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In the paper, the layout optimization of rigid-plastic disks is presented. The method is based on a model
where a disk is subdivided into rectangular elements interconnected by normal and shear forces along
their edges. Using this model statically admissible stress fields are constructed and the static theorem of
limit analysis is applied. Following the concept of porous materials the design variables are the unknown
densities of the elements with variable yield stress expressed in terms of the densities. Two complementary
optimum design problems are presented. The load intensity is maximized at given intensity of the load and
the total amount of material is minimized at prescribed amount of material, respectively. Both problems
are expressed in the forms of nonlinear mathematical programming. The application is illustrated by two
examples. .

1. INTRODUCTION

Recently, a number of topology optimization methods has been developed at which the layout
problem is transferred into a material distribution problem (see e.g. [1, 2, 6, 9, 11-13, 15]). In
some methods it is assumed that the elements of the discretized structures either have or have
not material. This zero-one formulation leads, however, to combinatorial problem and the solution
requires large computational work. To overcome this difficulty (see e.g. [8]) the concept of porous
materials was proposed by Kohn and Strang [7] and applied among others by Yuge, Kikuchi [14]
and Maute, Swartz, Ramm [10] to material topology optimization including nonlinear material
properties.

In this paper the layout optimization of plastic disks will be presented. The method is based on the
concept of porous materials and on the rigid-plastic element model of plane stress problems proposed
by Kaliszky [3]. Using this model statically admissible stress fields can be constructed which form
the basis of the application of the static theorem of limit analysis and the formulation of two
optimum plastic design problems. At the first problem the load intensity is maximized at prescribed
amount of material and at the second one the amount of material is minimized at given intensity
of the load. The formulation of both problems leads to nonlinear mathematical programming. The
solutions provide the optimal material distribution from which the optimal layout of the disk can
be constructed.
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2. DESCRIPTION OF THE PROBLEM

Consider a homogeneous rigid-perfectly plastic disk with constant thickness v, density pg, mass
mo and yield stress oyg, supported along the boundary S, and loaded by a one-parameter load
along the boundary Sp (Fig. 1). The mass forces are disregarded. This ground structure defines
the available design domain 2 for the further investigations. To obtain a discrete system the disk
is subdivided by perpendicular straight lines into rectangular elements. It is assumed that between
the elements along their edges normal and shear forces arise, as it is shown for the element (i, )
in Fig. 2. Following the concept of porous materials the elements have different unknown densities
and yield stresses defined by the relations

P = Ziipo » a?(/ij) - Eiﬁjayo- (1)

Here z;; are design variables that characterize the material distribution and g is an appropriately
chosen constant.
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Fig. 1. Available design domain Fig. 2. Rigid-plastic element -

By the use of a sixth order Airy stress function statically admissible stress fields can be derived for
each element [3]. The stresses o3/, 03/, 7% of the elements are expressed in terms of the forces acting
at the edges. Making use of these relationships and assembling the elements fourth degree statically
admissible stress fields can be constructed for the entire disk, in which the lines of the mesh are
discontinuity lines across which the interior normal stresses are discontinuous. It is to be noted that
the thicknesses of the elements can not be considered design variables because then the thicknesses
and consequently also the exterior stresses would be discontinuous along the discontinuity lines
which would violate the equilibrium conditions [3, 4]. The statically admissible stress fields form
the basis for the application of the static theorem of limit analysis.

Using the proposed model the following two material optimization problems will be presented:

Problem 1. At given mass m = amg, o < 1 available for the design the material distribution of the
disk characterized by the densities p;; of the elements is to be determined such that the statically
admissible load multiplier A be maximum.

Problem 2. At given load multiplier A = X, the material distribution of the disk characterized by
the densities p;; of the elements is to be determined such that the mass m of the disk be minimum.

In both cases the goal of the design is the determination of the optimal material distribution of
the disk with prescribed amount of material and with given intensity of the load, respectively.
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3. EQUILIBRIUM CONDITIONS

Collecting the forces acting along the edges of the elements (4,5), (i +1,7), and (1,7 + 1) in the
vectors

x T X
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the equilibrium equation of the (¢, j) element can be expressed in the following form,

N;;ai; =0. (3)
Here,
~1 0 0=k 008 1 1 0 00 Q.5
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Using these equations the equilibrium equation of the entire disk and the statical boundary condi-
tions can be written,

Nq=0 in Q, (5)
qo = Ap on Sp. (6)

Here qp contains the element forces acting on the free edges of elements along the boundary.

4. YIELD CONDITIONS

In case of discrete models the yield conditions can be satisfied only at certain points of the elements.

In the followmg we present the simplest approach when the yield conditions the stresses amj 4 a;f

and 7,7, acting in the middle points of the elements are taken into consideration. Using the stress
fields derived in [3] these stresses can be expressed in terms of the element forces as below,

ia 1

g = ZJE ('nf] +nf,j+1) - (7
~ij 1y .4

oy = %va; (nij +ni+1,j)’ (8)
. 3 3

T:Z; = 16Uaj [(t +t1]+1) s g8 bi (tx +t1]+1)] 8v b (tz +t1J+1) (9)

In Eq. (9) the last equation of Eq. (3) was substituted.
Using the Huber-Mises-Hencky yield condition,

fi = @) + (@9 - (0¥) (@) +3 ()" - @) <o, (10)

and substituting Egs. (1) and (7)-(9), we get the yield condition of the element (i, j),
1 i 2 i
fij = ] (n; +n,J+1) sy F (n % ,+1,j) T ajb,- (ng; +nu+1)<n +n1+1J)
i £
27 2 2
+ 17 8 +253)° - (200025) <0 (11)
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Writing the above yield condition for all elements the yield conditions of the entire disk becomes
f(a,2:5) < 0. (12)

More accurate solution can be obtained if the yield conditions in the Gaussian points of the elements
are satisfied. Here the details are not described, however, at the solution of the examples presented
in Section 6. this approach was used.

5. FORMULATION OF THE PROBLEM

Using Eqgs. (5)-(6) and (12) and the expression of the mass of the disk
n z
m = vpg Z Z b,-ajmij , (13)
t=1 =1
the optimal design problems described in Section 2 can be formulated as below.
Problem 1. Determine the maximum value of the load multiplier A and the corresponding material

distribution of the disk characterized by the design variables z;; at prescribed amount of mass
m=amgy, a < 1:

max A (14)

Nq=0 in Q, (15)

qo = Ap on Sy, (16)

f(q,zi;) <0 in Q, (17)

Tmin S Zij < Tmax in Q, (18)
n z

v,ooZ Z ba;zi; —amg < 0. (19)

1=l 4=1

Problem 2. Determine the minimum mass m and the corresponding material distribution of the disk
characterized by the design variables z;; at given load multiplier A :

n z
minm = 'UPOZ Z biajxij y (20)
i=1 j=1
Nq=0 in Q, (21)
qo = A\p on Sy, (22)
f(q,zi) <0 in Q, (23)
Tmin < Tij < Tmax in £, (24)
A=) L0. (25)

In Egs. (18) and (24) Zmin and Tmax denote the prescribed minimum and maximum values of
the design variables. It is seen that both problems lead to nonlinear mathematical programming.
Through the optimality conditions it is easy to prove that the two problems lead to the same optimal
solution.

For the numerical solution a computer program system was elaborated. A standard finite element
program was applied for the calculation of the internal forces of the elements with the application of
simple force method. A sequential quadratic programming algorithm was used for the optimization.
The convergence of the iteration is good. The only limitation is the capacity of the optimizer
program. Determining the design variables the optimal layout of the material and the optimal
shape of the disks can be constructed.
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6. NUMERICAL EXAMPLE

Ezample 1. Consider a rectangular disk with a hole loaded by concentrated forces P = 80 kN and
supported at its corners (Fig. 3). The material constants are £y = 200000 MPa and 0,9 = 600 Mpa
and the thickness of the disk is v = 3 cm. The disk was subdivided into 22 equal elements and
at the solution B = 1 was applied. The problem is to minimize the mass of the disk. Figure 4
shows the optimal material distribution of the disk. At the illustration the standard MS EXCEL
representation was used at which the results are presented by surface. That is the reason that in
the figure the densities of some elements are not constant. In case of applying fine mesh this result
can come directly from the calculation. The symmetry of the Problem 1. is not used the decrease
the size of the computational task, because the symmetry of the final solution, what has obtained
rather preciously, is one control point of the method.
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Fig. 3. First example. Available design domain
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Fig. 4. First example. Optimal material distribution

Ezample 2. Consider a disk with irregular shape and with a hole is loaded by concentrated forces
and supported at its corners (Fig. 5). The minimum mass problem was considered with A = 12.5.
The material constants are the same as in the first example (Ey = 200000 MPa and 0,9 = 600 Mpa)
and the thickness of the disk is v = 3 cm. The design domain was subdivided into 81 equal elements
and B = 1 was applied. Figure 6 illustrates the optimal material distribution of the disk. Here also
the standard MS EXCEL representation was used.
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Fig. 5. Second example. Available design domain
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Fig. 6. Second example. Optimal material distribution

7. CONCLUSION

Using the rigid-plastic element model and the concept of porous material in the paper a simple
method was presented for the layout optimization of rigid-plastic disks. Using larger number of
elements appropriately accurate results can be obtained without the need of application of too
great computational work. At these particular examples the final solutions have been obtained after
two hundred major iterations.

Because of the use of meshes containing perpendicular straight lines and rectangular elements
the method can not be applied directly to disks bounded by oblique straight lines or curves. This
difficulty however, can be overtaken using fine meshes and replacing the boundaries by stepped
lines.

Using the finite element method the presented method has been extended to the layout optimiza-
tion of elasto-plastic disks subjected to multiparameter loading. In the solution bounds on plastic
deformation and residual displacement have also been taken into consideration [5].
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