Computer Assisted Mechanics and Engineering Sciences, 7: 471-478, 2000.
Copyright © 2000 by Institute of Fundamental Technological Research, Polish Academy of Sciences

Finite element method for a nonlinear problem
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We consider the nonlinear eigenvalue problem of a nonlinear partial differential equation under Dirichlet
boundary condition in a two-dimensional space. The classical solutions are given for rectangular domains.
We give numerical solutions obtained by finite element method for the first eigenvalue and eigenfunctions
and we analyze the error in the approximate finite element solutions.

1. INTRODUCTION

We discuss some nonlinear eigenvalue problem arising in physics and engineering.

1.1. The vibrating membrane

Consider the small, transverse vibration of a thin membrane stretched over a bounded region D in
the plane and fixed along its edges dD. The vertical displacement v(z,y,t) of the point (z,y) in D
at time ¢ satisfies

G ('Uz 'vnvlp_l)z e (”y ,,inp—l)y A |U|p_1 Vtt D> Oa (xay) = D7 t> 07 (1)

for a positive real p, and
v(z,y,t) =0, (z,y) €D, t>0.
If we seek separated solutions of the form
v(z,y,t) = u(z,y) w(t),

in which the spatial variables z,y and the temporal variable ¢ are separated, from (1) we are led to
the nonlinear eigenvalue problem of finding X and u(z,y) # 0 satisfying

= (ua: I’U’Z|p_1)x = (“y luylp_1>y =2 )‘U’ ,u,p——l ) p > Oa ('7773/) = D’ (2)

U(.’E, y) =0, (.’L', y) € oD. (3)

The boundary condition (3) is the Dirichlet condition. X is called an eigenvalue and u(z,y) a corre-
sponding eigenfunction of the nonlinear eigenvalue problem, moreover (), u) is often called an eigen-
pair.

It is known, [2], that the problems of this type have a sequence of eigenvalues
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and corresponding eigenfunctions
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Moreover it was also proved that the eigenvalues A; tend to oo as j — oo [2].
Corresponding to each A; we solve

w” (t) + Ajw(t) =0, t >0
obtaining
w(t) = w;(t) = ajsin/A; (t + ©;),

where a; and ©; are arbitrary.

1.2. The problem of heat conduction

Consider the problem of heat conduction in a body occupying a region D in two dimensional space.
We suppose the temperature distribution through D is known at time zero, the temperature is
held at zero on @D for all time, that we want to determine the temperature v(z,y,t) at the point
(z,y) € D at time ¢t > 0. From the fundamental law of heat conduction of thermal orthotropic
material we know that

-2 (k) - 5 (Wleng) = @0 @0eD, t>0
v(z,y,t) =0, (z,y) €0D, t>0,
v(z,y,0) = f(z,y), (z,y) € D,

where

f(z,y) — the temperature distribution at ¢t = 0,

kz(z,y) and ky(z,y) — the thermal conductivity of the material along the orthotropical axes z
and v,

r(z,y) — density of the material times the specific heat of the material.
If we seek separated solutions
v(z,y,t) = u(z,y) w(t),
of the differential equation when
be@y) =o', ky@y) =loP,  and  r(a,y) = P,
we are led to the eigenvalue problem (2-3) and for each eigenpair ();, u;) of (2) we get the equation
w'(t) + A\jw(t) =0, t>0. (4)

Corresponding to each ); from (4) we find w(t) = wj(t) = aje %’ Thus the separated solutions
are given by ajuj(z,y)e Nt j=1,2,....

2. CLASSICAL SOLUTION

We say that u(z,y) defined on D = DUJD is the classical solution of the eigenvalue problem (2-3)
with Dirichlet boundary condition if the function u is twice differentiable in D, differentiable in
D, the equation (2) is satisfied for all (z,y) € D and the Dirichlet condition (3) is satisfied for all
(z,y) € 0D.
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If the domain D is bounded by a rectangle we have got classical solutions [1]. We seek the solution

of (2) as the product of two functions of one variable

u(z,y) = X(z) - Y(y).

In this case the nonlinear partial differential equation can be separated and we are led to two
nonlinear ordinary differential equations. After solving them we are able to give classical solutions

for (2). When D is a rectangle
D={(z,y): 0<z<a, 0<y<b}

for the Dirichlet problem of (2)

ot pptl o ptl
Ak,l = pT <0,p+1 o bT_;:l_) )

k I
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are eigenvalues and eigenfunctions, respectively, and

s
Rzl
: s
Sin P

= ’

Ay, = const, and the function S, is the solution of the differential equation
p—1 -1
S;,’|S,',| + S|P Sp =0
under conditions

S,(0)=0,  S,(#) =0,

The function S, is the generalized sine function introduced by A. Elbert [5]. For p =1

Si{z) =%inz, i = 1.

It is not known that the problem has classical solution on other domains except rectangle.

If the domain D is bounded by a unit square, as a corollary of the above, we get the smallest
eigenvalue and the corresponding eigenfunction for the Dirichlet eigenvalue problem of (2) (we put

k =1 =1 to the expressions of A;; and ug):

Ai(p) = 2Pt up = A Sp(7ix) Sp(y).

The first eigenvalues of a unit square are presented as a function of p in Fig. 1.

The exact value of the first eigenvalue for the linear eigenvalue problem (p = 1) was given by

Rayleigh in his famous book titled The Theory of Sound [6]:
A,1(1) = 27?2 = 19.7392.

The graph of the first eigenfunction u;,; was presented in Fig. 2.
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3. FINITE ELEMENT METHOD

We use real function spaces. Let us recall that W1P*+1(D), with 0 < p < 0o, denotes the space of all
functions which together with their derivatives (in the distribution sense) ug, uy belong to LPTL(D).
As usual the symbol WO1 P+1(D) stands for the subspace of W?*1(D) obtained by closing the set
of all C*°-functions with compact support in D, see e.g. [4].

In (2-3) the eigenvalue problem was stated in classical form, i.e., we were seeking an eigenvalue \
and a corresponding nonzero eigenfunction u(z, y) such that the eigenvalue equation and boundary
condition were satisfied in the classical pointwise sense. This problem can alternately be given as
variational formulation:

Find u € W, ”*!(D) such that
/D('vxuz lugP™ + vyuy Juy P do = )\/D vululff"'dz  forall ve wyPtY(D). (7)

It can be shown [2] that u € WO1 PH1(D) satisfies (7) if and only if u is the solution of the following
minimization problem:

Find u € Wol’pH(D) such that

Jw)= inf J() forall ve WD), (8)
veWy P+ (D)
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where the nonlinear functional J : WO1 P*1(D) - R is given by

1

i S et & <|%|p+1 + o P = A |v|p+1) dz.

The basic idea in any numerical method for a differential equation is to discretize the given
continuous problem with infinitely many degrees of freedom to obtain a discrete problem or system
of equations with only finitely many unknowns that may be solved using a computer. For the
discretization process using a finite element method we suppose that D is written as the union of
linear triangular elements with maximum diameter h. To obtain a problem that can be solved on
a computer the idea in the finite element method is to replace WO1 o +1(D) by a set V}, consisting of
simple functions only depending on finitely many parameters. The functions N;, 1 = 1,2,...,m are
piecewise linear for the m dimensional subspace V}, of WO1 P+1(D), thus

m
Vh={Z$iNi|($1,$2,---7$m)€Rm}-

=1
This leads to a finite-dimensional minimization problem of the form:

Find up € Vj,, A € R such that

J(up) = inf J(vp) for all v, € V. 9)

VL EV)

Since V}, C WO1 P+1(D) then (9) corresponds to the classical Ritz—Galerkin method. In the finite
element method as a particular Ritz-Galerkin method the functions in V}, are chosen to be piecewise
linear.

The minimization problem (8) corresponds to the fundamental principle of minimum potential
energy in mechanics. It can be shown that the solution of the differential equation (2) also is
a solution of (8).

The finite element approximation of w is

m
Up = Z :L‘iNi = XT NT,
1=1
and

m
Vup, = Z V(N;z;) = x' BT,
a=1
Hence we get the eigenvalue of the problem (2) from the formula

My = /D (1wn)el?*! + ltuny ) da , (10)

/ lup|PH! dz
D

where uy, are the finite element approximations of the eigenfunctions. The first eigenvalue we ohtain

as
[ (al* 4 ) ao
>‘1h = ;inf; g .

ueVy / |u|p+1 &
D
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Let (A1p, uip) with

sl = (/[ :ulp“dw)”l? .

7
be the normalized eigenpair solving (9). It is known [3] that
|Adth — A1| =0,

[ulh—u1|—>0 as h—0,
where h is the finite element mesh parameter of Vj, .

To compute Ajj and uy;, we use the algorithm:
i. Normalization. Let

/ lup[Pttdz =1, that is / INx[Ptldz = 1.
D D
For arbitrary 1, = Nx = N(xa), where a # 0, we have

/ P dz = / Nxa[P*! dz = / INx[PH g dz,
D D D

therefore

1
)
la| = [/ |y [P dx] ! and  x
D

After normalization we obtain from (10) that

b p+1
)\h:/ dwz/ |Bx|PT! dz
D D

—Nx
and Ajp is the minimizer of (10). From

ii.

SHEY

oz

—N
+ ‘By x

Ny

2 =0, (i=1,2,...,m) we get

0= [/ BT]Bx|pdm} [/ [Nx|p+1dx] - [/ |Bx|”+1dx] [/ NT |Nx|? dx]
D D D D
and using (11) we obtain

0:/ BTle|”dx—)\h/NT|Nx|”dx.
D D

Since (12) is nonlinear we get

(11)

(12)
0:/ BTlejlpdx—)\h,j/ N7 |Nx]~|pda:+p/ BT |Bx;[P~! Bdz (x — x;)
D D D

(13)
by using the Newton’s method for given x; . Applying the following notations
H; :p/D B” |Bx; P! Bdz,

fN :/NT |Nlepd$,
D

fB :/BT 'Bx]‘]pdl‘,
D

ij = (X = X]‘)’
and we can write (13) as follows

Hj AXj = Ah,ij - fB "

G. Bognar
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We briefly describe the algorithm below:

1. Start with an initial approximation x; (x; # 0).

2. For given x;, calculate HjAx; = A jf§ — 5, then Ax; .
3. Evaluate X;11 = xj + Ax; .

Xj+1

[fDiNx-j+1|p+1 dz

4. Evaluate xj41 = 5
] FES

5. Calculate Ap 1 = / |ij+1|p+1 N
D
N i, e N
6. Terminate when l——h—];\'l—h”' is smaller then a predetermined tolerance.
h,j+1

4. NUMERICAL RESULTS

Our computations in this paper were performed for the unit square. Here the exact values are
known as a function of p. We approximated A; for various values of p using triangular elements with
dividing the sides of the square into 2, 4, 8 or 16 equal parts. The numerical results obtained by
the finite element method are reported in Table 1. The tolerance value was 1075 in the presented
calculations. We have got different number of iterations for different values of p. The least iteration
numbers (5-7 iterations) were obtained in the linear (p = 1) case. For p = 0.25 we got 39-594
iterations and 10-22 iterations for p = 9.

These results will be compared with the classical solutions obtained in Part 2 (see Table 2).

The knowledge of classical solutions makes it possible to analyze the error in the approximate
finite element solution. In Table 1. the relative error is calculated for different mesh sizes and for
different values of p. We show the relative error in the first eigenvalues when using different mesh
size, when the number of nodal points N are different. In Fig. 3 the logarithm of the relative error
is presented for different values of log N when p = 2. We see that to get relatively high accuracy
for the eigenvalues is not difficult. In our case, with 16 equal parts on the sides of the square, we
already have an accuracy of 1%.

Table 1 Table 2
» [ 2 [EO9] 4 [ECA| 8 [E® ] 16 _|E%) T D)
0.25 | 10.7316 | . 46.76 | 7.82924 | 7.07 7.4349 1.68 7.3459 0.46 0.25 7.31196
0.5 14.1856 | 33.36 | 11.1788 | 5.09 10.7632 1.18 10.6683 | 0.29 0.5 10.63743
0.75 | 18.5345 | 26.21 | 15.4269 { 5.05 14.8608 1.19 14.7285 | 0.29 0.75 | 14.68546
1 24.0000 | 21.58 | 20.7733 | 5.24 19.9942 1.29 19.8027 | 0.32 1 19.7392
1.25 | 30.8662 | 18.33 | 27.4956 | 5.41 26.4513 1.40 | 26.1785 | 0.36 1.25 | 26.08514
1.5 39.4950 | 15.97 | 35.9374 | 5.52 | 34.5713 1.51 34.1917 | 0.39 1.5 34.05689
2 64.0000 | 13.12 | 59.7529 | 5.61 57.5336 | 1.79 | 56.8420 | 0.47 2 56.57752
3 164.571 | 12.63 | 154.144 | 5.49 148.924 | 1.92 146.96 0.58 3 146.1136
4 418.909 | 17.24 | 376.421 5.34 | 364.646 | 2.05 | 359.712 | 0.67 4 357.3105
5 1063.38 | 25.99 | 890.323 | 5.48 | 862.019 | 2.13 | 850.263 | 0.74 5 844.0179
6 2697.36 | 38.61 | 2064.90 | 6.11 1988.77 | 2.19 1961.44 | 0.79 6 1945.989
7 6840.74 | 55.22 | 4729.90 | 7.33 | 4507.16 | 2.27 | 4443.81 | 0.83 7 4406.865
8 17347 %) 76.25 | 10747.7 | 9.20 10077.1 2.38 | 9928.48 | 0.87 8 9842.174
9 43992.4 | 102.4 | 24293.4 | 11.74 | 22294.1 2.55 21937.7 | 0.91 9 21739.39
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