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The paper concerns the theoretical derivation of a new formulation for solution of the initial-boundary
value problems for the diffusion equation. The global and local integral equations are derived by using the
fundamental solution for the Laplace differential operator. Assuming certain approximations with respect
to spatial variable, we obtain a set of the ordinary differential equations (ODE) with continuous time
variable. Standard methods for the time integration can be applied to these ODEs. Besides a review of the
one step f-method we propose a new integral equation method for solution of a set of linear ODEs. The
paper deals also with the numerical implementation of the global and local integral equations yielding the
ODEs.

1. INTRODUCTION

A large amount of physical processes is governed by the diffusion equation that is the partial
differential equation (PDE) of the parabolic type. Because of the first order derivative with respect
to time and the second order with respect to spatial coordinates one has to solve an initial /boundary-
value problem with a prescribed initial value of the sought solution throughout the whole domain
Q) and prescribed boundary values of certain physical quantities on the boundary I'. Owing to the
complexity of the geometrical shape as well as the prescribed initial and boundary conditions in
engineering practice, one is confined to numerical computational methods almost exclusively.
Before the great expansion of the Finite Element Method (FEM) the Finite Difference Method
(FDM) was employed frequently. Application of the discretization and approximation to spatial
variation of the sought solution leads to the semidiscrete diffusion equation which is given by a set
of the ordinary differential equations (ODE) for the spatial nodal values with leaving the time
variable to be continuous [4]. The initial problems for the ordinary differential equations are often
solved numerically by using the so-called one step 6-method including the forward (explicit) and
backward (implicit) Euler methods as well as the Crank-Nicolson (midpoint) method. Rather an
oposite order of the treatment of the time and spatial variations is assumed in the formulation
for solution by boundary integral equations [1, 3]. Sometimes the time variable is eliminated by
using the Laplace (and/or Fourier) transform or assuming the finite difference approximation for
the time variation. Then, the PDE of the parabolic type is converted to that of elliptic type with
the initial condition playing the role of an additional domain source. Standard BEM approaches
are applicable to solution of the relevant boundary value problems. Another Boundary Integral

1This is an extended version of the article presented at the 8th International Conference on Numerical Methods
in Continuum Mechanics, Liptovsky Jan, Low Tatras, Slovakia, September 19-24, 2000.
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Equation (BIE) formulation is available when the time dependent fundamental solution is used
together with approximating the time variation polynomially within finite time steps. Then, two
approaches can be distinguished according to the choice of the origin of the time integration [3].
The advantages of the BIE formulations consist in the localization of unknowns on the boundary (in
each time step at least), in better conditioning of the set of algebraic equations and higher accuracy
possibility. On the other hand, one can name also certain disadvantages such as the necessity
of inverse transformations to time variable, or integration of matrix coefficients at different time
instants or alternatively evaluation of “initial” values (throughout the whole domain) at different
time instants.

In this paper, we present the integral equation formulation leading to a set of ODEs with respect
to time and preserving the better conditioning as compared with the FEM formulation. On the
other hand, the method is as general as the FEM. The nodal unknowns are spread throughout
the whole domain including the boundary with the spatial approximation either by interpolation
polynomials within finite size boundary elements and domain cells or by the Moving Least Square
(MLS)-approximation within the meshless implementation. A special attention is devoted to the
treatment of singularities. Finally, a new method is developed for solution of the set of the ordinary
differential equations.

2. GOVERNING EQUATION, INTEGRAL REPRESENTATIONS

Let us consider the time-dependent boundary value problem for diffusion equation
—(.'E,t) 5o f(xa t) in Q2 (1)
with the prescribed boundary conditions (on I' = 'p UT'y with Tp NTy = 0)
u(n,t) = i(n,t) onlp,
Ou i )
—(n,t) = —(n,t r
on (771 ) an (77, ) onlny,
and the initial condition
u(z,0) = uo(z) in Q. (3)

Obviously, one can recast Eq. (1) into the integral identity

[ (7utet) - 5@0) ve 04006 = [ 600 - nan) @

in which @' C Q. Assuming v*(r) to be the fundamental solution of the Laplace operator and
making use of the Gauss divergence theorem, one obtains from Eq. (4)

AWl )+ [ [5e009" 0 -9) = uta 20 arm)
1 ou

S a(:,;,t)qu*(;,,; —y)dQ(z) = & f(z,t) v*(z — y) dQ(z), (5)

where y ¢ I and A(y) is defined as

1 yeq,
A o
W) {0 y¢ QU

Note that in this concept, the potential field u(y,t) is represented integrally not only in terms
of the boundary densities u(n,t) and Ou(n,t)/dn but also in terms of the domain density of the
potential velocity u(z,t).
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3. POLYNOMIAL INTERPOLATION OF THE SPATIAL VARIATION OF THE POTENTIAL
WITHIN FINITE SIZE ELEMENTS

In a numerical treatment, it is reasonable to divide the domains of unknowns into finite size elements
with assuming a polynomial interpolation within such elements. Then, the number of degrees of
freedom is reduced from infinite to a finite number IV, because the unknowns are localized at nodal
points employed in the definition of the approximation over the elements. Thus, the problem of the
evolution of the potential field is converted to the problem of the time-evolution of the nodal values
of the potential field, because the spatial distribution of the potential field at any time instant is
approximated within the boundary and domain element, respectively, by

3
u(m,B)lp,cry = D w1, t) N*(§),
g (©)
u(z,t)g, =D u@®t)N&, &).

a=1

Since the unknowns are spread throughout the whole domain Q (they are not localized on the
boundary alone), the unknown normal derivative of the potential along I', C I'p and/or L¢(where
L¢ is an arbitrary contour in §2.) can be expressed by using gradients of the approximated potential
on . as

8
ou
=—(n,?) = ) _u(z®,t) M*P(¢),
on FpCQe ;
8 o
U
__(_,,;,t) = — u( %€ t Kaec( )
i Lg he(e) ;

Note that M®P(£), K®¢(p) and h®(p) are geometry dependent polynomials, and their expres-
sions given in Appendix A are obtained by using the isoparametric elements for approximation of
both the geometry and physical fields.

Recall that boundary conditions prescribe certain nodal values in Eq. (7) as long as z% € I'p .
In other words, having known the time-evolution of the potential at the nodal points on I'p as well
as at interior of 2, we can use the integral representation (5) supplemented with the approximation
of the spatial variation of the boundary and/or domain densities by Eqgs. (6) and (7).

In order to get a relevant set of equations for computation of the time-evolution of unknown
nodal values, one can use the global as well as local integral equations (IE) resulting from Eq. (5).
Assuming @' = Q, I =T =I'p UT'y and collocating Eq. (5) at the boundary nodes ¢®* € ' — I'p,
with b=1,2,..., m, we obtain the global integral equation (GIE)

w*(n — b w*(n — b
wey [ 2= a4 [ uct) - utn)] 22— v

n(n) n(n)
[ Bty n-chare) - ¢ [ S 0oz - ) o)
$ PR 5
- *(z — (b i M
= [ s @ -chaaE + [y I are)
2 1,0)0" (7 — ) dDr). ®
Iy oN

Subtraction and addition technique [7] has been utilized for regularization of the strongly singular
integral over I'y .
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Surrounding each interior point ¥¢ (¢ = 1,2,...,N —m) by a finite domain Q¢ C Q, we may
write the local integral equation (LIE) as

wr)+ [ [gamw v - un 250 ar
1 ou

Thdren G SIS /Q fl@,t) w*(z — y°) dQa), (9)

where L¢is the boundary of the sub-domain €, and w*(r) is the fundamental solution differing
form v*(r) by an additional constant. This LIE is non-singular in contrast to the GIE. Note that
it is inappropriate to select L¢ as a circle in the global coordinate space as long as the potential is
approximated by interpolation within finite size elements. Then, it is more appropriate to consider L¢
as a closed contour given as the union of the curved lines corresponding to circular arcs considered
at the intrinsic spaces of the domain elements adjacent to y¢. The circular arcs are centred at y°
with the radius & . Modelling of geometry for Q¢ and L€ is given in Appendix A.

Applying the discretization procedure to Eq. (8), we obtain the set of the ordinary differential
equations,

U(Cb,t) Z wrb Z Z n°?,t) werb 4 Z Z Z 2%, 1) aepb

c":l‘p FPCPN r,,ch r*,,cne zacgr\
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& zai:%‘D
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Similarly, one can discretize also the LIE given by Eq. (9) with the result

Z Z ( £9€ 1) Z%eC — 83:: (2%, ¢) Taec) 4 Fc(t), (12)

ceﬂe z"'eﬁI‘D

where
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RS =yl — 45 = Zw“[ (=, ») - Moo &), (R = RERE

éo
aec — Na CC l ce
T 27rk / E (0, )) n( )J (p, ) pdepdp, 13)
1
Fo=3 5 | 7 @0 (T 10 pdeds
— 21[' 0 (pcc b ,
yCENe :
ou
I ae aec _ %€ aec
Z z_; ( 8) 20 — = (2, ))T ) :
chﬂe z@€€l'p
Now, the discretized GIE and LIE can be written in matrix form as
4 ou
3. [u(z",t) K7 - 79?(sc",t) M""] =Ft) (=12,...,N) (14)
n=1
with the conductivity (stiffness) and capacity (mass) matrices
3 8
E NS T R WRL Y T S (=12m)
cbépp rpcrN (aa,,jln rpch r,,cn, ..,Eaac-)élpp
8
i R S e ¥ i BN 1
< z(aefED
(15)

' —5n(m+c)+z Z a b=m+c Ac=12,...,N—m),

a—
y‘:en, zaeglp
(ae)=n

8
"= Z Z ¥ gt (b=m+c Ac=12...,N-m),

a=1
Vc€9c zee¢r
(ae)=n

in which (ap) and (ae) stand for the global numbers of the nodal points 7 € I', and 2% € (.,
respectively. The r.h.s. in Eq. (15) is given as

e, b=12."m
Fbt it & ) | ol 3 ey 16
(®) {F“(t), bEmL Aosl, 24 00— M. (16)

The final step in computation of the time-evolution of nodal values of the potential is the solution
of the system of linear ordinary differential equations given by Eq. (14) with the inital condition

u(z™,0) = u,(z").
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4. MLS-APPROXIMATION OF THE SPATIAL VARIATION OF THE POTENTIAL

Without going into details, we present some basic formulae employed in the MLS-approximations.
For more details we refer the reader to [2]. Assuming the MLS-approximation of the spatial varia-
tion of the time-dependent potential field at any time instant (separation of the time and spatial
variables), we may write the approximated field as

N

u(z,t) ~ uh(z,t) = Y H(wa(x))a%(t) ¢*(2), (17)

a1

where N is the total number of nodal points and H(z) is the Heaviside unit step function. The
Gaussian distribution around z¢ is employed most frequently for weight functions w,(z). The other
possibility is to use spline weights [2] for instance. Recall that

u(e®) #a%,  ul(z?) #£a°

and the number of nodal points n, which are effective for approximation at the pointz is less or
equal to the total number of nodal points, since

N
By = ZH(’wa(m))
a=1

The domain of the definition of the MLS-approximation at the point z is defined as
Q= {Vz' € Q; H(wa(z")) = H(wa(z)), a=1,2,...,N}.

The shape function ¢*(z) is given by

Y K
) =3 5p(@) [A @B @), = Y p5(a) A51(2) Baal), (18)
B=1 a,f=1

where {p,(z)},_; is a complete monomial basis of order y and the matrices A and B are given as

Zwa ) pa(z?),

Bg,(z) =pﬂ(:1; ) we (), o =% 0 .8 a=L8 ..., N

The gradients of the approximated field within §2; can be replaced by

N
=3 H(wa(z)) @ ¢4 (2), (19)
a=1

where the gradients of the shape functions within 2, are given as

m

#4@) = Y [pos(2) 452(2) Baa(@) + pp(2) (452 4(2) Baa(2) + A51(¢) Baai(2))]
a,f=1

with A5}, (2) = —Az3() Aayk(2) A3 ().

It can be seen that this approx1mat10n is in the global coordinate system. The geometry of the
whole domain and its boundary, however, is approximated usually in terms of intrinsic coordinates
defined on finite size elements as considered in the Appendix A. Then, the global coordinates of any
point on I" and/or in Q are given by Egs. (A1) and (A4). The time-evolution of the potential field
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is transferred to the time-evolution of the nodal unknowns %*, which are non-physical quantities.
Therefore 4% is not prescribed at any nodal point and Eq. (5) should be collocated at each nodal
point. In the case of the GIE collocated at boundary nodal points, one should be careful in the
treatment of the boundary integrals involving strongly singular kernels. Note that the subtraction
technique is not effective in the case of MLS-approximation and we have to use the limit form of
the integral equations [6]. The GIE collocated at ¢® €' —=T'p can be written as

u(cht) + Fpgﬂ(n,ﬂv*(n e~ tim, [ uto )?%;)z)drw
-1 [ S 0ve- e = [ f@nee-¢ e
+ [ #nn @’;(Z—(;)C'-’—)—dr(n) 8 a—Z(n,t) v (1 - ¢ dr(), (20)
while for ¢? € Tp, the GIE becomes
[ Sava-dam - [ un %@ ar(n)
~im [ ulr, ) 20 ar) - £ [ Gr@v (e~ ¢ ane)

= T - = ov*(n — 2)
ot

- | Z-(t)v*(n—¢")d0(n). (21)
En. n

Recall that 'y, = {0} if ¢® ¢ Ty, and T'y, is a finite part of I'y with ¢® € 'y, ,if ¢ =TpNTy.
In order to perform the integrations in Egs. (20) and (21), the geometry can be modelled by quadratic
approximation over finite size elements as shown in Appendix A.

On the other hand, in the case of the LIE there is no problem with singularities and its form
by Eq. (9) is appropriate also for implementation by using the MLS-approximation of the spatial
variation of the potential. Now, in contrast to the implementation based on the approximation of
the potential by interpolation within finite size elements, the spatial integration is performed in
the global coordinate space, since the approximation of the spatial variation as well as geometry
modelling are considered in the global space. Bearing in mind Section A 4, the discretization of the
LIE results in the system of ordinary differential equations

N

Z [,&a(t)f{ba dud( ) Mba] = ﬁ'b(t), (22)
a=1
in whichb=m+1,...,N, and
R = Huw)oW) - o [ B (walelir) 8 olz)
o 1 T0 p 2
i = ot [P o (L) [T H walolae)) ¢ elo) dpto, =, 3)

S I I p o
F(t)zg A pln(—) ! f (z|qe, t) dedp.

To

In case of the GIE, the situation is rather more complicated, owing to singularities occurring
in the limit forms of nearly-singular integrals. This problem can be solved successfully as shown
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in Appendix B. The discretized GIE take the form given by Eq. (22) with b =1,2,...,m and the
matrix coefficients are given as

b €
k= L Ha(ct)en) + 5B 5.3 / In |7 (€) - ¢ K(€) H (wa (17 (£))) %77 (€)) dé

2T
1 £"'I{( a p€0+ a
-3 T [ Sl o) e g,
cberpcrN

: a i (€) — ¢
62;3 Z / H (wa(n”(£))) ¢ (np(f))mf)_—whz(f)d&

cbgrpcrN

a gt
M, = 27%9 Ze:/‘l /_1 1n|$e(€1 &)~ CbIH(wa (z°(&1, €2))) ¢*(2°(&1, €2)) J®(&1, &2) dérdés,

1 d
F"(t)=51;z / / F@ (6, &),0) |5, &) ~ ¢

51k3 Z / (P (&) —()).chzlfhk(f) d¢

FPCFD

#He /a“ (P (£), lnIn c"|h”(€)d£,

FpC[‘N

Je(&1, &2) drdé, (24)

as long as ¢® € I' = I'p, while for ¢® € T'p we have

-2 5 [ o - ] me Hure) @) a
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&
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b 0b~ b 1 : : 3 e b e
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e B /5 R 7 1 (25)
cber,,cr‘D
51k3 nt(€) — ¢
<b¢rzcr / lnp( ) — ¢ 7 )k
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g2 [ G ©.0mlre - ¢l we
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The initial conditions 4%(0) = 4§ can be deduced from the set of algebraic equations

N
Y H®af =ug(z®)  (6=1,2,...,N) (26)

a=1
with H% = H(w,(x%)) ¢%(x®). Making use of the matrix notations, we may write Eq. (26) as
[H] [iio] = [uo]-
Hence, the initial values can be computed by
(0] = [H] ™ uo]-

The final task is to find the time-evolution of the nodal values of the potential and/or nodal
values 44(t) governed by the system of the ordinary differential equations given by Eq. (14) or (22),
respectively.

5. TIME EVOLUTION OF NODAL VALUES

The analysis of the governing equations for both kinds of the nodal unknowns considered in the
previous section is reduced to the investigation of a set of ordinary differential equations that can
be written in matrix form as

div(®)] _
e = [F(). .
The most familiar method for solving Eq. (27) with the initial condition [v(0)] = [vo] is the
one-step 0 (theta) method. Assuming
[v"] = [v(n&t)],
V"] = (1 - 9)[v"] + 6v"*],
div(t)] , " - v
o At
we may write Eq. (27) for the instant ¢ = (n + 0)At as

[K][v(#)] - [M]

,for t = (n + 0)At,

(01801 - 50) 07411 = 167+] = (1= (K] + M) ) ) (28)

with the initial condition given as [v°] = [vg]. The f-method is absolutely stable for 1/2 < 6 < 1.
For 6§ = 1/2, the accuracy is of second order (in time), while for § # 1/2 the order of accuracy is
one. According to values of 6, the §-methods are classified as :

0 = 0 — explicit Euler’s method
6 = 1/2 - Crank-Nicolson’s method
0 = 2/3 - Galerkin’s implicit scheme
0 = 1 — implicit Euler’s method.

Now, we present an analytical integral formulation for a solution of the system of equations given
by (27). For this purpose, we rewrite the system (27) as

Sabvb(t) = ga(t)v (29)
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in which the summation is assumed over the repeated Latin subscripts (within the range from 1
to N) and

d 5 =
Sab o 6aba * Qab> ga(t) = —MachC(t)a Qab — _Macchb . (30)
Let the matrix Gg¢(t)be the fundamental solution for the differential operator ST, i.e.,
SpaGac(t) = 0ucd(t), (31)

with Ggc(t) = 0 for ¢ < 0. Note that the superscript T denotes the transpose matrix and & (t) is the
Dirac d-function. It can be seen that the matrix exponential function

Gaclt) = H(2) (e“[QTl) (32)

ac

obeys Eq. (31).
Bearing in mind Eq. (29), one can write the integral identity

o0 o0
/ Guolb ) s ol v / R R (33)
0 0
Hence, in view of Eq. (30) and the integration by parts, we have
o0 (o)
Gac(t — 7) va(7)|7=5° + / 0p(T) Sap Gac(t — 7)dT = / Gac(t — 7) go(7) dT.
0 0

Finally, taking into account Eq. (31) and the initial condition for G,.(t), one obtains the sought
solution in the integral form

t
ve(t) = va(0) Gac(t) + /0 sl dr (34)

Although we have a formal expression (32) for the Green function, the main problem in the
formulation based on Eq. (34) is to find an effective method for determining the matrix exponential
function.

Having solved the eigenproblem for the matrix [Q] (i.e., ((Q] — A[E])[w]) = 0; [E] is unit matrix),
one can find the canonical form expression of this matrix. An interesting case occurs when each
eigenvalue A (a = 1,2,...,N) is single (i.e., det(Q — AE) = [TV, (A — A(@))), because [Q] can

=1

be expressed in terms of the diagonal matrix Dag = A(®d,4 as [Q] = [S][D][S~!] with the matrix
[S] being given by eigenvectors as Sy = wf;’). Then,

N N
Q= 0w 3 P, =5 St ¥
o=l

a,f=1

and hence,

T e
(e719™) | = 8 — 11Q7)as + = ((QTIQT]),,, + -

N N
es -1 1 % = -1 _—tA(®)
= a§=1: D 5o <1 -t 4 7 (tw‘)) +ooe) = .;:1 Sba Sq €7 (35)

Inserting Eq. (35) into (32), we obtain the expression
N
LIS e e (36)
p=1

that can be used successfully in Eq. (34).
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Unfortunately, the matrix exponential function in G,.(t) cannot be eliminated, if multiple eigen-
values are occurring (det(Q — AE) = [T, (A — A@)ka 'S k, = N), in general. Moreover, the
algorithm for getting the canonical form expression of [Q] in terms of a quasi-diagonal matrix is
much more complicated. On the other hand, a symmetric real matrix [Q] can be transformed to
a diagonal matrix by a similarity transformation even in case of multiple eigenvalues. In the present
formulation, however, the matrix [Q] might be non-symmetric even if the matrices [M] and [K] (or
[K~!]) were symmetric.

6. CONCLUSIONS

The paper presents a new formulation for solution of the initial/boundary-value problems for dif-
fusion equation by using both the Global and Local Integral Equations. The GIE are sufficient
to incorporate the relevant physical interaction in the model of continuum or in other words the
coupling among all nodal values (prescribed by boundary conditions as well as nodal unknowns)
in the discretized form of the governing equations. Hence, the system of discretized GIE can be
supplemented by the LIE in order to get a sufficient number of independent algebraic equations for
computation of nodal unknowns. Consequently, the resulting stiffness matrix is sparse like in a FEM
formulation. Moreover, the algebraic equations are good conditioned like in a formulation based on
the singular integral equations. Two concepts of the spatial variation are employed in approximation
of physical fields. Finally, an analytical approach is presented for a numerical solution of the system
of ordinary differential equations governing the time-evolution of unknowns located at nodal points
in the analysed domain.

APPENDIX A

In this Appendix, we present several important formulas resulting from modelling of geometry.
Although the potential field is approximated by using either the polynomial interpolation within
finite size elements (approximation in terms of intrinsic coordinates) or the meshless approximation
(in terms of the global coordinates), we need to discretize both the whole domain and its boundary
in order to model the geometry and finally to perform the integration over both the domain and
the boundary contour at least in case of the global integral equations.

A.1. Modelling of the global geometry (in terms of intrinsic coordinates)

Owing to a more faithful modelling of curved boundary contours, we adopt the quadratic approxima-
tion of Cartesian coordinates of the interior points along boundary elements. Then, it is appropriate
to use quadratic approximation also over the domain cells, in order to meet compatibility. Thus, we
assume

3
e Ul"p, nklr, = Zn,‘?’N“(E), £ e[-1,1] (A1)
p =1

where 7, are Cartesian coordinates of the a-th nodal point on T, and N®(£) are the quadratic
Lagrange interpolation polynomials. Then, the unit tangent and outward normal vectors are given
as

P 3 a
w(olk, = hf(§)=a:1n,‘:”%5—), wE) = RO,

ni(’?)h‘p = 5ik3tk("l)|f‘p )

(A2)
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with hP({) being the Jacobian of the transformation from the global Cartesian coordinates to the
local intrinsic coordinate £ and ;3 being the permutation symbol. Thus,

[ ¢rare) - Z/ ) d(y Z/()lrh” 6 de, (43)

Similar approximation we use within domain cells, assuming

8 )
Q=JR%, mlo. =) 2N, &), &, &e[-1,1] (A4)

a=%

where N%(¢;, &2) are the quadratic Lagrange interpolation polynomials of two variables and z3° are
the Cartesian coordinates of the a-th nodal point on the domain element(2, .

The Jacobian of the transformation from the global Cartesian coordinates to the local intrinsic
ones is given by

Jo(&1, &) = |eaij hSi(61, &2) BSi(61, &2)|,  with  h&i(&, &) = Zxae %61, &).  (A5)

Finally,

/ (-)dQ(z) = Z/e ) dQ(z Z/ / ). J(&1, &2) d&rdés . (A6)

A.2. Potential gradients by using polynomial interpolation for potential

Bearing in mind the approximations by Eq. (6) and the geometry modelling, the gradients of any
approximated field over ), are expressed in terms of the derivatives with respect to the intrinsic
coordinates by

a()| o A

ev-1 9()
Bi |, = 9o 9 |, = (A7)

1 86_7

where (h€)~! is the inverse matrix to h® defined in Eq. (A5). Since

sl s €3it €35k hiy (€1, €2)
O e Hnflrs ) B 1 ) ()

we may write

Ou(z)| e3i €35k by (81, &2) iu ®) N%(¢&1, &). (A9)

0zi |o,  €3mn h§m(&1, &2) RS, (61, &2) &

Furthermore, we need to know the normal derivative of the potential over I'y C I'p. Appar-
ently, the distribution of the potential over I'p is not sufficient for the computation of this normal
derivative. Therefore it is necessary to identify 2, to which I', belong by finding z and e from the
coincidence n%" = z*¢. Note that z € {5,6,7,8}. Denoting the values of the intrinsic coordinates

(61 ) 62) on F as (51 , 62) we have

L) dmY - g ed=tat (A10)
Z =5
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One can easily verify that the normal vector on I, is given by
ha (1 5 €5)

(i, = (1-2H(z—6.1)) eus Gy
“ 3

(A11)
Be(EE, &) = \Jhen(€, ) heu(E, €9),
where H(z) is the Heaviside unite step function
1, z>0
H(z) =g
(=) {0, £<0
and the parameter y is defined as
1, z=50r17,
lj, =
2;; B=G6or8.
Thus, the normal derivative of the potential is given by
ou ae aep
=—(n) =% "l ) Mg}, (A12)
on TpCQe a=1
where

hii(€T, €3)  esiesjn he(Ef, €3)

aep(g) = (1 — —-6.1)) ¢
M*P(€) = (1 — 2H(z — 6.1)) €ix3 he (€7, E2) e3sq b (65, B3, (6, €3)

NG(EL 5 &3)-

A.3. Modelling the local geometry using intrinsic coordinates

If the physical fields are approximated by polynomial interpolation in terms of intrinsic coordinates,
it is necessary to employ the same coordinates also for modelling of geometry. If L¢ were selected
as a circle in global coordinate system, it would not be a trivial task to determine the shape of
the corresponding curve in the intrinsic spaces associated with the cells Q,y¢. Therefore it is more
appropriate to assume L¢ = |J,'L¢ where the superposed prime stands for consideration of those
domain cells 2, which contain the nodal point y¢ and L¢ is the imagination of the circular arc of the
radius & and centred at (£§¢, £5°) in the intrinsic space associated with {2, . Because of the circular
geometry, it is appropriate to use polar coordinates in the intrinsic coordinate space. According to
the position of the global nodal point y¢ within the element 2.y, we can define the local intrinsic
coordinates of this node and the bounds for the angular variable on the circular arc as

yY=z*la=1|a=2|a=3|a=4|a=5|a=6|a=T]|a=8
@5e 0 /2 T 3n/2 0 /2 s —m/2
P5e /2 ™ % 241 gy T 3n/2 | 2w /2
e -1 I 1 -1 0 1 0 -1
ce wf | oaa il 3 Lot = 1o 1 0
Now,
P5°
[ow=% [oar=3 [Toree, (A13)
€ e g e W'ie

yCEQe yCENe
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where the curved arc L is parametrized as

Lg= {Vx €RY z= Zw“ N (€60, 0)), &0, ) = (&5 + o cosp, &° + osing),

¢ € 1%, ¥3 J}, (A14)

and the Jacobian of the transformation from z € LS to the angular variable of polar coordinates in
the corresponding intrinsic space is given by

h(p) = 1/hi(p) hi(p)

8 A15)
dxk 5 = - (
e e 5 ae | a [ gce a [ sce
He) = G, b Xet [~ sine N3 ((6o, 0) + cos o N3 (860, 0)]
The unit tangent and outward normal vectors on L¢ are defined by
he
te(z) e = hﬁgg v ni(@)|Le = eka ()| Lg - (A16)
Thus, the normal derivative on L¢ can be written as
Oou fie
SF (g = u mae Kaec , Al7
n @), = ) 2 eI K ) (A17)
with
aec € 5311 63]71 (f (60 4 )) a ( Fee
K°(¢€) = eix3 b (1) N3 (&6, 9). (A18)
ssa 1, (€260, ) 1, (E<(6o, )

Note that he, (£%(¢0, ) ) is obtained from hg,(&y , &) replacing (€1, &) by £%(6o, @) = Ef°+p cosp

and &5°(%o, @) = €5° + &osin .
Since the domain bounded by L¢is Q¢ = |J Q¢ with

y“éﬂe
8
0= {ux e RS 5= 3 ot N (850, 9)) , E5(p, 9) = (€5 + poosp, €5° + ping),
a=1

€[0,&], v € o1, 5 J}, (A19)

we may write

/ )dQ = Z/c dQ = Z/&)/ (-) J(p, @) pdpdep,

yCENe yCENe

where J%(p, ) is obtained from J¢(¢1, &2) by taking (¢1, &) = (£8(p, v), £5¢(p, ©)).
In view of Eq. (A9), the gradients of the potential within Q¢ are approximated as

ou(z) .
= %) paec
B |, = 22 UV FE<o.p)
with
e3it €3k h§y (€(p, @)
Pi(p,p) = ( )

) N3 (&(p,0)) .

E3mn 1m(€ce (o, ) (
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A.4. Modelling the local geometry in the global coordinate system

This modelling is applicable when the LIE are implemented by using the MLS-approximation for
physical fields (Egs. (17) and (19)). Since the shape of {2 and L are arbitrary, it is appropriate to
select the circular form

L¢ = {VY(z1,22) € Q; Tk = yf + r0(dk1 cos o + drasingp), ¢ € [0,27]},
Q° = {V(z1,22) € Q; 2k = yf + p(dk1 cos p + G2 8ing), p € [0,7q], ¢ € [0,27]}.

Then, one can consider the fundamental solution in the form

ow* 1 1 P
* = ¥ s — & e A% * e | 23
w*(z — y°)|re =0, o (z —y°) g~ Sl (== 9)lae = 5 n<r0)

APPENDIX B

In this appendix, we present an algorithm for numerical computation of the strongly singular integral
given as a limit of the nearly singular integral

77?(5) — Zj

1
P = lim, [ FP(€) ea WE(E) sty = ot (B1)

z2—=¢b

in which the integration is performed in the intrinsic space of a singular boundary element I', 3 ¢ A
and z is a point from the interior of domain € bounded by I' D I', . The approach is based on the
extraction of peak-like factors and optimal transformations of the integration variables [5]. Without
methodological restrictions we shall assume the quadratic interpolation for geometry modelling
within I .

Let ¢éfbe the intrinsic coordinate of the singular point ¢bon I',. Then

3
P =qP(€) - Gi=Y_nP[N*(€) - N*(&D)] = &(éof + BY),
a=1
FPanl(@)—z=+ A,

where
1 ~ ~ 1
af= '2'(773p+773p) _771,'2’), ﬁf=2€gaf+ﬂfa ﬂf=§(n?p_nzlp)a Ai_—_C‘i—zi’
and

E=¢-Beli. &) with E=-(+g) =2+
Making use of the notations

. 4
e,~=é—1- a—-’Bl ; b=é, ¢ = b*(1 — a?), pP= e Bt

= e 2
: ) ﬁp (2] ﬂp it
we may write

72 = pfl + AP (p) + (PP + ), ()= (p* +cB)/BP(p),

h? = 2af (p — ab) + 7, Sl
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where

p=E+abefab+¢l, ab+£h),

b
Y (p) =ei - %hf— IBlp J
1
BP(p) = ;
(87)2 (1+ 72%)
with
2

A6) = (55) (0= a0 [(o - abf*@)? + 2o — ab) 287 + 207).
Now, the integral (B1) can be rewritten as
P=% Sy FP(€h —ab+p) |EP + A Q(p)| BP(p)d B3

= Alil)b iR 0o — @ P p2 T2 P p)ap, ( )

where we have used the notations
P
of By
ﬂp

Now, it is important to know the asymptotic behaviour of the integrand in Eq. (B3) as A — 0.
Since

P =Ff(P©€), EF =eusBlog, Q(p) =eirs [eihﬁ + (2a(p — ab) +b)| .

B2(e) = fim B7(6) = oo (o) = (8] + pol ) B + po),
and

2 oP BP

07(p) = Jim 02(p) = cus (20, + 80 + S0 20

are bounded within the integration limits, the only singularity is the strong singularity contained
in the peak-like factor A/(p? + c?) at p = 0 as A — 0. Thus, the considered integral becomes

& Plé+o) Pl
P _ P J7\&oTp) ; P
P=E /}E S do+ fim / o Tz (B4)

in which
FP(p) = fP(€2 — ab + p) QP (p) B?(p).
Assuming fr (é8 — ab+ p) to be Hélder continuous at p = 0, one can asses the limit of the integral

ab+£% A

lim [FP(p) — FP(0)]dp = 0. (B5)

A—0 ab+€P p2 +c2
Hence, and from Eq. (B4), we have

&8 Fp(eP . ab+£P
p—pgr| " Mdp-{-F”(O) Y A

e d(p) A0 Jopygr p?+ 2 i (B6)
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where

ez()

FP(0) = fP(¢5) 2P(0) BP(0) = .

7(€5)-

In the last equation, we have utilized the fact that the tangent vector to I', at ¢t is given by
7P(¢%) = BP/BP. Bearing in mind that

ab+&f A A ab+ &8 ab+ ¢
s = t mci Bl
Algl‘) L PR dp Ali)n 5 [arc an ( p ) arctan ( % )] \/l——a P, (B7)
where
s a .
[5 — arctan (ﬁ)] y if 60 = —1,
P =<, if & € (-1,1),

™

[/ .
[arctan (ﬁ) sk -2—] ’ if fo e b

In performing the limit A — 0 in Eq. (B7), we have utilized the fact that

& =0, AR if & =-1,
é’i = (—2’0), i ( ) if 63 (—1,1)1
=2l ¢ =0 if gl =

Since a = €;77(¢%), we have 1 — a® = (e; nf(¢®))? and hence

inf(¢®)  pP
ﬁp . /1 — a2

Expressing a as cosw?, we have a = sin(Z —wP), v1—a? = sinw? = cos(§ — wP”) and

= L

arctan (Jl—“_—af) = § — wP. Thus,
wP, i g =,
o =<, i e (BS)

T—wP, if &=1

where w? is clearly defined as the angle within two unit vectors € and 77(¢?).
Now, in view of (B7), Eq. (B6) becomes

&8 Fp(eP =
= /ﬂ Patlar e, (B9)

where P is given by (B8) and fP(£]) = f(nP(€5)) = F(C?).
Note that the singular segment is represented by T, if ¢® € T, with &) € (—1,1), but it is given
by DU i €0 = —1 (6~ ! = 1) and/or by T,Ulp ifé =1 (§p+1 —1). It can be seen that

Y e ¢ = f(¢) (2r - 8, (B10)

P
¢bery
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where 6° is the angle within two tangent lines to I' at ¢?. The proof is trivial in the case when
€ € (—1,1), while for &8 = —1 and & = 1 we have, respectively,

PPt =wP + (m— W) =2 — (1 4+ WP - wP) =2r - 6
or
@F + Pt = (1 — wP) + WPt =21 — (m + WP — wPH) =21 — 6V,

Finally, the sum of the considered strongly singular integrals is given by

& o +p)
Zp: IP = (2m — 6°) f(¢Y) + Z,,: E”/ﬁ Tf’(p)——dp. (B11)
¢bery ¢bery
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