity. Some of the sources of paraseismic excitations such as, for instance, traffic
vibrations, industrial explosions and mining tremors in strip mines can be inspected and controlled.
On the other hand, mining tremors resulting from underground raw mineral material exploitation
are random events. Mine-related underground shocks excite seismic waves that reach the surface of
the earth and induce building vibrations. Although these tremors are connected with the human
activity and can usually be observed only in mining regions, they differ considerably from other
paraseismic vibrations. They are not subject to human control and they are random events with
respect to time, place and magnitude likewise earthquakes. However, some parameters of such
ground vibrations (e.g. dominating frequencies, duration) are different from earthquake-induced
ground vibrations [20].
The evaluation of dynamic properties and dynamic response of a building subjected to mine-

induced excitations is a very important issue in structural dynamics. But there are many problems
related to full-scale experimental tests on actual buildings. On the other hand, there are a lot of
difficulties with material, structural and load modelling in the case of formulation of a model of
building in many computational methods (first of all the Finite Element Method).
Neural network technique was used for the prediction of building fundamental natural period,

mapping of mining tremors parameters into response spectra from ground vibrations, soil-structure
interaction analysis, simulation of building response to seismic-type excitation [6, 15, 19].
Mining tremors in strip mines (measurements were performed by the Institute of Structural

Mechanics, Cracow University of Technology) and in the most seismically active mining regions
in Poland with underground exploitation – Upper Silesian Coalfield (USC) and Legnica-Glogow
Copperfield (LGC) (measurements come from the surface seismological measurement stations) –
were the sources of building vibrations. The results of long-term experimental monitoring of actual
structures, e.g. [2, 6, 10, 16], were synthetically collected.
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The database built of the experimental data obtained from the measurements of kinematic exci-
tations and response building vibrations makes it possible to use them as patterns to design neural
network analysers for investigation of building dynamic problems. In some cases pre-processing
methods of experimental data are applied: introduction of linguistic variables (fuzzy inputs) and
compression. Two methods are proposed for input data compression. In the first approach the back-
propagation neural network designed as an auto-associative network – replicator is applied [4, 17].
Compression of data to principal components by the principal component analysis (PCA) is the
second method discussed [4, 14].
Types of problems analysed with neural networks application are synthetically presented in

Table 1. Additionally, information about the components of the neural network input and output
vectors and variants of the experimental data pre-processing methods is also included in the table.

Table 1. Types of problems analysed with neural networks application.

Problem
Neural network Variants of actual data

pre-processing methodsinput output

Prediction of building
fundamental natural
period

– foundation flexibility
– parameters correspon-
ding to building stiff-
ness and dimension

fundamental natural
period

– without data pre-processing
– introduction of the linguistic
variables (fuzzy inputs)
– compression using PCA

Mapping of mining
tremors parameters
into response spectra
from ground
vibrations

mining tremor parameters normalized accelera-
tion response spec-
trum from ground vi-
brations

without data pre-processing

Soil-structure
interaction

– maximal value (ampli-
tude) of ground vibra-
tions
– mining tremor param-
eters

comparison of the
maximal value (am-
plitude) of vibrations
recorded at the same
time on the ground
and on the foundation
level

without data pre-processing

– record of ground ac-
celeration vibrations
compressed to the first
principal component
– mining tremor param-
eters

comparison of the
maximal value (am-
plitude) of vibrations
recorded at the same
time on the ground
and on the foundation
level

compression using PCA

response spectrum from
the ground vibrations

response spectrum
from the building
foundation vibrations

without data pre-processing

Simulation
of building response
to seismic-type
excitation

description of excitation
vibrations and informa-
tion about the dynamic
properties of the building

dynamic response of
the building

replicator

2. EXPERIMENTAL DATA AND VARIANTS OF ACTUAL DATA PRE-PROCESSING
METHODS

Measurements were carried out on thirteen typical apartment medium-height (five-storey) build-
ings with load-bearing walls. All the buildings are founded directly on the ground on concrete strip
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foundations. Full-scale tests were performed many times over a period of many years (monitoring)
[2, 6, 10, 16]. Explosions in nearby quarries as well as rockbursts in USC and LGC regions with the
underground coal (USC) and copper ore (LGC) exploitation were the sources of ground and actual
buildings vibrations. Seismographs or accelerometers were installed on the ground in front of the
buildings (in six meters distance), on the basement level inside the buildings and on the highest
floor of the buildings. Displacements and accelerations were measured. Velocities were obtained by
acceleration records integration. The tests included measurements of horizontal vibration compo-
nents in two mutually perpendicular directions, parallel to the transverse (x) and longitudinal (y)
axis of the buildings. Attention was focused on the horizontal vibration components because of
their essential role in the responses of surface structures. Figure 1 shows examples of the horizontal
components of vibrations in the time domain (accelerations in transverse direction x) recorded at
the same time on the ground in front of the building, in the building on the foundation level and
on the highest floor level. The vibrations from Fig. 1 were caused by rockburst in LGC region with
energy En = 7.3× 107 J and epicentral distance re = 899 m.

Fig. 1. Records of vibrations induced by mining tremor (En = 7.3× 107 J, re = 899 m):
a) ground level, b) foundation level, c) the highest floor level.

Some of the parameters used as neural networks input data are estimated as approximate – mean
values from the ranges found experimentally. Foundation flexibility expressed by the coefficient of
elastic uniform vertical deflection of the ground Cz [MPa/m] is one of them. Soils of small, medium
and large stiffness are classified in the Polish code [18]. Therefore the linguistic variables associated
with the fuzzy character of such parameters are introduced in the neural network analysis.
Triangular membership functions are adopted. Symmetric triangular membership function can

be described as follows:

µF =





1− |x− c|
d

for x ∈ |c− d, c + d|,
0 out of the range.

(1)

Next, instead of crisp values, linguistic variables {µS , µM , µL} are introduced, where: µS ,
µM , µL – values of membership functions for small, medium and large corresponding parameter,
respectively. In Fig. 2 the membership functions proposed in case of soil parameters Cz are shown.
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Fig. 2. Triangular membership functions for values of soil parameters Cz.

The application of vibration records in the time domain leads to some computational difficulties
related to the “size” of the data. Hence the pre-processing (compression) of the experimental data
using as the first way auto-associative network – replicator [4, 17] or principal component analysis
(PCA) [1, 4, 14] as the second way is proposed.
The compression of the input as well as output data makes it possible to design much smaller

neural networks than those without data compression, i.e. reduction of the number of network
parameters and improvement of network generalization properties follow. The basic idea of data
compression is to “diminish” the “size” of information with the possibility of data reconstruc-
tion (decompression). The advantages of application of the techniques for data compression in
case of records of ground and building vibrations (displacements, velocities and accelerations) are
shown [7, 12, 13].
Replicator is a back-propagation neural network (BPNN) designed as a network for auto-

associative mapping of input vectors into output vectors – the output is replication of input. It can
be split into the compressor and decompressor of data. The signals from the hidden layer of the
network are used as the components of the compressed input vector. The second part of the network
(hidden and output layers) works as the decompressor. It is also possible to design autonomous,
additional network for data decompression.
Replicator as a method of reduction of input or output vectors dimensionality was used among

others in case of the compression of building responses for the excitations caused by explosions
in nearby quarry. The replicator was taken as BPNN: 620–n–620. The number of N = 620 in-
puts/outputs corresponds to parts composed of N = 620 successive values of displacements from
each record of displacement in time domain d(t) registered on the highest floor of the building,
and n = 9 neurons were proposed in the hidden layer. Than the compression ratio of building
response data was 620/9 = 68.9. It was stated that 96% of neurons had relative errors less than
5%. The compressed values had to be decoded in order to simulate the displacement records in
time domain. Decompression was performed by a part of replicator called decompressor BPNN:
9–620. The process led to the conclusion that the records neurally obtained were very close to the
measured records. Figure 3 illustrates one of the experimental and neurally simulated displacement
records as an example.

Fig. 3. Measured and neurally simulated (reconstructed using replicator) displacements of highest building
floor in case of excitations caused by explosions in nearby quarry.

The PCA method relates to linear transformation of process description in the form of N -
elements vector x into K-elements vector y, using matrix W ∈ RK × RN . Since K < N , the size
of vector y is reduced as compared to x. So the PCA transformation changes the great number
of input data into a set of components according to their importance [1, 4]. The reconstruction
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of vector x (with the reconstruction error) is possible on the basis of vector y and matrix W.
Therefore the transformation into principal components enables determination of the correlation
between a great number of variables in a data set. If these variables are correlated, only a part of
them is sufficient to define the remaining data. So a smaller number of variables could represent
the entire data set.
The PCA method was applied, among others, to compression of the ground acceleration and

velocity vibration records from mining tremors in LGC region [7]. For this purpose, the fragments
(vectors) composed of N = 1500 successive values of accelerations as well as velocities from each of
the ground records experimentally obtained were taken to account respectively. In the all cases of
the records considered (acceleration and velocity records), the relative contributions of the principal
components to the total variance of data were computed. Looking at the values distribution it is
clear that the first principal component reaches more than 99% part of the total variance of data
in all the cases of vibration records experimentally measured. Then the first principal component is
predominant. Therefore, considering the records of vibrations (accelerations as well as velocities),
it is sufficient to take only the greatest principal components. The other principal components can
be neglected, because they do not affect the information substantially. So 1500 successive values
of the accelerations in each of the vectors of accelerations as well as 1500 successive values of the
velocities in each of the vectors of velocities can be replaced with one parameter only – the first
principal component and the “size” of information can be 1500 times smaller. Thus it makes it
possible to compress the vector significantly.
Only the first principal components of the records of acceleration and velocity vibrations were

taken to reconstruction of the full records of vibrations in time domain. In Fig. 4 examples of
the acceleration and velocity ground records from LGC region are compared: the experimental and
reconstructed using PCA method. It was stated that for all the patterns of acceleration and velocity
vibrations the simulated records were very close to the measured records. They were nearly the
same.

Fig. 4. Comparison of acceleration (a) and velocity (b) ground vibration records measured and simulated
(reconstructed) using PCA method in case of mining tremor from LGC region (En = 5.4×107 J, re = 920 m).

3. ANALYSED PROBLEMS

3.1. Introductory remarks

Back-propagation neural networks (BPNNs) with the resilient back-propagation learning method
and sigmoid activation function [4, 15, 19], networks with radial basis functions (RBFNNs) [4]
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and fuzzy neural networks of ANFIS type [5] were trained and tested on the basis of experimental
data obtained from long-term measurements performed on actual structures. The results of neural
network analysis were compared with the results of experiments.
The accuracy of network approximation was evaluated by mean-square-error MSE (V ), standard

error stε(V ) and relative errors epi, ep, eVavr:

MSE(V ) =
1
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p=1
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i=1

|epi|, (5)

where z(p)i , y
(p)
i – target and neurally computed i-th outputs for p-th pattern, M – number of

outputs, V = L, T , P – number of learning (L), testing (T ) and all (P ) patterns, respectively.
Besides, the linear regression coefficient r(V ) was computed for every set of pairs z(p)i , y

(p)
i .

The numerical efficiency of the trained network was also evaluated by the success ratio SR. This
function enables us to evaluate what percentage of patterns SR [%] gives the neural prediction with
the error not greater than ep [%].

3.2. Prediction of building fundamental natural period

Neural networks are used for computation of fundamental natural periods of vibration of thirteen
medium height (five-storey) buildings investigated. The identification problem is formulated as a re-
lation between structural and soil parameters, and the fundamental period of building vibrations.
In the light of full-scale tests of the analysed buildings it can be stated [16] that the soil-structure
interaction plays an important role in vibrations of medium height buildings. Foundation flexibility
is expressed by the coefficient of elastic uniform vertical deflection of the ground Cz. The next
representative parameter is the building dimension in the direction of vibrations b. Other param-
eters correspond to the equivalent bending stiffness s =

∑
iEIi/a and equivalent shear stiffness

r =
∑

iGAi/a, where: E, G – elastic and shear moduli, respectively; Ii, Ai – moment of inertia
and cross-sectional area of the i-th wall in the building plan, a – length of building.
These parameters were taken as the variables in the input vectors x of neural networks – in the

simplest neural network: {Cz , b} and in a more extended neural network input vector (with more
extended input information): {Cz, b, s, r}. The building fundamental natural period T1 was the
output of the network [11].
Better accuracy of neural fundamental period prediction and reduction of the number of

network training epochs can be obtained as a result of introduction of a linguistic variable
Cl = {µS , µM , µL} instead of crisp variable Cz, where: µS , µM , µL – values of membership
functions for small, medium and large rigidity of soil, respectively, corresponding to triangular
membership functions shown in Fig. 2 [15].
The input data pre-processing associated with the application of PCA is the next proposition in

neural identification of fundamental natural building periods [14]. Data compression by decomposi-
tion according to principal components deals with the analysis of correlation between the parameter
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of foundation flexibility – Cz and the three parameters describing building: dimension in the di-
rection of vibrations – b, equivalent bending stiffness – s, equivalent shear stiffness – r. Looking
at the values distribution, it is clear that the first principal component is predominant. Therefore,
considering the building parameters, it is sufficient to take only the greatest (the first) principal
component y1(Cz, b, s, r). The other principal components can be neglected, because they do not
affect the information substantially. So the four parameters in the input vector can be replaced with
one parameter only – the first principal component and the “size” of information may be smaller.
Thus it makes it possible to compress the input vector.
The errors corresponding to the training and testing processes for the applied neural networks

are listed in Table 2. Additionally, Fig. 5 presents a comparison of success ratio SR for prediction
of building fundamental periods using one type of networks – the BPNNs.

Table 2. Errors of natural building periods identification using different types of neural networks.

Input parameters Network MSE(L) MSE(T )
eV avr[%] r(P ) st ε(P)

L T P

b, Cz

a BPNN: 2 – 3 – 1 0.00025 0.00120 6.5 12.5 7.5 0.873 0.020

b RBFNN: 2 – 4 – 1 0.00069 0.00084 10.3 11.0 10.4 0.763 0.027

b, µS , µM , µL

a BPNN: 4 – 3 – 1 0.00014 0.00098 4.9 10.3 5.8 0.916 0.017

b RBFNN: 4 – 5 – 1 0.00062 0.00052 9.8 6.7 9.3 0.804 0.025

b, Cz , s, r
a BPNN: 4 – 4 – 1 0.00008 0.00032 3.0 5.8 3.5 0.964 0.011

b RBFNN: 4 – 5 – 1 0.00034 0.00028 6.4 6.4 6.4 0.899 0.018

c ANFIS 0.0000001 0.00027 0.15 7.3 1.3 0.987 0.007

y1(b, Cz , s, r)
a BPNN: 1 – 2 – 1 0.00032 0.00019 7.0 5.3 6.7 0.901 0.017

b RBFNN: 1 – 3 – 1 0.00069 0.00036 10.6 7.6 10.1 0.766 0.025

c ANFIS 0.00026 0.00019 5.5 5.0 5.4 0.917 0.016

Fig. 5. Comparison of success ratio SR for prediction of building fundamental periods using BPNNs.

The analysis performed leads to the conclusion that the application of all the proposed neural
networks enables us to identify the natural periods of buildings with accuracy quite satisfactory for
engineering practice.
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3.3. Mapping of mining tremors parameters into response spectra
from ground vibrations

Because of economic and practical reasons, in engineering practice, recording of actual kinematic
excitation is not possible for each building in mining regions. Moreover, prediction of real vibration
effects of expected mining tremors is very difficult. Therefore the problem was formulated as the
neural network evaluation of a relation between mining tremor energies, epicentral distances and
acceleration response spectra.
Comparison of many records from both regions leads to the conclusion that typical vibrations

in both mining regions differ significantly. So USC and LGC regions are analysed separately. The
analysis relates to all the measured mining tremors, regardless of their harmfulness.
All the recorded experimental data in form of accelerations in time domain corresponding to

both mining regions (USC and LGC) were first pre-processed. From all the accelerations, the nondi-
mensional acceleration response spectra β were computed (β = Sa/amax; where Sa – acceleration
response spectrum, amax – maximum value of acceleration amplitude). They are so-called conven-
tionally computed response spectra. The fraction of critical damping ξ = 2% was assumed [3].
The following input vector was proposed:

x(3×1) = {En, re, Ti}, (6)

where En – mining tremor energy, re – epicentral distance, Ti – vibration period.
The corresponding value of nondimensional acceleration response spectrum computed for Ti

vibration period was expected as the output of neural network:

y(1×1) = β(Ti). (7)

Additionally, decomposition of the problem was discussed [8]. For this purpose each of the
acceleration response spectra was divided into two parts: (a) and (b). It results from the fact that
in each of the curves of the nondimensional acceleration spectra from mining tremors in USC and
LGC regions, two different parts can be marked out. The first one (a), for Ti ∈ [0.02, 0.25] s, contains
the fragment of the curve of the response spectrum (drawn versus periods of natural vibrations)
with a great number of relative extremes. However, the second one (b), for Ti ∈ [0.27, 1.3] s, is
almost smooth, cf. e.g. Fig. 6.

Fig. 6. Comparison of nondimensional acceleration spectra in LGC region (En = 1.3× 108 J, re = 2633 m)
computed on the basis of measured vibrations and neurally predicted.
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The errors corresponding to the training and testing processes for the applied networks for LGC
region are listed in Table 3. In Fig. 6 an example of comparison of nondimensional acceleration
spectra computed on the basis of measured vibrations and neurally predicted is shown.

Table 3. Errors of neural networks for LGC region.

Neural networks
MSE(V ) eV avr [%]

r(P ) st ε(P )
MSE(L) MSE(T ) L T P

part (a) 3-9-6-1 0.00625 0.00778 21.4 25.1 22.1 0.531 0.081

with decomposition part (b) 3-7-1 0.00213 0.00211 18.7 22.7 19.5 0.714 0.046

(a)+(b) – – 21.3 24.9 22.0 0.576 0.079

without decomposition: 3-12-6-1 0.00600 0.00780 21.3 25.6 22.2 0.562 0.080

It was stated that the neurally predicted spectra on the basis of energies and epicentral dis-
tances only are very close to the corresponding conventionally computed spectra in case of both
USC and LGC regions. The accuracy of the obtained results in case of the two considered neural
analyses: without decomposition and with decomposition is nearly the same. But decomposition of
the problem makes it possible to reduce the number of neural networks learning epochs and to use
much smaller networks for prediction of smooth fragments of response spectra.
The main advantage of the neural approach is that prediction of acceleration response spectra

can be performed without recording of surface vibrations. Then the presented way of response
spectra computation can be applied to the prognosis of mining tremors influences on structures.

3.4. Soil-structure interaction

Soil-structure interaction plays an important role in the design process of structures subjected to
ground motion and is a very important problem from the engineering point of view. Prognosis
of structural response to ground vibrations together with estimation of the way of the ground
vibration transmissions to basements are indispensable.
Comparison of a huge number of records of vibrations induced by mining tremors (accelerations

and velocities) measured at the same time on the ground and on the building foundation level leads
to the conclusion that they differ significantly [9, 10]. Additionally, evaluation of mining tremors
transmissions to a building is very difficult. The influence of rockburst parameters as mining tremor
energy, epicentral distance and the direction of vibrations on the soil-structure interaction effect
can be observed. However, prediction of precise relation between ground and foundation records of
accelerations and velocities is not possible.
More precise estimation of the harmfulness of mine-induced vibrations to actual buildings can

be performed on the basis of building foundation vibrations. In view of the fact that in many
cases, for example in design procedure of new structures and in the dynamic analysis of existing
buildings, measured ground vibrations are the only accessible, prediction of foundation vibrations
is necessary.
Taking into account the difficulties in soil-structure interaction analysis in the case of vibrations

induced by mining tremors, the application of neural networks for prediction of building foundation
vibrations on the basis of ground vibrations taken from measurements is proposed.
Pre-processing (compression) of the ground vibrations obtained through experimental tests using

principal component analysis was carried out, and the influence of mining tremors parameters such
as mining tremor energy and epicentral distance on soil-structure interaction effect is also taken
into account.
In case of accelerations, the comparison of maximal values (amplitudes) of vibrations recorded at

the same time on the ground (agmax) and on the foundation (af max) level was the way to estimate
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vibrations transmission from the ground to the building. For this purpose ratio ra = af max/agmax

was computed.
The aim of the study is to apply neural networks for prediction of ratio ra on the basis of the

corresponding mining tremor parameters and compressed ground vibration record.
The following neural network input vector was proposed:

x(4×1) = {yag1, En, re, k}, (8)

where yag1 – record of ground acceleration vibrations compressed to the first principal component;
En – mining tremor energy; re – epicentral distance; k – parameter related to the direction of
vibrations, values k = 0.4 and k = 0.7 were assumed for the transverse direction (x) and longitudinal
direction (y), respectively.
The corresponding value of ratio ra = af max/agmax was expected as the output of the neural

network:

y(1×1) = {ra}. (9)

Analogous approach was proposed for velocities.
In case of accelerations, the neural network of structure 4 – 6 – 4 – 1 was adopted for practical

applications for the sake of the network “size” and good accuracy. Using this network leads to
the relative errors less than 30% in the case of 88% of all the patterns: SR(30%) = 88%. The
errors corresponding to this network training and testing processes are given in Table 4. In Fig. 7
a comparison of the results by neural network with the experimental ones is shown. In this figure
the bounds of relative errors ep = 30% are marked.

Table 4. Errors of training and testing processes for network 4 – 6 – 4 – 1.

MSE(L) MSE(T )
eV avr [%] r(V ) st ε(V )

L T L T L T

0.00350 0.00533 13.5 18.9 0.941 0.883 0.077 0.095

Fig. 7. Values of ratio ra obtained from measurements vs. values of ra computed by neural network
adopted.
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Very simple networks with maximal value (amplitude) of vibrations only instead of compressed
ground vibration record also give good results.
The third way of the analysis of soil-structure interaction is considered using acceleration and

displacement response spectra. The subpicture idea from picture transmission is also adapted for
mapping of response spectra from ground vibrations to response spectra from basement vibrations
of buildings.
In case of the analysis of the recorded vibrations in form of displacements, the following input

vector was proposed:

x(6×1) = {Sdg(Ti−2), Sdg(Ti−1), Sdg(Ti), Sdg(Ti+1), Sdg(Ti+2), Ti}, (10)

where Ti−2, Ti−1, Ti, Ti+1, Ti+2 – successive vibration periods; Sdg – displacement response spectrum
from ground vibrations.
The corresponding value of displacement response spectrum from the vibrations recorded on the

basement level of the building Sdf (Ti) was expected as the output of neural network:

y(1×1) = {Sdf (Ti)}. (11)

For the analysis of acceleration records, the input vector was proposed in a form analogous
to (10):

x(6×1) = {βg(Ti−2), βg(Ti−1), βg(Ti), βg(Ti+1), βg(Ti+2), Ti}, (12)

where Ti−2, Ti−1, Ti, Ti+1, Ti+2 – as in (10); βg – nondimensional acceleration spectrum from
ground vibrations.
Analogous to (11), the corresponding value of nondimensional acceleration spectrum from the

vibrations recorded on the basement level of building βf (Ti) was proposed as the output of that
neural network:

y(1×1) = {βf (Ti)}. (13)

In Fig. 8 an example of a comparison of nondimensional acceleration response spectra from
horizontal vibrations of the building basement, computed on the basis of recorded vibrations and
neurally predicted is shown.

Fig. 8. Comparison of nondimensional acceleration response spectra from horizontal vibrations of the
building basement computed on the basis of recorded vibrations and neurally predicted.

From the study of the difficulties in prognosis of differences between the ground and basement
vibrations it follows, from the results obtained, that the application of simple neural networks
enables us to predict building foundation vibrations with satisfactory accuracy. Thus, the effects of
transmission of ground vibrations to building foundation (soil-structure interaction) can be analysed
using neural networks.
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3.5. Simulation of building response to seismic-type excitation

Prediction of building responses to mine-induced excitations using neural networks was also pro-
posed [6, 12, 13, 15]. In the first case maximal displacement of the building highest floor vibrations
was evaluated and in the second case full displacement record in time domain was simulated. In
the input vector information about mine-induced excitation and dynamic building properties was
included, and the building response was used as the neural network output (Fig. 9).

Fig. 9. Scheme of a neural network for prediction of building response.

As an example, Fig. 10 shows a comparison of records of selected building vibrations, experi-
mentally obtained and neurally simulated.

Fig. 10. Comparison of records of selected building vibrations, experimentally obtained and neurally
simulated.

Neural networks can be efficiently used for evaluation of the dynamic response of a building from
the analysed class of buildings (medium-height buildings) subjected to kinematic excitations. The
main advantage of this approach is that the rich database of experimental results from full-scale
measurements can be made full use of, and information regarding building dynamic response can be
obtained without creating models of such complex structures as buildings and without an analysis
of adequate motion equations.

4. CONCLUSIONS

The obtained results lead to a conclusion that the neural technique gives a possibility of efficient
analysis, accurate enough for engineering, of structural dynamics problems related to mine-induced
excitations. Artificial neural networks seem to be a tool that is useful to the analysis of problems
with data taken from measurements on actual structures.
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