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An antiplane mixed boundary problem of electroelasticity for a hollow piezoelectric cylinder with an ar-
bitrary system of active surface electrodes exciting its oscillations is considered. The solution is carried
out on the basis of the approach developed in [4] for investigation of the oscillations of a solid piezoce-
ramic cylinder with a given system of active surface electrodes. Results of numerical realization of the
obtained algorithm characterizing amplitude-frequency features of the cylinder and also the behaviour of
electroelastic quantities in the cylinder area and on the boundary are given.

1. INTRODUCTION

Analysis of interaction of surface electrodes with piezoelectric material in the theory of piezoelectric
converters is of great importance, as the edges of the electrodes are sources of concentration of
electric and mechanic fields [5]. Criteria of electromechanic destroy of piezoelectrics initiated by the
edges of the electrodes are suggested in [1]. Problem of excitation of Rayleigh and Lamb waves by
the electrodes in a half-space and strip, respectively, are considered [2, 3]. Some static and dynamic
problems for a solid circular cylinder with electrodes are solved by the method of series in [7].

In the given paper the approach [4] based on the method of boundary integral equations for the
investigation of electroelastic fields in an infinite along the symmetry axis hollow piezoceramic cylin-
der, excited by a system of active surface electrodes is presented. It is assumed that the cross-section
of the cylinder is restricted by two smooth closed contours, that on the electrodes harmonically

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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changing with time electric potential differences are given and that the electrodeless areas of the
cylinder surfaces contact with vacuum (air). In these conditions in the cylinder the state of antiplane
deformation is realized. The resolution equation system of the boundary problem is reduced to two
differential Helmholtz and Laplace equations referring to the displacement amplitude and electric
potential. To solve the problem integral representations of the solutions, substitution of the limited
values of which into the boundary conditions being to a system of integrodifferential equations with
discontinuous kernels are built. A method of approximate numerical solution of the given equations
based on the method of quadratures [6] is suggested.

2. THE STATEMENT OF THE PROBLEM

Consider a related to the Cartesian coordinate system Oz;zaz3 infinite along the axis z3 hollow
piezoceramic cylinder, the cross-section of which is limited by two arbitrary smooth contours C1 and
C: (Fig. 1). On the free from mechanical forces outer and inner surfaces of the cylinder there are
located 2n; an 2n; infinitely long (in the direction of the axis z3) thin electrodes, respectively, with
preset electric potentials and the electrodeless areas of the cylinder are conjugated with vacuum
(air). The boundaries of k electrode located on the contour C,, (m = 1,2) are determined by the
quantities ag?l , and agc") (k=1,2n; if m = 1; k = 1,2n, if m = 2), and the electric potential is

given on it by the quantity ¢§Cm) = Re(@im)e‘i“t). It is assumed that the axis z3 coincides with the

direction of force lines of the electric fields of the preliminary polarization of the piezoceramics.
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Fig. 1

In the given conditions in the hollow cylinder with electrodes the state of anti-plane deforma-
tion [7] is realized. In quasistatic approximation the system of equations of antiplane boundary
problem of electroelasticity is reduced to two differential equations related to the displacement
u3 = Re(Use™t) and electric potential ¢ = Re(®e~t), [4],

62’u,3

ciyVius + e1s V3¢ = Pop

615V2U3 e 6‘191V2¢ =0. (1)

Here cﬁ : e‘fl , €15 and p are the shift modulus measured at a constant electric field, dielectric permit-
tivity, piezoceramic constant measured at constant deformation and material density, respectively.
From Eq. (1) there follow the relationships
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The mechanical and electric quantities may be expressed by the functions uz and F by the
formulas

: a
T13 — T3 = 2 5 [Cﬁ(l + k%g,)’ulg + 615F] :

oF
: s
Dy —iDy = —2e7y 57 (3)
Bi—iBy =22 (F+ %), 2= +is.
0z €D

In Eq. (3) 7; is the stress of a longitudinal shear, D; and Ej are the components of induction
vectors and electric field intensity.

The mechanical and electric boundary conditions on the surface of the cylinder allowing for
Egs. (2), (3) will be written in the following form,

(,%{cﬂ(l+k%5)u?,+el5F} =0 onC=CiUC,,

€ *

b=F+ B = 4(c,0), ey, @)
11

Dy = —&5; g—z =0 on C\Cy.

Here Cy is the part of the united contour C corresponding to the electroded surface of the cylinder;
the derivative along the normal to the contour C is designated by the differential operator 0/0n.

The previously written equalities (2) related to the amplitude quantities take following form,

Vs +12U; =0, VEF*=0, &=-2Us3+F, =

w

(5)

Thus, the stated problem is reduced to the determination of the function Uz and F* from the
differential equations (5) and boundary conditions (4). '

3. INTEGRODIFFERENTIAL EQUATIONS OF THE BOUNDARY PROBLEM OF
ELECTROELASTICITY

To reduce the stated problem to integral equations let us write down the representations of the
sought-for functions in the following form

s gk /C p(QHD (yr)ds + /C p2(CYHPD () ds

o) = | h(Qgtnrds+ [ FaC) ot ds (6)
"'ZIC_Zl, T*=|C*_Z|’ CGCIa C*€C2-

Here H,Sl)(:r) is the Hankel function of the first type of order v, ds is an element of the arc length
of the contour C.
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Substituting the limited values of the functions (7) at z — (o € C} and z — (} € C; calculated
by using Sohotsky-Plemelj formulas [4] for singular integrals, in the boundary conditions (4) we
come to the system of integrodifferential equations of the second type,

—2ip1(Co) +/c {P1(¢) 91(¢, ¢0) + £1(¢) 92(¢, Co) } ds
+/C {P2(C*)91(C*,CO) v fé(c*)g2(<*ac0)} ds = 0, CO = Cl )
2ipa(¢5) + /C {P1(0) 91(6, ) + F1(0) 92(6, D)} ds
4 /C {P2(¢) 01(C, ) + F5(C*) 92(C*,¢)} ds = 0, G ec,
7l'f1(<0) it /(; {pl(C) 93(4740) k fl(() g4(<v(0)} ds
+ /C {52(C) 5% o) + 2(C) 0a(C%5 o)} ds = B3(C), o € Chg,
—nf2G) + /C 1100 956, C3) + £1(0) 94(¢, ) ds

+ /C P2(C) 95(C* ) + F2(C) 0a(CHCD} ds = B3(ES), € Cing,

/ L4ah anCotiddons / FHC) g5(C% o) ds = 0, AT
Cl C2
F1(C) 95(¢, ¢3) ds + / £4(¢) 95(¢*, ¢ ds = 0, & € Co\Cag,
C1 Cy
where

e"/)O

&~

91(6,1) = = Re—— + yHi (7o) cos(fo — au)

92(&,m) = mgs(f,n), 93(&m) = :—EH(EI)WTO),
g 0 e
94(57))- ef— 95(5,77)— mé-_n,
21 . - / dfm
Hl(l‘):ﬂ_—;'f'Hfl)(IE), ryi= |€_77|a fm(() =Ff8—’

g = arg(§ - "7)7 o = T/J(ﬂ) ’ Y= 1/)(5) .

Here 9 is the angle between the normal to the contour C and the axis z;, ® ((o) are piecewise-
constant functions defining the values of the electric potential on the electrodes located on the outer
(m = 1) and inner (m = 2) surfaces of the cylinder.

Defining the functions pi(¢) and fm({) from the system (7) by formulas (3) using the repre-
sentations (6) it is possible to calculate all the components of the electrostatic field in the cylinder
area.

Let us determine the expression for the density amplitude of distribution of the electric charges
q,(cm) (B) on k-th electrode located on the contour Cp, (m = 1,2). Introducing the parametrization
of the contour Cp, with the help of the equality { = ¢(8), * = ¢*(8) (0 < B8 < 27) and taking into
account the fact that the cylinder is conjugated with vacuum we will write

@™ (B) =DmP@B), oM <B<al®  (m=1,2). ®)
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Here D,(lm‘k) (B) is an amplitude of the normal component of the vector of electric induction on
the corresponding electroded area of the contour C. Using the integral representations (6) for the
functions F*(z1,z2) and allowing for (4) and (8), we find

g™ i o il
60 = -eii{ [ 10 mi= as+ [ Ay mgE—ds},  ne. )
where Cpg, is a part of the contour Cp, on which k- th electrode is located

(m)

Integrating the expression (9) on the variable By in the limits from a2k m) , to agy;”, we obtain the
amplitude value of the summarized charge of k-th electrode located on the contour Cp, related to
its length. The current flowing through the given electrode may be determined by the formula

(M)

I,(cm)(t)'= Re{iwe_i“’t /( ir
a

2k-1

ds

B (10)

™ (Bo) 5'(Bo) dﬂo} ,  8(Bo) =

Equation (10) allows to find anti-resonance frequencies at which I, ,Em) () =0

4. NUMERICAL SOLUTION OF THE SYSTEM (7)

Let us consider one of the methods of numerical realization of the system (7). Let us build
the interpolating Lagrange polynomial for the sought-for functions p({) and f'(¢) in the nodes
B; =2m(j — 1)/N (j = 1,N). Such polynomial has the form [6]

Ly[p«(B o ij sm Ll ), cosec i 2_ 2 ,

Lnlfi 08 = 23 8 in (ﬂjz‘ 5) cosec =2 | 1)
j=1

J
p(¢) = p«(B), P?=P*(ﬁj), f(¢) = £«(B), f_;)zf::(ﬂj)

It must be mentioned here that the formulas (11) are valid for odd numbers of the node division of
the contour C.
Integration of the second formula (11) using the equation cited in [8],

/sm(2m+1) 35 _2Zsm2kz+$,

ST

brings to the following expression for the function f.(B),

Myl[f.(B)i8] = Z 179

(12)
sin k(S — sinkp;

+ 8.

M |

2;(B)

The constant A appearing here must be determined from the conditions of the periodicity of the
function f,(8) which due to Eq. (12) has the following form, :

N
Y =0 (13)
3=1
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Applying (12) we also find the quadrature formula

2m N n N
[ rece.s 6= DS} 3 U Glfm, 67)+ AT 52 Glfm, 47, (19
j= m= : m=

where Qi = (Bm). In the node collocations 8; = m(2¢ —1)/N (£ = 1, N), the polynomial (11)
has the following value at odd value of N,

N § ai gh
Lalpe (8 6] = 5 S P21 cosec LB (o= (15)
=1

For singular integral in (2.20) the formula analogous to the formula of calculating regular inte-
grals [6] appears,

L : eito i L o 0p %o (B;) ! iz

Now, substituting the integrals in Eq. (7) by finite sums of the formulas (14), (16) and using the
equalities (12), (13) and (15), we come to the system 4N + 2 of algebraic equations related to the
values of the functions p,(¢) and f},(¢) in the nodes of the interpolation B;j (j = 1,N) and the
constant Ay, (m = 1,2).

5. EXAMPLES

As an example let us consider a hollow cylinder (material — ceramics PZT-4 [7]), the cross-selection
of which is restricted by two circular contours ({ = Rje*, ¢* = Rye"f +a, B € [0,27]). The cylinder
is excited by four electrodes located in pairs on its outer and inner surfaces. Solution of the system
of integrodifferential equations (7) for this case was fulfilled numerically according to the above
indicated scheme.

In Fig. 2a amplitude-frequent characteristics for the quantities Q* = ’Q/ (6‘191‘1)&1)> character-

izing the summarized charge Q on the electrode (m = k = 1) are presented. The curves 1 and 2
are built for values a = 0, Ry/R; = 0.5 and 0.8, respectively. The potentials on the electrodes are
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written in the following form: <I>§1) = @g) =1V, q)gl) = <I>§2) = —1V. Location of the electrodes was
fixed by the quantities o{™ = 57/14, o{™ = 9r/14, o{™ = 197/14, o™ = 237/14 (m = 1,2).
The analogous results for the cases @gl) = <I>(12) =1V, <I>gl) = <I>§2) = —1V are presented in Fig. 2b.

From Fig. 2 it follows that with decrease of the parameter Ry /Ry there is observed the displace-

ment of the resonance frequencies to the right and in this case the displacement is increased with

increase of the number of resonance frequencies.

Investigation of the influence of electric loading on the distribution of mechanical fields in the
area of a hollow cylinder is of great interest. In Figs. 3a,b there are shown module level lines of the
amplitude of displacement correspondingly for the values yR; = 0.5, a(lm) = 5w /14, aém) = 97/14,
agm) = 197/14, a&m) = 237 /14 and a(lm) =%18 agm) = 5m/6, agm) =In]6, a((lm) SAPHS (s =

1,2). The values of the potentials were presented equal to @gl) = ¢§2) =1V, <I>g1) = (I)gz) =-1V.

Level lines of the quantity |Us| for the cases <I>(11) =-1V, <I>§2) = §¥; <I>g1) = A V5 <I>g2) = -5V
and <I>(11) = =5V, <I>§2) =1V <I>g1) =51V <I>g2) = —1V are represented in Figs. 4a,b. The design
variables were assumed to be equal to a(lm) =716, agm) = 57 /6, ozgm) =“Tr/8, aim) = 117/6
(m =92}, Ry"=3.

Fig. 4

Figures 5a,b illustrate the lines of the level |Us| in the area of an eccentric cylinder, respectively,

at yR; = 1 and 6 for the values of the potential <I>(11) =t @gZ) =3t @gl) &= <I>52) = —1V (location of
the electrodes corresponds to Fig. 4).
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Fig. 5

From the given results it follows that the distribution of displacement in the cylinder mostly
depends on the excitement frequency, dimensions and location of the electroded areas and also on
the differences of the electric potentials preset on them.

6. CONCLUSION

The presented results of the calculations allow to make a conclusion that the suggested approach is
efficient for solution of mixed boundary problems of electroelasticity for bodies excited by electrodes.

It is necessary to note that at numerical solution of the system of integrodifferential equations (7)
by the given scheme due to the fact that some of its kernels endure breakages and the “densities”
have singularities on the electrode edges. For this reason in order to reach satisfactory accuracy a
substantial number of interpolation nodes should be taken on the boundary cylinder contours, which
increases the processing time. Despite this fact the investigated approach attracts by its universality
permitting to study different variants of loading the cylinder without any principle complications
of the calculation algorithms.

The considered approach to the solution of mixed boundary problems of electroelasticity may
be applied for calculations of the characteristics of piezoelectric transforms of different geometric
forms under the electric loading with the help of multielectric systems. We must also note the
fundamental possibility of application of the method during calculations of piezoelectric voltage
generator in which under the influence of the mechanical loading there occur the direct conversion
of the mechanical energy into electric one.
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