R AL Do g Lo 4 e MR ALt Lk Rt o e et i O AL Pl

Computer Assisted Mechanics and Engineering Sciences, 9: 447-458, 2002.
Copyright © 2002 by Institute of Fundamental Technological Research, Polish Academy of Sciences

On thickness optimization of an unilaterally supported
anisotropic plate subjected to buckling’

Igor Bock
Dept. of Mathematics, Faculty of Electr. Engineering and Information Technology
Slovak University of Technology, 81219 Bratislava, Slovakia

Jan LoviSek
Dept. of Mechanics, Faculty of Civil Engineering
Slovak University of Technology, 81368 Bratislava, Slovakia

(Received Februay 9, 2001)

We shall be dealing with the eigenvalue optimization problem for an anisotropic plate. The plate is partly
unilaterally supported on its boundary and subjected to longitudinal forces causing its buckling. The state
problem has then the form of an eigenvalue variational inequality expressing the deflection of the plate
and the maximal possible value of the acting forces keeping its stability which corresponds to the first
eigenvalue. The demand of the maximal first eigenvalue with respect to variable thicknesses of the plate
means to solve the optimal design problem with eigenvalue variational inequality as the state problem. The
existence of a solution in the framework of the general theory will be examined. The necessary optimality
conditions will be derived. The convergence of the finite elements approximation will be verified.

1. INTRODUCTION

Optimal design of elastic structures involves also the problems connected with eigenfrequencies
or eigenvalues of constructions. The geometrical and mechanical characteristics play the role of
control variables. The maximization of the first eigenvalue can be expressed in the case of positively
definite operators as a max-min problem. The existence of an optimal parameter, the continuity and
differentiability properties for the linear eigenvalue problems in an operator form has been first time
dealt in [6]. These problems are closely related to the optimal design problems involving stability
constraints which have been considered in the monographies [3, 4]. The complete both numerical
and theoretical study of the optimization problem for columns against buckling has been performed
in [2]. We have dealt with the minimal eigenfrequency of the anisotropic plate with respect to
the thickness in [1]. The state problem was reformulated as the eigenvalue problem for the elliptic
equation of the 4-th order. We have derived the existence theorem for the optimal thickness. The
convergence of the finite elements scheme was verified.

We shall deal here with the plate unilaterally supported on the part of its boundary. If the
plate is acting under buckling the state problem is an eigenvalue variational inequality. The state
problems of that type were studied by several authors. Problems arose mainly in the study of the
bifurcation in variational inequalities depending on the real parameter. The existence of eigenvalues,
its characterization and comparing with the corresponding linear problems can be found in [11-14,
16]. The detailed study of the obstacle problems connected with eigenvalues and the bifurcation
can be found in [9]. The previous authors investigated mainly the theoretical questions connected

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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with the unilateral eigenvalue problem. We shall combine it with the question of maximization of
the first eigenvalue which can be expressed as the max-min problem.

We formulate and solve the state variational inequality in Section 2. Section 3 will be devoted to
a formulation and solving the optimization problem with the convex set of admissible thicknesses.
Necessary optimality conditions will be derived in Section 4 using the differentiability properties of
the functions defined as the maximum over the compact set in a similar way as in [15] for the case
of an eigenvalue equation. The finite elements solving will be investigated in Section 5.

2. EIGENVALUE VARIATIONAL INEQUALITIES

Let us assume a thin anisotropic plate of a variable thickness e(z), z = (1, z3) € Q, where Q is
a bounded region identified with the middle surface of the plate. The third order tensor of material
coefficients ajjxi , 4,7, k,1 € {1,2} is symmetric and positively definite i.e.

Qijkl = Qjikl = Qklij »

(1)
Qijkl TijTkl 2 Q TijTij (a>0) forall 7= (’Tu , T12, T21, To2) € ngm'

The summation convention through the indices {1, j, k,1} is considered.

We assume that the Lipschitz boundary 02 = I of the middle surface is divided into three parts:
I' =T UTLUT3, T;NT; = 0, i # 5, meas(T';) > 0, meas(I'3) > 0. The plate is clamped on I'; , simple
supported on I'; and unilaterally supported by zero on I'; . Further we assume that e € U = C(Q)
— the Banach space of all continuous functions on Q with a norm

llellv = max |e(z)].
TEN

If the plate is acting under longitudinal forces (buckling) with a proportion coefficients A(e) > 0,
then its deflection w(e) : 2 — R is a solution of the eigenvalue variational inequality

Ae) €R, w(e)e K, v#0:

/ﬂe3(:z:)aijkl g:ctua(;: 8221;;61:!(6) dz > A /ﬂ Vw- V(v —w)(z)dz for all v € K, @
where

K={veV: v>0 onTs},

V = {ve H}Q): vzg—:L:O onTy, v=0 onIy}.

H?(R) is the Sobolev space of functions with all generalized derivatives up to second order belonging
to the space L2(f2). Further we introduce the space

H={v:€H(Q): v=0 onT;UTy}.

H and V are Hilbert spaces with the scalar products

(u,v)1 =/Vu-V'vdz, u,v € H,

0%v
/ Z 8:17,3.'51 6:1:,8:1:] e R A

and the norms

lulli = (w,u)?, i=1,2.
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The Dirichlet boundary conditions on the part I'; of the boundary imply the equivalence of the
norms in H, V with the usual norms in Sobolev spaces H'(Q), H?(Q2).

The set of admissible deflections K is a closed convex cone with a vertex in 0 in the Hilbert
space V.

We proceed with the operator formulation of the eigenvalue inequality (2). Let us denote by V*
the dual Banach space of all linear bounded functionals L : V — R with a norm ||L||« and (L,v) =
L(v) the duality pairing between V and V*. We introduce the operators A(e) : V. — V*, B:V — V*
by the integral identities

&%u v
i 3 PO AN & G i et i e
(A(e)u,v) = /Qe (z)aijk B3y Bogd dz, wu,v€V,

(B(e)u,v) = / Vu - Vvdz, u,v € V.
Q

The problem (2) can then be expressed in a form

Me) € R, w(e) e K w(e) #0:
(A(e)w(e), v —w(e)) > A(e)((Bw(e), v — w(e))) for allv € K.

In the case of the set K = V we have the eigenvalue equality problem
Me) €R, w(e) eV, w(e)#0: A(e)w(e) = A(e)Bw(e),
or in the classical formulation

62 3 62“) b
e’(z) aijrl o +Ae)Aw =0 inQ,

a:l,‘iamj
ow
w=%=0 onTly, w=M(w)=0 only, M(w)=T(w)=0 onTj,

where M (w) and T'(w) are the bending moment and the effective shear force of the plate respectively.

The operators A(e), B : V — V* are linear continuous symmetric and positively definite, B is
moreover compact. It is well known from the spectral theory of the linear operators that there exists
the nondecreasing sequence of positive eigenvalues {A,(e)} and the corresponding eigenelements
{wn(e)} such that

-

and the eigenelements {wp(e)} form the total orthogonal system in the Hilbert space V. The first
(the least) eigenvalue solves the minimization problem

(A, v) _ (Aule), v(e) |
2T uer‘rll, v#0 (Bv, v) (Bw(e), w(e)) (4)

In the case of a closed convex cone K we formulate the minimization problem

. {A(e)v, v) _ (A(e)w(e), w(e))
)‘(e)_veg},lf;l;éﬁ (Bv,v)  (Buw(e), w(e)) “

The following theorem due to [11, 12] plays the crucial role in the analyzing of eigenvalue varia-
tional inequalities
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Theorem 1. For every e € U there exists a solution {\(e),w(e)} of the problem (5).

(1) The set of elements {w(e)} minimizing the functional in (5) has the form K(e) \ 0, where
K(e) C K is the closed convex cone with a vertex at zero.

(ii) A(e) is the least positive number with a nontrivial solution w(e) of a variational inequality

Ae) €eR, w(e)e K, w(e)#0:

(A(e)w(e) , v —w(e)) > Me)(Bw(e), v —w(e)) for all v € K. ®)
(iii) Following relations are equivalent with (6)

(A(e)w(e), v) > Ae)(Bw(e), v) for all v € V, (7)

(Ale)w(e) , w(e)) = A(e)(Bw(e), w(e)). (8)

The characterization of the value A(e)~! as the maximal value of the functional defined on the
whole cone K is suitable from the approximation point of view.

Theorem 2.

Mot =maxL(e,v),  Liew) = V2/(Br,o) - %(A(e)v,v). (9)

vE

The functional v —-) L( e v attams 1ts max1mum only on those eigenelements w(e) belonging to A(e)

for which \/(Bw(e

Proof . Applying the minimum property (5) we obtain for every v € K the inequalities

L(e,) < V2B, 9] - 2Ae)(B(e)v, )

“ —%)\(e) ((Bv v) = 2v2V/(Bv, v)A(e) )
__)\(e) (./Bu v) — V2X(e)~ ) +Ae)™t < Ae)™!

We have the equality L(e,w(e)) = A(e)™" for the eigenelements w(e) € K corresponding to A(e)
and fulfilling the relation

V(Bu(e), w(e)) =

3. OPTIMAL CONTROL PROBLEM

One of the basic control problems for eigenvalues is to determine the control parameters in such
a way that the first eigenvalue is maximal what corresponds to the minimal possible first eigen-
frequency of the construction. In the case of a state eigenvalue problem for a variational inequality
we are looking for a maximal value of a force causing the buckling of a construction in contact with
an obstacle.

We assume that the set of admissible thicknesses has the form

Uyg = {e e 00 1(Q) | 0 < emin < e(z) < emax for all z € O,

Oe

oz;

€, wranrelll YL Y /e(z)dmzC;;}.
Q
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We remember that C(:1(0) is the set of Lipschitz continuous functions on the set Q). The admissible
set U, is convex and compact in the Banach space U = C(Q2).
The operator A(e) : V — V* fulfils the lower and upper estimates

a1 |v]|2 < (A(e)v,v) < aallv]3 foralleeU, veV, a >0. (10)
Moreover it is continuous with respect to the thicknesses e € U i.e.

en e in U = A(en) = Ale) in L(V,V?), (11)
where £(V,V*) is the Banach space of all linear continuous operators mapping V' to V*. We
formulate now
Optimal Control Problem 1. To find e* € U,q such that

. (Ale)v,v)
* Y= X = -
e e Y

(12)
Using the method of compactness we obtain the following existence result.
Theorem 3. There exists a solution e* € Uyq of the Optimal Control Problem 1.

Proof. Applying the estimates (10) and the relation (6) we obtain the upper estimate

L (A, _  IolB

Ae) < (Bo.v) g Tk foralle e Uy, veK)\DO. (13)

Let {e,} be a maximizing sequence for A(e) on Usq:

lim A(en,) = sup A(e). (14)

Lt e€Uqq
There exists its convergent subsequence (again denoted by {e,}) with a limit element
e*€Uy:en — e inl. (15)
Let us denote
e (16)

wy, = w(ey), My = (B, )

a normalized solution of the state eigenvalue inequality corresponding to the thickness e,, n =
1,2,... We obtain from Eq. (8) the relation

Alen) = (Alen)un , un). (17)

The uniform coercivity of {A(e)} due to Eq. (10) implies the boundedness of the sequence {un}
in V. Then there exists its subsequence (again denoted by {u,}) and the element u € K \ 0 such
that

u, — u (weakly) in V, uy, — u (strongly) in H. (18)

The strong convergence in H is due to the compact imbedding H CC V. We have u # 0 as a
consequence of

(Bu,u) = lim (Bug,uy) = 1. (19)

n—o0

The functional

v — (A(e*)v,v)
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is weakly lower semicontinuous on V. The element u, minimizes the functional

(A(en)v,v)
(Bv,v)

over the set K \ 0, n =1,2,... The convergence (11), (15) and (18) then imply
(A(en)v,v) _ (A(e)v,v)

U=

(A(e*)u,u) < lim (A(en)un,us) < lim forallve K\0. (20)

n—00 nosoo  (Bv,v)  (Bu,v)
Using Egs. (19), (20) we have
A(e*) = (A(e*)u,u). (21)

It holds
(A(en)u,u)
(Bu,u)

Applying Egs. (14), (15), (17), (21) we arrive at
sup A(e) < A(e)

(A(en)un,un) <

ecUyq
and hence
A(e*) = ggg,z A(e)

what completes the proof.

4. NECESSARY OPTIMALITY CONDITIONS

In order to derive optimality conditions for the Optimal Control Problem 1 we formulate a theorem
of Zolesio [17] (see also [15]) on differentiability of a functional defined as an infimum over a compact
set.

Theorem 4. Let U be a Banach space, W a compact topological space and F(-,-) : U xW — R
a mapping fulfilling the assumptions

(i) F(-,-) is lower semicontinuous on U x W,
(ii) F(-,w) is continuous for every element w € W,
(iii) F(-,w) is Gateaux differentiable on U for every element w € W, i.e. there exists the limit

dF (e, w;6) = lim 77 il = F6.u)

such that the mapping dF(e,w;-) : U — R is linear and continuous for every pair (e,w) €
UxW,

(iv) convergence property:
For every sequence {e,} C U, {w,} C W, {€&,} C U such that

Flen: thal = wlg‘fv F(en;w),
en — e inU, wp, = w in W, €n =€ inU,
it follows

dF(ea w; é‘) S nll)ngo dF(en’ Wn; 6n)~ (22)
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Then the functional f : U — R defined by
f(e) = inf F(e,w) (23)
is Gateaux differentiable and for every £ € U

df(e;€) = inf{dF(e,w;§) |w e W, f(e) = F(e,w)}. (24)

In order to apply Theorem 4. to the max-min problem (12) we recall that the operator-function
A() : U = L(V, V*), is continuously Gateaux differentiable i.e. its Géateaux derivative fulfils the
assumption

e, = e in U = dA(en, ) = dA(e,-) in L(U,L(V, V™). (25)
The derivative has the form

(@Ae; o) =3 | e = cen i
€;5)u,v) = Qe z ) ikl 8.%8% a-’rka.'l/'l xZ, €, g Uy U .

The following lemma expresses the eigenvalues A(e) from (6) as minimizing the functional
F(e,v) = (A(e)v,v) (26)
over a weakly compact set W C V.

Lemma 1. There exists a weakly compact set W C V such that

Ae) = wléllf;v F(e,w) for every e € Uyq . (27)

Proof. Let e € U,y be arbitrary. We introduce the set

M(e) ={u€V | Xe) = Fleu), (Bu,u)=|uli=1} (28)
The set M(e) is nonempty due to Theorem 1. The assumption (10) implies the estimates

a1||v||% < F(e,v) foralle € Uy, vEV NS, (29)
where

Sy={veH]||vll, =1}
Let ug € K NSy . We have due to Egs. (10), (6), (8) the estimates
F(e,v) < F(e,up) < asl|ugl|3  for all v € M(e).
The inequality (29) then implies
lv]ls < r for all v € M(e) (30)

with

(0%) 2

2
r=|— ugll5 -
(oq) lluoll2

The relation (27) then holds with a weakly compact set W C V:
W={veKnS||vllzs<r}. (31)
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The next lemma describes the differentiability properties of the functional F from (26).

Lemma 2.
(i) The function F(-;w) : U — R is Gateaux differentiable in e € U for every w € W and
dF (e, w;€) = (dA(e; §)w, w). (32)

(ii) The functional dF(-,~-) : U x W x U — R fulfils the assumption (iv) of Theorem 4 with
respect to a weak topology in U x W x U.

Proof. The relation (32) is a consequence of the differentiability assumption (25). The assumption
F(en;wn) = infyew F(en,v) means

F(en;wn) = Men) = (Aen)wn , wy). (33)
Let

en — e in U, &n > €Ein U, wy, — w in W, Pley, ) = 1Jiélva F(en,v). (34)
The last relation is equivalent with the eigenvalue inequality

(A(en)wn , v — wn) > Aen)(Bwp , v —wy,) for allv € K. (35)
There exists the subsequence of {\(e,)} (again denoted by {\(e,)}) such that

Alen) = A™. (36)
Inserting v = w, in (36) we obtain

(A(en)(wn — w), wy — w) < Aen)(Bwp, wp — w) — (A(en)w, wy — w). (37)

The relations (36), (37), the properties of the operator family {A(e)} and the strong convergence
wn, = w in H imply the strong convergence also in the space V:

wp = w in V. (38)
Using the expression (32) and the assumption (25) we obtain

dF(e,w;&) = 1115{.10 dF(en,wn;&n) (39)
which is even the stronger result as (22) and the proof is complete.

Lemma 1 and Theorem 4 imply the necessary optimality condition in a form of a quasi-variational
inequality as expressed in the following theorem.

Theorem 5. Let e* be a solution of the Optimal Control Problem 1 over the convex and compact
set Upq C U. Then the necessary optimality condition has the form of the quasi-variational inequality

inf (dA(e*;e—e€*)v,v) <0 foralle€ Uy (40)
vEM(e*)
where
M(e*) ={ve K| Ae*) = (A(e*)v,v)), (Bv,v)=1}. (41)

Remark. Previous results can be generalized to the case of the Optimal Control Problem
- o . (A(e)v,v)
Y it pomittes # B Bl )
If the operator family {B(e)} C L(U,L(H,H?*)) is uniformly bounded, coercive and Gateaux
differentiable, then there exists a solution ey of the problem (42) and it fulfils the optimality condition

inf (dA(eo; e—ep)v,v) — (A(eo)dB(ep; e—ep)v,v) <0 for all e € Uy (43)
vEM (eo)

(42)

where

M) ={ve V] A= ZHRI -y =i, (44
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5. FINITE ELEMENTS APPROXIMATION
We suppose for simplicity the rectangular middle plane of the plate
Q= (0,a) x (0,b), a>0, b>0.
Let
Ty :={Ri;},  Rij =[(i = 1h1, ih] X [(j — Dha, jha], i=1,...,NM(h), (45)
§ = b txN(B2),

denote a partition of the middle surface Q into Nj(h;) Na(h) rectangles R;j. We define

h = 4/ hg1 +__h2§. We assume further that Tj is consistent with the partition of the boundary
90 = T UT, UTy, ie. the sets ', I'y, I's intersect only in the nodal points and the unilat-
erally supported part of the boundary can be written in the form

n(h)
I3 = U A 1A,
$=1

where Ajp, ..., Ap(n) also belong to the nodal points of the partition T}, .
We introduce the sets Q1 (R;;) and Q3(R;j) of bilinear and bicubic polynomials over the rectangle
R;;j . Further we set

Ul ={e€Uu| elr; € Qi(Rij) Vi=1,...,Ni(h1), j=1,...,Na(h2)},
Vi ={vevnC Q)| vlr; € Q3(Rij) Yi=1,...,Ni(h1), j=1,...,Na(h2)},
K= XNVg.
Let {\x(e), wn(e)} € R x [Kp \ 0] be a couple solving the finite dimensional minimization problem

e e (A(e)un(e) , un(e))
A veKp\0 (Bv,v) (Bup(e), up(e))

(46)

We formulate the approximate

Optimal Control Problem 2, . To find e} € de such that

An(e}) = max A\p(e) = max min M.

47
e€UM, ecUl, veKy\0  (Bv,v) )

In order to verify the main convergence we introduce a following lemma verified in [8] which expresses
the approximation properties of the convex sets {Kx}, {UY}, 0 <h < ho.

al

Lemma 3. For every v € K and e € Uyq there exist sets {vp}, vp € Kp, and {en}, en € de such
that for h — 0+

vp—v inV, (48)
en — e  in C(€) (uniformly on) Q. (49)

We formulate the theorem about the convergence of the finite elements method. We denote S the
unit sphere in the space H.

Theorem 6. For every h € (0, hg) with sufficiently small hy there exists a solution e}, € Uh, of the
Optimal Control Problem 2}, .
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If {e}}, h — 0+, is a sequence of solutions of the Problem 2, , then a subsequence {e}} of {e}}
exists such that for k — 0+

e e in C(Q) (uniformly on ), (50)
Ak(ex) = A(e*)  in R, (51)
wi(ex) = w(e*)  strongly in V, (52)

where e* € Uyq is a solution of the Optimal Control Problem 1 and a couple {\(e*),w(e*)} €
R x K N S solves the corresponding state eigenvalue problem

\e) = min (AE0)

min 72 = (Aleule), w(e)). (53)

Each subsequence {e}} of {e}}, which converges uniformly on ), has the properties (51), (52).

Proof. The existence of the approximate optimal thicknesses e} and the corresponding couples
{An(er), wn(er)} € Rx KpNS, is assured due to Theorem 3 with Kj, C V}, instead of K C V. The
sequence {ej } fulfils the assumptions of the Ascoli-Arzela theorem due to the uniform boundedness
of the derivatives. Then there exists its subsequence {e;} fulfilling the uniform convergence

e >e inC() fork—>0+. (54)

Further there exists the subsequence of {e;} (again denoted by {e;}) weakly star convergent in
W1°°(Q) which implies that e fulfils the bounds of partial derivatives from the admissible set Uy, .
All the other restrictions of the set Uy,q are also satisfied by due to the uniform convergence (54).
Let a couple {A(ep), w(ep)} € R x KNS, be a solution of the problem

_ . {Aleo)v,v)
A(eO)—vrenI?\l(') (Bv,v)

= (A(eo)w(eo) , w(eo))- (55)
If v e K\ 0, then there exists due to Lemma 3 the sequence {v;} fulfilling
v € K \0, v — v (strongly)inV fork = 0+. (56)
We have the inequalities

(A(e})vk, vi)
(Bug, vg)

The convergences (53), (56) imply
(A(e})vr, v6) _, (Aleo)v, v)

Ak(el) < k> 0. (57)

T B Tk 0+ (58)
Hence, the sequence {\x(ex)} is bounded and contains the convergent subsequence fulfilling
Ak(eg) = A* fork—0+. (59)
Let e € Uyg, wr € Ky, and & € U‘fd be sequences fulfilling
wr — w(eg) inV, & — ein C(Q). (60)

Their existence is due to the Lemma 3. Applying (53), (60) we arrive at the following relations

A(eo) = (A(eo)w(eo), w(eo)) = kg?+%f};_)

> lim sup(A(ef)wk(e}) , wk(e;))2 = limsup Ak (ef)

k—0+ k—0+
> lim sup A(€k) = lim sup(A(&x)w (k) , wi ()
k—0+ k—0+
= lim sup(A(e)wi (&) , wi(€k)) > (A(e)w(e), w(e)) = A(e) (61)

k—0+
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Hence ey = €*, Meg) = A(e*) = max.cp,, A(e) and the convergence (50) holds.
We proceed with verifying (51), (52). The inequalities (61) imply that the sequences {Mk(ex)}
and {wg(e})} are bounded in R and V respectively. We have for their subsequences the relations

ar= Hm Me(ek) = kl_i)r(§1+(A(e,*;)wk(e;), wi(€k))

= lim (A()wr(e}), wr(ed)) > (Al w")) = Xe), (62)

where w* € K N S is a weak limit in V of {wy(e;)}-
Further we have the relations

(A(ep)wk , wk)

X = lim (A(e")wi(ef) , wi(ef)) < lim = (A(e")w(e*) , w(e")) = Ae")-

k—0+ ~ k—>0+ (Bwg, wg)

Comparing with Eq. (62) we have \* = A(e*) and the convergence (51) holds. Simultaneously we
obtain

M= (A(e*)w*, w*) and w" =w(e*). (63)
It remains us to verify the strong convergence (52). We have the variational inequalities

(A(e")w(e*), v —w(e*)) > Ae*)(Bw(e*), v — w(e*)) for all v € K, (64)
(A(e})wi(e}) , v — wi(ef)) > M(ef)(Buwkl(er), v — wk(eg))  forallv € Kj. (65)
We set v := wg(e}) in Eq. (64) and v := wy in Eq. (65), where the sequence {wg} fulfils the
convergence (60). After adding the inequalities we obtain
([A(ef) — A(e")wk(ex) , wk — wk(ek))
+ (A" wr(e}) , we — w(e*)) + (Ale")[w(e”) — wi(er)], wk(ek) — w(e”))
> Me*) (Bw(e*), wi(ef) — w(e")) + M(e}) (Buwr(ek) , wk — wk(ek)) -

Using the coercivity of A(e*) we arrive at the estimate

on|wi(ef) — w(e)lI3 < ([Aler) — Ale™)wk(er) , we — wk(ek))
+ (A(e")wk(ef) , wi — w(e))

+A(e") (Bw(e™) , w(e”) — wi(ef))

+ Mg (ex) (Bwi(er) , wi(ef) — wrwk(ek))

and the strong convergence (52) follows after considering (54), (59), (60) and the strong convergence
of {wk(e;)} in H.

It results from the course of the whole proof that each subsequence {e}} of {e}} converging
uniformly on € fulfils the convergence (51), (52).

Remark. The numerical algorithm of the above problem deserves an individual study. A lot of
problems arise due to nonconvexity and nondifferentiability of the state eigenvalue variational in-
equality. In order to overcome these problems it is inevitable to transform the max-min to the
min-max problem using Theorem 1 and the bundle method due to Lemaréchal [7, 10], see also [5]
(Appendix) and references therein.
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