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The paper deals with the problem of material identification for smooth muscle tissue in activated, or
passive states. In [17] a composite type mathematical model has been proposed describing the complexity
of the tissue reduced to the networks of muscle and collagen fibres. The computational model is based
on the total Lagrangian formulation with incompressibility of the bulk material. The problem of inflating
vessels is considered in order to allow simulation of real experimental conditions and, thus, to determine
constitutive parameters of muscle in active state. These parameters are identified also from hysteresis, or
relaxation curves. The direct differentiation, or the adjoint systems techniques are applied to the sensitivity
analysis. Results of numerical tests are given.

1. INTRODUCTION

Mathematical modelling of soft tissues belongs to the most complicated areas of the contemporary
computational mechanics. There are several aspects that make the problem difficult. One of the
main obstacles is the complex microstructure of soft tissues comprising entangled networks of fibrous
components embedded in an amorphous phase, that can be characterized as a fluid with a very high
viscosity. Usually, the tissue is subjected to large deformation so that, due to fibre reorientation
and various interactions performing between the micro-components, the macroscopic properties of
the tissue may change completely. In the case of muscle tissues the phenomenon of contraction and
of the tonus generated dominates and brings another problem, as its properties strongly depend on
the level of activation.

For developing macromodels of soft tissues an approach, which is based to a certain extent on the
phenomenological theory of mixtures, is being used frequently, cf. [11, 17, 21, 22]. These models are
defined in terms of constants, or parameters, which must be identified using experimental results
obtained for a macroscopic specimen of the tissue. We note that related problems were studied in [14]
for the Fung’s uniaxial viscoelasticity model and by Humprey in [8] for a bi-axial test. Nowadays
it is possible to get some experimental data describing behaviour of single micro-components (e.g.
cells). However, such data can hardly be used to “calibrate” a macromodel, which does not reflect
precisely how the micro-components are assembled in the structure.

This paper presents an approach to the material identification, which is based on optimization
methods. We are concerned with the model of smooth muscle introduced in [17, 18], which treats the
tissue in terms of the three constituents: the matrix, the passive fibres and the active fibres. In Sec-
tions 2-4 the constitutive laws for all of them are introduced. The problem of material identification
is established in Section 6; the sensitivity analysis based alternatively on the direct differentiation,
or the adjoint system methods is described in Section 7. In Section 5 mathematical modelling of
inflated vessels is discussed. We formulate the problem for a deformable vessel interacting with

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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an incompressible fluid. A quasi-static case is considered, when the inertia forces are neglected. The
inflation problem is proposed to simulate experiments in conditions that are very close to physio-
logical ones. Due to simplicity of the mathematical formulation it can be used for the identification.
In Section 8 numerical examples including standard hysteresis and relaxation tests, as well as the
inflation test are introduced for two cases: the identification of passive properties and identification
of active properties.

2. COMPOSITE MODEL

We shall consider the material composed of three basic components: the active fibres representing
bundles of smooth muscle cells, the passive fibres representing collagen and elastin fibres and the
matriz which corresponds to the amorphous extracellular substance. These components are supposed
to occupy an infinitesimal volume according to the volume fractions denoted by ¢®, ¢/ and ¢™
respectively, so that

¢m+ ¢+t =1 (1)

In contrast to the theory of mixtures, both the fibrous phases are coupled kinematically with the
matrix and, thus, cannot move separately. It is generally accepted that most of soft tissues, including
smooth muscles, are incompressible. For treating the genuine incompressibility we use a mixed
formulation in which the primary variables are displacements u = (u; , ug, u3) and the pressure p.
In the sequel we use the standard notation: J = det(Fj;) is the Jacobian of the deformation gradient
F and Cjj = Fy;Fy;j is the right Cauchy-Green deformation tensor.

In this paper we assume that the matrix, substituting the extracellular substance, is elastic. This
simplification can be justified in the case of elastic arteries, that contain a large amount of elastin
in the form of complex networks. On the other hand we shall consider only small contribution of
the matrix to the mechanical behaviour of the tissue. A more sophisticated model (visco-elastic) is
left for another opportunity.

In order to describe behaviour of the matrix we employ the neo-Hookean hyperelastic material,
cf. [4], which is a special case of the Mooney-Rivlin model; the strain energy defined as W™ =
u(J ~2/3Cyy — 3) is differentiated w.r.t. Green-Lagrange strain Ej; to get

- O
42 OE;;

1
=uJ (5ij — §Ckk0i}1> : (2)

where p is the shear modulus.
Including the effect of fibrous components, for the total second Piola-Kirchhoff stress in the
composite we have

Sij = —JC7'p+ ST + ¢/ ) + ¢*r3 (3)

where Tif~ comprises tension in the passive fibres and 'Tiaj represents a tension produced by activated
smooth muscle cells. Before we focus on describing behaviour of both the passive fibres and the
active fibres we need to explain how these fibrous phases are incorporated in the model.

At any point of the material the fibres, both active and passive, are distributed in several prefer-
ential directions; the k-th one is defined by unit vector /¥ = (1/{c : Véc : V:If) related to the undeformed
configuration. As the preferential directions of the active and passive fibres are independent in gen-
eral, we consider index sets I* and I/, so that k € I* UI/. A quantity of fibres aligned with v*
is proportional to the volume fraction ¢, where obviously 2 RETS #F =1 for n = a, f. Using the
tensor

wz’-cj = z/fuf (4)
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we can now express the tension stresses 7% and 7' through

ij

=3 dhmuly, =) djriul;. (5)

ker® kelf

Above 7F and 'r}‘ are tensions which will be defined in the following text.

3. PASSIVE FIBRES

The passive connective tissue comprises elastin and collagen fibres which both exhibit the quasi-
elastic, or viscoelastic behaviour. In our model we approximate them using the uniaxial Kelvin
(3-parametric) model of viscoelasticity with the discrete relaxation spectrum (i.e. structural damping
sensitive to frequency of loading), see e.g. Section 7.6 of [5]. The wviscoelastic stress 7k (associated
with the k-th preferential d1rect10n) is a function of the (nonlinear) elastic response o* and the
internal stress-like variable ¢*, such that

*=gF gt
1

sk, ot eIl Tk

q+TEq TEO.’

where 7, is the relaxation time, v is the relaxation parameter and ( ) denotes the time derivative.
In [20], Chap 10, the above model is called the generalized relazation model In the thermodynamic
equilibrium ¢* = 0, see e.g. [3] for topics of the dissipation. Eliminating q* we arrive at the following
differential equation

dr* do
i1 y it

T + = (1-7) [0 + dt] (6)
where T, is the creep time, T, = T/(1 — 7). From (6) one can obtain explicit (inverse) formula for
ok (1),

k soof . d
ok(t) = —— ()~ [ exp{-B(t-9)} £T*(s)ds), ¢
= to S

where 8 = (1 —v)/Te = (T,) .

We shall now introduce the projection of the Green-Lagrange strain, E;; = E;j(u),

e (t) = Eij(ul(t)) wfy, (8)

which expresses deformation of ﬁbres aligned with the direction v*. The elastic response is given
always by instantaneous strain e k(t). To capture the typical progressive stiffening of connective
fibres, it is natural to use an exponential law for the definition of the elastic response, see [5],

oF(t) = Dexp{n(ek(t) - Eﬁ)} —0g. 9)

In Eq. (9) D, x and o are positive constants and & is the so called relative slack length of the k-th
fibre.

In the literature the collagen fibres are reported to be tangled in helical bundles when the tissue
is undeformed. As a consequence these fibres can transmit tension only after their straightening,
while in compression they cannot transmit any load. This behaviour results in the fact that the
bulk stiffness of the composite material increases as the stretch progresses. In [17] the following
assumptions were considered:
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1. compression of the composite material in the “direction” of the fibres does not affect the bulk
behaviour; the same holds for a fibre which is unloaded;

2. in the context of the assumed viscoelasticity of the fibres, the deformation of a released (unloaded)
fibre can develop independently of that of the bulk material (matrix).

These properties of the fibre-structure interaction can be described mathematically using comple-
mentarity relations

ef(t) > € (t) - &,
™*(t) >0, (10)
TH(t) - (}(2) — €"(2) + &) = 0,

where 'r}‘ and 6’; denote the tension and the strain of the k-th fibre, respectively.

To summarize, we note, that Egs. (6), (9) and (10) constitute an implicit relation between €*
and 7F which is imposed at any time t. As a further step we consider a time discretization employed
throughout the next paper. Let [to,T] = UpZ[tn, tnt1] where t,11 = t, + At. A quantity y(t) is
approximated at ¢, by y(™. In the rest of this Section for brevity we drop the superscript k associated
with the preferential directions. Using the trapezoidal rule to discretize in time the convolution of
Eq. (7) and recalling Egs. (8) and (9), we obtain a general recursive formula for 7: Given the history
parameter h(™, see Eq. (13), we first compute the trial tension 71

F(n+1) _ l [(1 — ) O'(Q(""H)) +7 (exp{—ﬁAt} R _ exp{—gAt} T("))] ) (11)

c
where c =1 — 'yexp{—gAt}. The complementarity relations (10) now yield the projection step
T Ll 0, LY, (12)

With 7(»*1) we can update the history parameter,
A("t1) = exp{—BAL}AM + exp{ ——g—At} G O) (13)

For initialization of (11) and (13) we put
%(0) = (1 e ’Y) U(E(O)) )
A9 = 0.

The above computation can be applied to any elastic response function o. In the case of exponential
law (9) we have

0'("+1) = Dexp{ﬁ(Eij(y("H))wij — E())} —.09 . (14)

We note that the fibre strain, €y, is the internal variable. If 7(*+1) = 7(n+1) then sgrnﬂ) can be

computed as Ej; (g(""'l))w,-j —-&.

4. SIMPLIFIED MODEL OF ACTIVE FIBRES

In smooth muscle the process of activation and muscle contraction differs from that known for
striated muscle. On the other hand for both the types of muscle tissue the essential features are
common: the force is generated by actin-myosin cross-bridges activated by calcium ions; the force
of contraction is disproportional to the velocity of contraction (during fibre shortening).

In this paper we consider a simplified model of active fibres which was presented in [17]. In
a context of this model the active fibre is taken as a generator of tension 7,. We assume that 7,
depends on
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1. activation factor Aca, which is related to intracellular calcium ions concentration,
2. local strain € (in a particular direction of the fibre),

3. local strain rate é (in a particular direction of the fibre).

As we are interested in quasi-static behaviour of the tissue, we can neglect transient effects asso-

ciated with development of the muscle activity, which may be important for studying short period

events, cf. [15]. It should be remarked, that for a correct description of the transient phenomena the

sliding cross-bridge models should be used, see [1, 9, 23] and the references cited therein. A more

sophisticated model of activation specific to the smooth muscle was presented by the authors in [3].
The definition of 7¥ associated with the k-th preferential direction has the following form,

k 2
E(ek, &, a) = né* + AL, Fmax exp{— (6—_3—6093) }exp {19 min{O;ék}} . (15)
The first term in the right hand side of Eq. (15) is the passive viscosity resistance, whereas the
second term corresponds to the activated tension. The parameter €, is the optimal relative strain
for which a maximum generated force can be achieved. All parameters involved in Eq. (15) are
summarized in Table 1. In Fig. 1 we illustrate how the activated tension depends on strain rate.
We remark that for a correct description of the so called “Latch mechanism”, see e.g. [6], a more
sophisticated model of activation should be considered, as mentioned above.

141

Active tension vs. deformaticin rate

Table 1

08 r3 M .
fmax Mmaximum tension generated

€opt  Optimal strain
0.6

s sensitivity to actual strain
49 sensitivity to actual strain rate
v n viscosity (passive)

02

Fig. 1. Dependence of strain rate on active tension

For numerical simulation we shall employ the discretized form of Eq. (15). Using the backward
finite differences we obtain

(1) — _g_t (ek,(n+1) 3 ek,(n)) + Aga FF0HD) exp {% ke {0; kin+1) _ ek,(n)}} (16)

for all preferential directions k € I* where

2
o 5 k,(n+1) _
fek’(n+1) = fmax €Xp § — (_____E €opt> (17)
S
We remark that 'rf (n+1) i a nonsmooth function of e¥(+1) due to the dependence of the contractive

tension on the shortening rate.
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5. MODEL OF INFLATED VESSEL — WEAK FORMULATION

In preceding sections we introduced the constitutive relations describing behaviour of both active
and passive fibres. These constitutive relations has already been discretized in time and, to express
Sij defined in Eq. (3), the passive and the active tensions in Eq. (5) can be defined using Eqgs. (12)
and (16), respectively. As the result, the state of the deformed configuration at an instant t,, is
determined explicitly in terms of displacements u("*!) and of the pressure p(tl), Throughout the
following paper we use the notation () instead of ().

We shall now focus on defining a quasi-static interaction problem which will be used for modelling
hollow organs. We consider an open bounded domain O@® c R3 and its decomposition O =

Q) Uﬂl(rtl{ UI‘S,t ). The domain Q® is occupied by the deformed tissue at time ¢ and Ql(fl)t is a bounded
(t)

cavity filled with an incompressible (inviscid) fluid, see Fig. 2. I';’ is the interface where the vessel
QO is loaded by the pressure m. For treating “(plane) symmetric” problems we also introduce the
boundary I's . On the “exterior” surface 9Q \ (I's UT;) = 89, U 89, usual Dirichlet, or Neumann
type boundary conditions are imposed.

Fig. 2. Interaction of vessel with incompressible fluid

In the case of quasi-static deformation the inertia forces can be neglected, so that for the fluid
in the cavity iy only its incompressibility can be regarded. Therefore, instead of solving a flow
problem in €y, we merely consider the incompressibility condition.

In order to treat the interaction problem in a computationally efficient way, we make the following
simplification. We define interface traction integral

=

BO(y,7) = / nogn@ods= [ woyut® (F9) " vas, (18)
Lx(2) I'x(0)

()

where n;”, v; are unit normal vectors of ' (t) and I'z(0), respectively, outward to €,  is the interface
pressure and v is the test function of the weak formulation, see Definition 1. Let us introduce the
approximation

i
=N (v,m) = / m 85 v JE (Flg:_l)) vj d§ ~ B (y, 7). (19)
Lx(0)

As a further step we define the linearized incompressibility condition. Let the deformation of the

whole structure O be described by a continuous displacement field u. For the increment Ay =
(&) — 4(t-1) 1ot

ul®) —u e

divAu=0 in QF, (20)
hold weakly in Lg(Qi(flt_l)) ie.
/ divAugde =0 Vg€ Ly (Qi(,ﬁ;”) . (21)
Q.(t—l)

int

In fact we only need to have Eq. (21) satisfied for any ¢ = constant in Qi(flt_l). Then, using the

Gauss-Ostrogradski theorem one obtains the approximate incompressibility condition, see Eq. (19),

e, "
0=q [ 8y (FED) T Aujds =4V (Au,g). (22)
'z (0)
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Remark 1. It is worth noting that the boundary traction integral (19) and the linearized incom-
pressibility condition (22) are defined in terms of the same “bilinear” form b1 (w, 9), where w is
a displacement variable and @ is a constant. This is important for symmetry of an “extended stiffness
matrix” introduced in Eq. (38).

If the internal bulk volume is supplied with the volume rate Q(t), instead of Eq. (22) we consider
inflation of the vessel as follows. The fluid supplied in time interval (t — At, t) is denoted by AQ®.
Now the linearized conservation of volume can be expressed as

b (w® 1) = PN O-D 1) AQW | (23)
u u
Source

(Note that the minus above results from v being the outward normal of €2.)

Remark 2. The volume of Q.(t)

int

Q¥ = / Hisace l/ z® . (_ﬁ(t)) ds, (24)
Qint () Oins (1)

can easily be determined using boundary integral

which is used to compute the correction source volume

AQY = AQW - (Q(t) .3 Q(t—l)) ; (25)

This correction of the inflated volume can be used “asynchronously” in subsequent time increments
to suppress effects of the linearization in Eq. (20). For this we define

= t-1
AQW = AQW + AQ% D (26)

Dealing with the incompressible volume of iy we introduced boundary tractions on I';. In
general one may impose traction forces on 92\ 02, defined in terms of the Cauchy stress &g), in-
cluding hydrostatic pressure (due to gravity forces of the fluid in Qip¢) acting on I'y . The “linearized”
boundary traction integral has the form

v

-1
JED(50, p) = / 6 JOV (FED) T ;a8 (27)
'~ (0)

where in this paper we consider
6 = —péy; (28)

We shall now focus on defining the weak form of the interaction subproblem. The follow-
ing admissibility sets are considered: Vp = {_’Q EHOQNE | v=0 on 891(,0)} and VO =

{z_) €[H QOB | v= d® on 39&0)}, where d® are displacements prescribed on the boundary
and H is the “abstract” functional space, see Remark 3.

Remark 3. In this paper we do not discuss any aspect of existence and uniqueness of solutions
to the problem defined in Definition 1. In literature, see e.g. [2, 13], a simpler case of hyperelastic
materials has been analyzed using the theory of locally monotone operators and poly-convex func-
tions. The space H introduced above belongs to the class of Sobolev spaces W1 with the exponent
P>
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Definition 1. (Inflation subproblem) Given h*:(:=1) T}c’(t_l) € Ly(D), k € I (see (11), (13)),
the boundary tractions “(J) € Ly(890-1 \ 92{~Y) and the (corrected) volume influx AQ®), see
Eq. (26), find u® € V), p® € Ly(Q), and the interface pressure 7® € R, so that

Fu®,p®,0) + 8¢V (w,70) = gt-D(5® 4)  vyeV,, (29)

Gu®,q) =0 Vg€ L), (30)

b(t—l)(u(t), 1) = b(t—l)(_q(t—l), g AQ(t), (31)
where

F(u,p,v) E/Q Sij (wp, TP, RECED) 6, B (w; ) d2,

0

Owa = [ (1-Jaw)edn,
Qo
and 6, E;j(u; v) is the differential of the Green strain E;;(u).

Thus, the subproblem of Definition 1 comprises the balance of forces equation (29) involving the
interface integral, the incompressibility condition (30) imposed on the bulk composite material, and
the approzimate conservation of volume equation (31) related to the volume of the cavity.

In Section 6 the identification problem will be introduced with the state problem defined in terms
of subproblems of Definition 1 discretized in space using mixed finite elements. From now on, let us
denote by u the displacement vector, by p the vector of hydrostatic pressures in the composite (at
the pressure nodes). Further let 7 be the vector of tensions in the passive fibres and & be the vector
of the history variables, both defined at the quadrature points. Still by = we denote the value of the
pressure in the internal volume.

The set {y®}™,, where y® = (u,p, 7,7 ,h)® € RM s called the estended solution of the
discretized state problem if it satisfies the set of nonlinear equations (here presented in an abstract
form)

M) (yt-1) 1) =9, 1= b ..in, (32)

for a given initial condition y(©. The block structure of the state function ®®) ¢ RM corresponds
to its restriction to a single finite element e,

- s - -~

Ue (equilibrium) U
Pe (incompressibility) v
=] 3 (interaction) = (restriction,) ®® = | v |, (33)
Te (fibre tension) T
| He (history) | | H ]

where the length of the (column) vectors U, and P, is the number of d.o.f. per element and the
number of the pressure nodes per element, respectively. In Eq. (33) the “block” V is the discretized
form of the (single) volume conservation equation (31). The lengths of both 7, and H, are the
number of preferential directions x number of quadrature points per element.

In order to give a more detailed information about the structure of ® in Eq. (33), we need
the following notation. By {? we denote the quadrature point of a reference element T% , Wy is the
weight. There are ng quadrature points per each element. By ¢? we denote the quadrature pomts on
faces T In analogy, WS is the quadrature weight on 9T . Let I¢ gs and I, be the set of all such
quadrature points Wthh are associated with boundaries 99 \ BQ and I‘,,, respectively. Notation
()lq indicates evaluation of the (-) at £9. Further Jp is the Jacobian of the mapping between the
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(unit) reference and the spatial element, Jgo has analogical meaning, but is associated with the
faces. The blocks in Eq. (33) have the following structure,

Ue _Zqu € y oy Uy Py )JO(_é_q)Wq

T D " (4 Bl L (I R % (0 R P (N
qGIst
G Z xT(¢9) - 5(¢9) - [F-T(7) .,,(gq)](t‘l) Jso(C) W4,
q€lgg
nQ
Pe =) (1-J(E%u) $(E9) Jo(E) W, (34)
g=1
Y, = Z [VT(QQ) k F—l(gq)](“l) : X(gl) ¥ (u(t) ' u(t~1)) JSO(gJ) W
‘16155"
Te = rlg~ % max {0 L Yoo (exp{ fe* i 60)} 1) + 7 (h(t D _br ,gt"l))}‘q -

Heshqu_ahg-l)\q_ (Tk_T;t 1’)|q, e e il F

where B is the matrix connecting the virtual change in strain to virtual displacements, s is the stress
vector; J is determinant of the deformation gradient F, v is the outward normal to the face, x and
1 comprise the basis functions for the displacement and the pressure approximation, respectively;
& is the traction defined in Eq. (28). We use abbreviations a = exp{—pAt}, b = exp{—FAt/2},
¢ = 1 — 4b. In the definition of 7, by €* we denote the projected strain corresponding to u, see
Eq. (8).

It is worth noting that values of the element restriction of the interaction term of /. are non-zero
only if a face of the particular element lies on the interface I'y . An analogous statement holds for
Ve.

Remark 4. The system (32) can be solved by the Newton-Raphson iterations. It is obvious, that
Eq. (32) can be reduced on substituting 74|, and hg|q from Eq. (34) into the stress s evaluated at
the quadrature point &7, and then “cutting off” the last two blocks 7 and #. However, in order to
derive sensitivity formulae (the adjoint system method) for the identification problem, see Sections 6
and 7, the extended system must be considered, cf. [19]. Such treatment is needed because of the
recurrent definition of the viscoelastic history parameter h, see Section 3.

The linear subproblems were derived in [17] for a standard case without treating inflation of the
cavity. The tangent stiffness modulus, which is needed for assembling the stiffness matrix associated
with FEM discretized form of Eq. (29), is given by (after the substitution noted in Remark 4)

Dyt = a1C;5'C + a2 (85Cy5" + C'0u) + a3 (Cz'Ci* + GGl )
+ Z by wij Wiy + Z b wi; wke (35)
rel® relf
where, cf. [4],

a = gu Cii det(C) /3 — pdet(C)/?,
az = —gﬂ det(C)73,

o8 = -;;u Cii det(C) ™13 + pdet(C)Y/2.
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Differentiating the tension in the r-th passive fibre (see Section 3) one obtains

r_J0 if 75=0, (35)
= ¢f¢_rf(’)’oo/c) K exp {k(e"tD) — &)}  otherwise ,

and for the tension in the r-th active fibre (see Section 4)
rL 1 D min {0: D _ ot
ba_¢¢a[At+aexp{Atmm{0,e € }

: (ad;f;,(tﬂ) + fr(t+D) % i {0; —sgn(en(ttD) — 6r,(xt))})] . (37)

In our case involving the inflation problem the linear subproblems associated with the Newton—
Raphson iterations are extended by the approximate volume conservation equation (31). They have
the following form:

K PT h Au f
P. 920 Aprpesiloighg (38)
M 0 8 Am q

Above K is the stiffness matrix, P is called the pressure matrix and A is called the traction operator
(vector). The right-hand side vector in Eq. (38) is called the out-of-balance vector, or the residual
vector associated with blocks U,P and V of Eq. (33). Due to the approximations employed in
Egs. (19) and (20), see Remark 1, the linear subproblems have a symmetric matrix, so that the
Stokes problem solver, as discussed e.g. in [17], can be used to compute increments Au, Ap, and Am.

6. IDENTIFICATION OF CONSTITUTIVE PARAMETERS

The model of smooth muscle presented in this paper is defined using many material parameters.
Due to the large nonlinearity embedded in the model its response may change considerably, when
changing values of some of these parameters. Therefore, a proper setting of the parameters is essential
for applicability of the model when dealing with complex structural problems in biomechanics.

In this section we present an optimization-based approach to the material identification problem.
A specimen of the smooth muscle undergoes an experiment, so that one obtains a time record of
a measured quantity (e.g. loading force, or stretch, etc.) which can also be computed by numerical
simulation. Then a criterion function is assigned to the time record. The criterion function is then
minimized using methods of mathematical optimization to obtain some proper material parameters.

The microstructure of the particular specimen can be studied performing morphological, his-
tochemical and stereological analysis. In the context of our smooth muscle model it means that
the volume fractions of all components and also the preferential directions of fibres can be defined
at several cross-sections of the specimen. The identification procedure then attempts to find con-
stitutive parameters describing behaviour of the muscle in resting state, when muscle fibres are
not activated, and in activated state (for a given level of activation). We consider the following
identification parameters « associated with:

e resting state (muscle fibres not activated)

o) I shear modulus of matrix

%) Yoo relaxation stiffness Yo = (1 —7)D
as Kk  exponential power of fib.

oy B  inverse creep time B = (1=7)/Trelax
as v  relaxation parameter

s k=1,2,8 E’g slack length for passive fibres
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e activated state

o} fmax maximal tension generated
oy | Eopt  Optimal strain

az | s sensitivity to actual strain
ay |9 sensitivity to actual strain rate
Let a sequence of measured quantities @; at time levels t;,1 € Z C {)1 = card(Z) be
given. For each @; its counterpart ¢;(c, y®) can be evaluated with y®, the solutlon of the state

problem (32). The objective function takes the general form

F(o) =53 (wiley® 1) . (39)

1€
The identification problem is defined as follows: Find & € U,y C RY | so that

a = arg moin {F(a,y(a)) | aeUCRY, y(a)= {y®}™_, solves the state problem (32)} ;
(40)

where U, is the admissibility set defined in terms of box constraints. As can be seen from Eq. (39),
the problem in Eq. (40) belongs to a class of nonlinear least squares problems, with non-convex ob-
jective function (in ). Moreover, because of the projection involved in the constitutive relations (12)
and (16), the objective function is also nonsmooth, in general.

In our numerical examples we consider the following identification problems.

1. Isometric Relaxation / Hysteresis. A specimen, fixed in the apparatus, undergoes uniaxial
stretch, while the loading force f(t;) is measured at m time levels. The diagram of stretch-
program is illustrated in Fig. 3. For evaluation of the loading force numerically, we define a cross-
sectional surface Sy in the reference configuration and the unit vector ¥ normal to Sp. In time

3 RELAXATION

8

g

1>
UME 1 Lot

T HYSTERESIS

~

S

1S

¢ i f
time

Fig. 3. Stretch program for relaxation and hysteresis Fig. 4. Computation of loading force in stretched

tests specimen
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the surface Sy changes to S(t). Denoting by n the direction (fixed), in which the specimen is
being loaded, see Fig. 4, the objective function of the type (39) takes the following form

A : i 2
R(e)=3Y ( /S n iy S mds - f(ti)) , (41)

i€l

where the notation of Section 2 is employed. Obviously, in this test the interaction, as described
in Section 5, is not considered, so that the state problem involves neither Eq. (31), nor the
interface traction integral in Eq. (29).

2. Inflation of vessel. We have a vessel (tube, balloon) fitted into an appropriate apparatus, so
that a bounded volume (the cavity) is formed. Then injecting subsequently amounts of fluid into
the cavity, the pressure 7(¢) in the fluid is measured in time. The “inflation program” used can
be analogous to the diagrams in Fig. 3, where the stretch is replaced by the inflated volume. The
objective function is very simple in this case,

i€

Fya)= 3 3 (v - 7))’ (42)

as 7)) ~ 7(t;) is one of the state variables of the inflation problem.

The objective functions defined above can be minimized numerically using the Levenberg—
Marquardt method with a step length reduction. The search direction Aa (column vector) is deter-
mined from the “optimality” condition VaoF(a + Aa) = 0, where F is a first order approximation
of F at . Denoting by J(a) the matrix N x m constituted by total gradients of ¢;, 1 € T,

m = card(Z), w.r.t. a, then we have

Aa = [J(2) TT(@) + M| T(0) [3 - p(a)]

where A is the step length reduction, I is the identity and ¢ is column of @; . Therefore, in order to
compute a descend step Ac, one needs to compute the total (sub)gradients of each i (a, y@ (a)),
t € Z, i.e. to perform a sensitivity analysis. The parameter ) is being modified during the minimiza-
tion process to achieve the convergence. We employed the LEASTSQ subroutine of the MATLAB
optimization toolbox, which seems to be a satisfactory implementation of the method, cf. [12].

It has been already mentioned that, because of the projection employed in the definitions of
tensions for both types of fibres, the response y is not differentiable in the classical sense. This
becomes actual whenever an active fibre contracts with exactly zero deformation rate, see Fig. 1, or
none of the inequalities in Eq. (10) is strict. In such a case, the algorithm of sensitivity analysis given
below may fail to provide a correct subgradient, so that a wrong “descent” direction is obtained.
According to our experience, however, such situations have been rarely observed. An analogous
case has been discussed e.g. in [19] for elastoplasticity. In this section we mention an application of
two sensitivity analysis methods: the direct differentiation method (DDM) and the adjoint system
method (ASM), see e.g. [10].

6.1. Direct Differentiation Method (DDM)

This method is based on direct computation of the state variable sensitivities Vy® . We consider the
extended state problem (32) and define the partial gradients (matrices) of the state function ®®,

A(t>:{3‘1’((:)) } , W(t>={3‘(‘+(t’l)} : v(t):{a‘l’(t)} :
ay MxM ay MxM Oa MxN
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Differentiating the state equation &) (c, y®=1 (M) = 0, with respect to @ € RV, we obtain the
sensitivity equation with N right hand sides

ADYy®) = _ [V(t) e W(t)vy(t—l)] : where Vy(© =0, (43)

so that the gradient Vy® of y® w.r.t. a (the matrix M x N) can be computed recurrently for
t =1,2,.... The total (sub)gradient of function ¢; employed in Eq. (39) is given by

- Z (%) (44)
so that we have

VF =) (pi— $i)Vei. (45)
iel

As will be shown, to solve Eq. (43), the same solver as that for the linear subproblems (38) of the
Newton’s iterations of the state problem can be used. The matrix A®) js regular. Its block structure
corresponds to that one in Eq. (33).

Remark 5. If the interaction problem described in Section 5 is considered, we introduce the

eztended pressure vector by p := [pT,n]T and the eztended pressure matriz, see Eq. (38), by
= [P, h).

The block structure of columns in matrix A® corresponds to the blocks in Vy(t),

e A K Pz e
\7] R T
) # () =
vy S SR B RS (46)
Vh TR S o

where K* is the stiffness matrix derived from K in Eq. (38); in contrast to K, matrix K* does not
comprise contributions from the tensions in the passive fibres, as these are treated separately in the
extended state problem, see Eq. (32). It holds that

K=K"-20G.

For illustration we show the restrictions of matrices G and Z to a finite element e (for brevity the
superscript () is omitted)

25k 0 unloaded,
(Gelia 1 = | ~(yooa/c) expme(u) — eb} (44l : [B(E%,w)]T  loaded,

[Ze]j‘i(k,q) = ¢f¢? [BT(éqiu)] ‘: [V Vk“q g
J

Above the index i(; ) is assigned to the preferential direction of a passive fibre, k, and to the
quadrature point £7.

The system of linear equations (43) can be reduced. For a fixed time level () let us denote by r
one of the vectors occurring at the right hand side and by dy the corresponding sensitivity vector
(i.e. the derivative of y w.r.t. one of the identification parameters)

gyl 5y \©
- _if. Ty e
St o ; Oy = or : (47)

Th oh



532 E. Rohan and R. Cimrman

where by ~ we mean the extension for the interaction problem, as discussed above. Using identity
K = K* — ZG, Eq. (43) reduces to

5 51(8)- (")

Comparing Eq. (48) with Eq. (38) and taking into account Remark 5, we see, that in both the cases
the matrices are identical, so that the same solution procedure can be applied. Having computed

Ou and 0p the remaining blocks of the sensitivity vector can be obtained using
or =r, — Gou,
x (49)
Oh =rp+boT.

6.2. Adjoint System Method (ASM)

For derivation and some theory concerning this method we refer the reader to e.g. [19] and to
the literature cited therein, or to [10]. We define the adjoint variables (vectors) w[(:]) o B
t € {1,...,n}, which at the time level (t) are assigned to the function ¢; (@, y*), i € Z. The block

structure of w? is as follows (compare with Eq. (47)),
(4]

AT TE S8 ot o il
(UJ[(Z])) = (u}u y Wp » ws , wh)m .
The adjoint variables are computed in backward order for ¢ = n,n — 1,... by solving the linear
system

T
@l f,,®l_f.®
491 {eld } = {7} (50)
with multiple right-hand sides, i.e. Vi € ZN {t,...,n}. Each right-hand side vector (r.h.s.) is given
by

0p; .
e o 8 fotedi=if,

10 = { "3y (51)
—[W(t+1)]Tw[(it]+1) for i >¢.

The (sub)gradient of ¢; is computed using the adjoint variables, as follows
i [yo]T
. +; Vol o, (52)

and VF is then obtained by Eq. (45).
The adjoint equations are similar in structure to (48) and have the following reduced form,

[ K PT ] ( Wy >(t) i ( Tu T GT(b’I"h, +7't) )(t) (53)
Foelh il A1 69 iagg & o

where the block structure of vector r corresponds to that of r in Eq. (47). We recall that Eq. (53)
has a number of r.h.s. (signed by [i]) equal to card{i € Z | ¢ > t}. The number depends on the time
level (¢) and on the specific index set Z introduced above, see Eq. (39) and Fig. 5. In analogy with

the DDM method, the remaining blocks of w are computed by

Vo; =

wr = brp — ZTwu + 7y, (54)
Wh =Tp -
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It is worth noting that in ASM method the number of r.h.s. in Eq. (53) is independent of the
number of identification parameters used, in contrast to DDM method. Therefore, it can be more
effective (in comparison with DDM) in such situations when “only few” measurements are made,
i.e. when the number m = card(Z) is small. Usually m is large and, thus, DDM is preferred. The
comparison of efficiency of ASM and DDM is illustrated in Fig. 6. We remark that if only VF was
required and not V; for each ¢ € Z then only one adjoint vector would have to be computed at
each time level and, thereby, making the ASM approach quite effective.

Experiment
Z
e
5 -—
B | ———
s R
ok st
E R R T S R S RS SR
= e s e e T T R S e ]
= R R R T, TSR e B
o o e s e e R R e A R e e S
%1 t 5 + ‘ t i 0
time level

1
No. of parameters No. of data

Fig. 5. The number of the r.h.s. vectors (1 to 9) vs.
time level in the ASM algorithm for the particular time  Fig. 6. Efficiency (in CPU time) of sensitivity methods
record of experimental data (the 9 time levels of depending on card Z = 3,5,9,17; 17 time levels for the
evaluation indicated by circles) state problem

7. NUMERICAL TESTS

In this section we demonstrate viability of the approach proposed in this paper. So far we have
not access to any experimental data describing a particular test which would be accompanied with
a relevant information about the microstructure of the specimen. Therefore, by the “ezperimental
data” we understand a data defined at discrete time levels which are chosen, as to our knowledge, in
accordance with the information provided in literature, cf. [1, 5, 7, 16]. These data are to be fitted
with a “curve” which is computed by the numerical simulation. Such a curve is being shaped by
varying the material parameters during the optimization process.

All numerical computations, including sensitivity analysis, were performed using our special code
developed for this purpose. For minimization of the objective functions we applied the standard
LEASTSQ subroutine of MATLAB, cf. [12], and adapted it for treating natural box constraints
(non-negative stiffness etc.)

7.1. Consistency between hysteresis and relaxation tests

We consider a bar-shaped specimen (in 3D) subjected to stretch program according to Section 6.
The Dirichlet boundary conditions prescribed at both the ends of the specimen are illustrated in
Fig. 7. The objective function is defined in (41). In the specimen 4 non-parallel systems of passive
fibres were considered, two with the “exponential” elastic response (9) and two with the “linear”
one, see [17], no activation of muscle considered.
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Fig. 7. Boundary conditions for simple extension of a bar-shaped specimen with fibres not aligned with the
axis of the bar (the shear forces eliminated)
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Fig. 8. Hysteresis test (Step 1) — bar specimen

Step 1: First we performed the hysteresis test to get some optimal setting of 8 parameters displayed
in Fig. 8 in the following order: u, for matrix, &, Y0, 3, 7, E(l), Eg for the “exponential” fibres
and Y for the “linear” ones. In Fig. 8 and in all subsequent, the initial setting is depicted in
“Normalized Parameters” box by the solid line, the optimal setting indicated by triangles. The
“Error” box shows the discrepancies ¢; («, y(i)) — @; (see Eq. (39)). The “experiment” data were
chosen according to literature, cf. [1, 5, 16], — they were not precomputed by our software.

Consequently, a relatively significant error in fitting exists. Let us denote this case by “NPData”
(as Not Precomputed Data).

Step 2: The optimal setting of Step 1 had been used to calculate the relaxation response, which
became the ezperimental data. Then identification was tried out, starting from the same initial
setting, as in Step 1. As can be observed comparing the normalized parameters displayed in
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Fig. 9. Relaxation test (Step 2) — bar specimen

Figs. 8 and 9, almost the same optimal setting of the identification parameters was found in
both the steps. The only remarkable difference is that in the parameter 8, i.e. 7o, of the “linear”
fibres. In this case the fitting error was negligible, since the “experiment” data were obtained by
our model. Let us denote this case by “PData” (as Precomputed Data).

In this way we verified, that both tests lead to the (almost) same parameters.

7.2. Identification with inflation test

A circular macroscopically homogeneous specimen was being inflated in time increments, as dis-
cussed in Section 5. Due to symmetry of the geometry only one quarter was considered for the
computation (see Fig. 10). The specimen was reinforced by three systems of fibres — circular mus-
cle fibres (active) (AF), circular (EPF1) and longitudinal (EPF2) passive fibres (exponential model)
with volume fractions 0.26, 0.24 and 0.25, respectively. The fluid pressure was used to evaluate the
objective function (41). The test consisted of two parts:

1. Identification of passive properties (matrix and viscoelastic fibres) with zero AF activation.

2. Identification of muscle fibre properties under full activation while passive properties corre-
sponded to the fixed optimal parameters obtained in Step 1.

Step 1: To have a reasonable objective function values, an auxiliary hysteresis test (HT) with
a force objective function chosen according to literature was run on a bar specimen (— NPData).
Fibre directions were as follows AF: [-1,2,1]T, EPF1: [1,-1,1]T, EPF2: [0,0,1]7); the loading
force was acting in the direction of the third coordinate axis. Values of the starting parameters
are in Table 2. Then the identified parameters (see Fig. 11, Table 2) were used to compute values
of the “experimental” fluid pressure time record (— PData) for the circular specimen. Hence, in
analogy with the example of Section 7.1, one expects the optimal parameters obtained by the
inflation test to be almost those of HT.
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Original + deformed mesh - wireframe, t = 4

Fig. 10. Inflation test — deformed tube in half (above) and full (bottom) inflated state
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Fig. 11. Auxiliary hysteresis test HT
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In order to comprehend uniqueness of the “optimal” values in this particular case, two different
sets of starting parameters were used (PT1, PT2) for the passive inflation test. It can be seen
in Table 2 that the optimal parameters are nearly the same in all tests. However, PT1 needed
much more optimization iterations (= 82) than PT2 (= 28) to get the “optimal” values.

The actual results of the passive inflation test are shown in Figs. 12, 13. The “graphical” difference
in the 6th and 8th normalized parameters is caused by different reference values in PT1 and PT2.

Table 2. Step 1 — Identification of passive material parameters in resting muscle; different &k at initial

setting
Identified Initial value Optimal value
parameter HL LPTrYPI2 HT PT1 PT2
1-| p [Pa) 7.6923077e+04 3.2915113e+04 3.2915160e+04 3.2915122e+04
214K 1.0 1.1783841 1.1783849 1.1783842
3|7 [Pa] 2500.0 4.1269483e+03 4.1269609e+03 4.1269517e+03
4| B [min‘l] 0.25 0.3300879 0.3300877 0.3300879
5|7 0.75 0.7173294 0.7173296 0.7173294
6 E}) =05 | ~0.31 0.9 —0.5068541 —0.5068503 —0.5068533
i& -0.5| —-0.1 | —=0.5 | —0.8504968 —0.8504901 —0.8504955
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Fig. 12. Inflation test PT1

Step 2: With the passive properties identified, we proceeded to active inflation test (AT). The ini-
tial parameters were chosen according to literature. The objective function values (related to the
fluid pressure) were obtained by a random perturbation and shift of initial setting (— NPData).
See Table 3 and Fig. 14 for the results. The history of objective function values during the min-
imization by the LEASTSQ subroutine is depicted in Fig. 15 for the cases with and without the
natural box constraint, respectively.
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Fig. 13. Inflation test PT2
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Fig. 14. Inflation test AT — full activated muscle fibres

Table 3. Step 2 — active material parameters

Identified parameter | Initial value | Optimal value

Fmaz [Pa) 1.0e+04 | 2.8143484e+04
€opt 0.1 0.1418453
s 0.2 0.2472468

9 2.0e+01 1.3048942¢+01
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7.3. Bladder filling test

A spherical specimen (the model of bladder) was being inflated in time with a given volume rate,
simulating the filling and subsequent interrupted voiding. The active and the “exponential” passive
fibres were aligned in both parallel and meridian directions. Due to the obvious symmetry only
a hemisphere was considered for the FEM computations. The fluid pressure (NPData) was the ob-
jective of the identification, according to Eq. (42). In Fig. 16 we illustrate results of the identification
of 8 material parameters, as well as the filling rate curve.

8. CONCLUSIONS

The present study is devoted to modelling the smooth muscle tissue, but, due to the large complexity
of the model, some results can also be exploited for modelling other soft tissues. The muscle fibres are
described by a relatively simple model with the single activation parameter . A more sophisticated
model of activation, which takes into account the specific mechanism of the cross-bridge activation
in smooth muscle is now in development.

The finite element model based on the total Lagrangian formulation allows alternatively to treat
the inflation of a vessel by an incompressible fluid. Restricting to the case of quasi-static deformation
(i.e. no inertia forces considered) and due to the appropriate linearization employed, the extended
stiffness matrix in Eq. (38) remains symmetric.

The main focus of the paper lies in the material identification and in the related topics of the
sensitivity analysis. In the numerical test described in Section 7.2 we considered identification of
the passive parameters separately from identification of the active ones, however, we were successful
also in cases when all parameters were identified simultaneously, as in Section 7.3. For the particular
example of hysteresis and relaxation tests, see Section 7.1, we found consistency in optimal setting of
both the tests. In [18], however, another example is discussed indicating that the “optimal” solution
may not be unique.

Obviously, one of the crucial problems of the identification is to get a relevant experimental
data. In order to study functionality of the tissue in (approximately) standard in situ conditions
we propose to use the inflation test. Some preliminary results (Sections 7.2 and 7.3) has been
obtained proving viability of this approach. The following research should be focussed on testing
the identification and further validation of the model for real data.
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