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This paper presents a simple method for evaluating the threshold value for fatigue cracks that emanate
from a V-notch. The proposed method is based on the similarities between the elastic-stress fields around
the tip of a crack and the tip of a V-notch. Threshold values for fatigue cracks that emanate from a V-
notch are expressed by means of the threshold value for the propagation of a high-cycle-fatigue crack and
the opening angle of the V-notch. The corresponding calculations were performed by the finite-element
method.

1. INTRODUCTION

Fatigue cracks usually start at some form of geometrical discontinuity such as a notch, for example.
Sharp or V-notches (i.e., notches with their root radius equal to zero) can be described as singular
stress concentrators. Near the tip of a sharp notch there are high stresses and strains that may cause
failure of the structure. The V-notch (see Fig. 1) and sharp-crack models are really dealing with the
same problem from the point of view of continuum mechanics, namely that both are represented by
the singular-stress field in the vicinity of the tip. In both cases, the stress distribution at the tip is
of the form

H
Oij = \/_2—-7;T_pfij("9aa)’ (1)

(t,9)

20

Fig. 1. V-notch with open angle 2a and corresponding coordinate system

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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where 0 < p = p(a) < 1/2 is the value of the stress singularity exponent, H is a generalized
(notch) stress intensity factor, r is the distance from the notch tip with an opening angle of 2c and
fij(9, @) is a known function of the polar angle ¥, see Fig. 1. Note that for cracks (where 20 = 0),
p =1/2 and H = K, the stress intensity factor. The fact that the stress-singularity exponent for
a notch is, in general, no longer 1/2 means that linear-elastic-fracture-mechanics arguments cannot
be applied in this case. On the other hand, if the failure mechanism is the same in both cases, it is
possible to formulate a unifying theoretical model that describes the behavior of both cracks and
notches [4, 8, 11].

This paper is concerned with prediction of the behavior of a notched body under cyclic loading.
The aim of the contribution is to describe a method for evaluating the threshold value AH, for
cracks that emanate from V-notches. Knowing the value of AH;, makes it possible to estimate the
fatigue limit, or high-cycle endurance limit, Ao, for the notched body. A necessary step in this
process is estimation of the value of the generalized stress intensity factor H. Contrary to the known
routines for estimating the stress intensity factor K, see, e.g. [6, 9], procedures for calculating the
H value are not generally available. In this paper a direct method for estimating H is applied and its
accuracy is discussed. The corresponding numerical calculations are performed by the finite-element
system ANSYS [2]. The results of the paper contribute to a connection between the analysis of notch
and the fracture mechanics of fatigue cracks.

2. SINGULAR STRESS FIELD DUE TO A SHARP NOTCH

In the following Section, the solution for the stress distribution around a V-notch tip for normal
mode I is presented i.e., H = Hp, p = pr, etc. The problem of a V-notch in homogeneous material
has been treated by a number of authors using various methods (see e.g. [3, 5, 12]). In the present
paper, the results based on the solution of the Airy stress function [12] are used. Only singular stress
terms are used for further considerations.

With reference to plane problem and V-notch with stress-free surfaces, the analytical expressions
for the distributions of singular stress and strain are well known [12].

Let us consider a polar coordinate system (r, ¥) with its origin at the notch tip. The notch is
a V-notch with an opening angle of 2a (Fig. 1).

The Airy stress function ®(r, ) is a bi-harmonic function, i.e., it must satisfy the equation

AAD = 0. 2)

The solution for normal (I) loading can be expressed in the form (only singular terms are taken
into account)

Hi
V2

where pr(c) represents the stress singularity exponent (the power of the singularity) corresponding
to the normal (mode I) type of loading, with 0 < p; < 1.

Note that for a given set of boundary conditions (stress-free surfaces) the value of p; depends
only on the V-notch opening angle 2a.

The variable H is generalized (notch) stress intensity factor for mode I. The basic equations for
shear loading mode II can be formulated in the same way.

The values of H cannot be determined by asymptotic analytical analysis and must be estimated
using the corresponding solution for the whole body containing the notch under the given boundary
conditions. Generally, such a solution can only be obtained numerically and the values of Hj can
then be evaluated using the distributions of stress and strain.

In the present paper the value of the generalized stress intensity factor Hy for a notch is defined
in such a way that for o = 0 (i.e. for a crack) H; = Ki where Kj is the corresponding value of the
stress intensity factor. Let us note that in the case of a crack p; = 1/2.

?; (7‘7 '0) = rz_mfl(ﬂ)7 (3)
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Inserting Eq. (3) into biharmonic Eq. (2) leads to an ordinary differential equation for functions

fI(a)a
" +2(0} — 2o+ 2)f{' + P12 - 1)’ f1 = 0, (4)

where prime denotes differentiation with respect to 9. Such a linear equation with constant coef-
ficients can be solved by using trigonometric functions. The symmetry of loading mode I permits
only cosines, while mode II is described by sines. Then we have

fi(9) = cos(p1?) + g1 cos(2 — pr)?, (5)
The stress components in polar coordinates are given by

. 109 1 0%® L 8%y : 0 (109
= or TR WS gEo T <;8_19)' (©)
From the boundary conditions on the stress-free surfaces of the notch:
ohe(9 =T — a) = 0gy(¥ = T+a) = oly(9 = m—a) = oly(9 = m+a) =0, (7)

and it follows for parameter py that
sin(2(1 — pr)(m — @)) + (1 — pr) sin(2(r — a)) =0 (8)
and for constant qp

q1 = — cos(pr(m — @))/ cos((2 — p1)(7 — @)). 9)

The singular stress distribution for a V-notch is then given by the value of the generalized
stress intensity factor Hy, obtained by numerical solution, and by the value of the stress singularity
parameter py, obtained from Eq. (8). The values of p; and ¢ are given in Table 1 as functions of
the notch opening angle 2a.

Table 1. Stress singularity exponents pr (Eq.(8)) and constants g1 (Eq. (9)); fu(a) is the area of the plastic
zone calculated for H; = 1 MPamP®! and oo = 1 MPa; PSS holds for plane stress, PSN corresponds to plane
strain and the normal mode of loading; the notch opening angle is 2c

aldeg] alrad] | pr qr fv (PSS) fu (PSN)
0 0 0.500 0.333 | 0.076468977 0.022324465
5 0.08727 | 0.500 0.336 | 0.076979034 0.022633185
10 0.17453 | 0.500 0.343 | 0.078344314 0.023462321
15 0.2618 | 0.499 0.356 | 0.081147045 0.025018965
20 0.34907 | 0.497 0.373 | 0.085186096 0.027173062
25 0.43633 | 0.493 0.395 | 0.091188151 0.030175621
30 0.5236 | 0.488 0.423 | 0.099785331 0.03454016
35 0.61087 | 0.480 0.457 | 0.112477625 0.040699476
40 0.69813 | 0.470 0.497 | 0.130752059 0.049564114
45 0.7854 | 0.456 0.543 | 0.158449898 0.062555865
50 0.87266 | 0.437 0.595 | 0.202486062 0.082462822
55 0.95993 | 0.414 0.653 | 0.274975668 0.11471773
60 1.0472 | 0.384 0.714 | 0.40501909  0.169239885
65 1.13446 | 0.348 0.778 | 0.664531262 0.272187672
70 1.22173 | 0.303 0.841 | 1.295726446 0.497024168
75 1.309 0.248 0.901 | 3.475121019 1.155219552
80 1.39626 | 0.181 0.951 | 19.37601587 4.617728837
85 1.48353 | 0.100 0.986 | 1793.845975 150.2210756
90 1.5708 | 0.000 1.000
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3. DISTRIBUTION OF STRESS AT THE TIP OF A V-NOTCH

The singular stress components for mode I can be derived from Egs. (3), (5) and (6). The stress

components afj for mode I are then given by the following expressions

Hy
Uir = \/i;r_rpl [(2 var § | p12) COS(pI’ﬂ) = q1(2 —3p1 +p%) COS((2 oy p1)19)] )

L 5
099 =

H
\/5—7:7'1’1 [(2 = 3p1 + pt) cos(pr¥) + qi(2 = 3p1 + pf) cos((2 — pr)¥)]
H ) :
oty = \/2_7:74,1 [p1(1 — p1) sin(p19) + qi(2 — 3pr + pf) sin((2 — p1)9)] ,

— J/@rm

(10)

cos(pr¥d)(p1 — 1)  for plane strain.

4. THEORETICAL MODEL FOR ESTIMATING THE THRESHOLD VALUE

In the following it is supposed that any cyclic stresses applied to a structure are so small that the
plastic zone ahead of the fatigue crack or the notch tip is a minor perturbation in an otherwise
elastic field, i.e., the assumptions of linear elastic fracture mechanics and high cycle fatigue are
valid. For simplicity we limit our considerations to zero-tension loading (the minimum applied load
value omin = 0 and AKy = K7, AH; = Hj).

The expression for the fatigue crack growth rate da/dN is based on the stress intensity factor
range AK = Kpax— Kmin , where K,y and Kpin are the extreme values of the K-factor in the stress
cycle. Note that all variables are related to the normal mode of loading, i.e. K = K] etc. In the case
of zero-tension loading Kpyin = 0 and AK = Kpayx . In the region of very small crack propagation
rates the existence of the threshold value of the stress intensity factor range AKj, = Ky, has to be
taken into account. The value of Ky, implies that fatigue cracks will not grow if

i.e. da/dN — 0 as (Kmax — Kin) — 0. Note that the value of Ky, is a material constant.

The models for thresholds based on the assumptions of continuum mechanics relate to critical
values of the energy, the crack-tip displacement, the plastic-zone size, the plastic strain, etc, see
e.g. [7, 10]. In the case of a V-notch the stress singularity differs from 1/2 and the controlling
variable for the initiation of a fatigue crack at the notch tip can be expressed by means of the
generalized stress intensity factor H.

In the present paper it is suggested that the controlling variable for the initiation of a fatigue
crack relates to the size of the plastic zone. The threshold value of the V-notch is then calculated
using the equality of the areas of the plastic zones in the cases of cracks and V-notches.

In the case of a crack, the purely elastic estimates of the elastic-plastic boundaries for small-scale
yielding for plane stress are given by the Mises yield condition, and the area of the plastic zone
corresponding to the threshold loading is (e.g. [1])

K \* 123

i B ( oo ) 5127 o
where Ky, the is corresponding value of the threshold value, and oy is the yield stress of the material
under consideration.

Analogously, the formula for the area of the plastic zone near the tip of the V-notch can be
written in the following way,

By = (%)%fv(a), (13)

00
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where f, can be calculated by means of the Mises yield condition, see Table 1. Due to the same
fracture mechanism the size of the plastic zones for the crack and the notch are the same. Comparing
of Egs. (12) and (13), we get the expression for the threshold value for crack initiation at the notch
tip, Hip , in the form

Hy = K04 (222037, (19

In a similar way the relation between Hy, and Ky can be derived by means of the equality of
the dimensions 7,(9 = 0) of the elastic-plastic boundary ahead of the crack and the notch tip.
The condition of notch stability can then be expressed in the form

< ch(Ktha a)' (15)

If condition (15) holds, a fatigue crack at the notch tip is not initiated. The Hy, value corresponds
to the threshold value of Hj for a crack that emanates from a V-notch. In order to make it consistent
with the fracture mechanics of cracks it can be called the generalized (notch) threshold value.

Calculation of the threshold value for the initiation of a crack at the notch tip based on condi-
tion (15) requires a procedure for estimating the generalized stress intensity factor Hy. This problem
is solved in the next Section.

5. NUMERICAL ESTIMATION OF GENERALIZED STRESS INTENSITY FACTOR

Procedures for calculating the Hj value are not generally available. In the following, a procedure
based on a direct method of estimating Hj is presented and discussed.

Direct methods, see e.g. [6, 9], are based on comparison of the numerical results with an analytical
representation of the corresponding variables. This method can be used for 2D and 3D structures.
The advantage of the method is that it utilizes standard numerical procedures (i.e., the standard
finite element procedure) and thus can be used in conjunction with conventional numerical systems.
The disadvantage of the method is that the accuracy of the results is relatively low and depends on
the numerical model used (e.g., on the size of the mesh in the case of finite element methods).

In this paper the stress components oi; (Egs. (10)) are used and compared.

In order to apply a direct method the stress distribution near the notch tip must be known. In
the following, the FEM system ANSYS [2] was used for the numerical calculation of stresses. The
V-notched body was modelled by using a half-notch model with symmetric boundary conditions
(Fig. 2). The details of the finite-element mesh are shown in Fig. 3. Note the relatively highly refined
mesh near the notch tip.

The values of Hj can be calculated by using the stresses in the near vicinity of the notch tip. For
example if the stress component oy is used, it follows from Eq. (10) that

Hi = 099V 2mrP! /[(2 — 3p1 + p?) cos(pr9) + qi(2 — 3pr +p¥) cos((2 — p1)19)] ’ (16)

Similar relations can be found for other stress components or for displacements.

Substituting the numerically calculated value of the stress oy (r,9) and the corresponding val-
ues of pr and g known from the analytical solution (see Table 1) into Eq. (16), we obtain the
corresponding value of Hj.

Note that estimating the value of Hj by using the stress at nodal points too close to the notch tip
can give poor results because the conventional elements do not adequately represent the singularity
conditions at the notch tip. On the other hand, calculations based on the stresses at nodal points
distant from the notch tip give poor estimates because the stresses equation (10) for the notch tip
are accurate only for the limit as r — 0. Analogous to the corresponding problem of estimating K
for a crack, a good estimate of the value of Hy can be obtained from the H; = Hi(r) by extrapolating
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Gappl.

Fig. 2. The finite-element mesh for the V-notch (half model)

Fig. 3. Details of the finite-element mesh in the vicinity of the V-notch
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Fig. 4. Estimates of Hi by extrapolation for V-notch opening angles 2a = 20°, 120° and 160°

the straight portion of the curve to the notch tip, i.e. to the point r = 0, as shown in Fig. 4. The
Hy = Hi(r) have been calculated according to Eq. (16) for different angles of the notch opening and
different mesh refinements. A great number of numerical simulations with different mesh refinements
have been performed in the framework of this paper. The degree of the mesh refinement has been
expressed by the ratio of the size L of the smallest triangular elements at the V-notch tip and
the notch depth a (Fig. 3). The ratio L/a has been varied in the interval 0.03 < L/a < 0.2, the
corresponding meshes have been generated, and the numerical calculations have been performed.

It can be concluded from the results of the numerical simulations performed that a refinement of
the finite-element mesh which gives correct values of the stress intensity factor K is also suitable
for estimating the values of Hy. Thus for a body with a given geometry and a notch, a finite element
mesh is first generated where in the notch is replaced by a crack with a length corresponding to the
depth of the notch. Then the K value of the cracked body is estimated by the direct method. The
error in the value of Hj calculated for the same geometry with the same mesh refinement is then
the same as the error for the Ky value.

Another method of computing the generalized stress intensity factor Hj is based on determination
of the size of plastic zone. Plastic zone size in the assumed direction of propagation of the crack
from the V-notch tip r,(9=0) is used to describe the plastic zone as shown in Fig. 5. Hy can then
be written in the form

2T

HI = 0()’!';;I T (17)

where oy is the yield stress, and ¢ is given by the following expressions,
#(PSS) = (p1 — 1)2(3p? + 3pfaf + 6piqr — 12q7pr — 12qmp1 + 1247 +4)
(for plane stress)
#(PSN) = (p1 — 1)?(3p} + 3pfaf + 6pfar — 12qipr — 12qpr + 12¢f + 4+ 16v° — 16v)
(for plane strain).

Similarly, using the area of the plastic zone we get
P

Hy = (%) % (18)
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Fig. 5. The plastic zone at a deformed V-notch tip (half model, ANSYS)
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Fig. 6. The dependence of the generalized stress intensity factor on the opening angle of the V-notch

where R, is the area of the plastic zone and f, is normalized area of the plastic zone. Values of f,
for 5° increments of angle are shown in Table 1. This procedure for estimating Hp is again based on
a direct method. Instead of Eq. (16) the expression for the Mises equivalent stress is used and the
calculations are performed for the elastic—plastic boundary

The dependence of the generalized stress intensity factor Hj(2a) as estimated by extrapolation
(Eq. (18)) and as calculated using the area of the plastic zone (Eq. (17)) on the opening angle of
the V-notch is shown in Fig. 6. The value of the applied stress o,pp = 100 MPa, while a = 10 mm,
w = 50 mm, and A = 125 mm.
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The results of the previous Section are used here to estimate the fatigue limit (the high-cycle
endurance limit) Aocit = Orit for a notched specimen. Note that if the value of the applied stress
is such that o,ppl < 0Ocrit @ crack will not be initiated at the notch tip.

The threshold value of the generalized stress intensity factor Hy, must first be estimated. Based
on the considerations discussed in Section 4, the threshold value Hyy, for a crack that is initiated at
the tip of a V-notch can alternatively be derived from the elastic-plastic boundary ahead of the tip
rp(9=0). It holds for the case of plane stress that

2p _(1-2p)
K og

Hin(rp) = T = (19)
t(pss) (2m)P~2
and for the case of plane strain
K207 (1 + 402 — dv
ch("'p) o th 0% ( = ) )
t{psN) (2w)P~2
From the area of the plastic zone R, we get
2
_ =0) 2
Hun(R,) = K2Po{ ™) <———f e ) . 20
w(By) = Kol ™™ (25 (20)
In Egs. (19), (20), Kty is the threshold value of the stress intensity factor.
Then the critical stresses ot are computed from the condition
C"cri':III(O'a.ppl) = Ua.pp]ch . (21)

Note that the case 2a = 0 corresponds to a crack. The computed values of the critical stresses
erit for the notched specimen (see Fig. 2 where a = 10 mm, w = 50 mm, and h = 125 mm) based on
different approaches are presented in Fig. 7. The calculation was performed for Kip = 50 MPa-m!/2
and an approximation of the plane stress. The corresponding values of Hj are taken from Fig. 6,
where o,pp1 = 100 MPa.
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Fig. 7. The dependence of the critical stresses on the opening angle of the V-notch
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6. CONCLUSIONS

In this paper a simple procedure for evaluating the threshold value Hyy, for the propagation of
a fatigue crack that starts at a V-notch is suggested. The fatigue limit oyt of the notched body can
then be estimated by means of the threshold value Hyy, of the generalized stress intensity factor Hj .
In order to apply the procedure it is necessary to estimate of the value of Hy numerically for the given
structure and boundary conditions. One of the most general and effective methods of estimating
the Hp value, suggested and tested in this paper, is based on a direct comparison between the
analytical solution and numerically obtained values of the stresses. This direct method can be used
in connection with standard finite elements, but it needs a relatively highly refined finite element
mesh. A recommended procedure for refining the mesh near the tip of a notch was obtained, see
Section 5. Based on the considerations discussed in the paper, the value of the fatigue limit for
a notched specimen was obtained. The suggested procedure is generally valid and can easily be
adapted to mixed modes of loading.
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