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In the paper are derived the equations of motion of a gyroscope on elastic suspension, mounted on a
movable base. An algorithm for the selection of the optimum construction parameters and the matrices
of amplifications of the gyroscope regulator is presented. The latter is aimed at the quickest transitory
process damping and also at the minimisation of errors resulting from the friction in frame bearings, base
angular motion and non-linearity of the impact.

1. INTRODUCTION

Improving the accuracy and reliability of gyroscope systems installed in aerial vehicles poses a major
research and technical problem. Higher requirements are imposed on the accuracy of the results of
theoretical studies being the basis for gyroscope design and construction [1, 2|. It is, therefore,
necessary to carry out theoretical and simulation investigations into non-linear gyroscope models,
which account for all possible interference and operating conditions. The results offer an explanation
for non-linear phenomena and effects appearing in gyroscope dynamics. They also allow for proper
selection of parameters, so that undesirable motion ranges could be avoided and the necessary
gyroscope operation could be guaranteed.

The present paper deals with the dynamics, errors and control of a gyroscope applicable to aerial
vehicle systems of orientation, stabilisation and navigation. A full, non-linear model of the motion
of a gyroscope, mounted on a movable base (e.g. on board of an aerial vehicle), is analysed. Friction
in frame bearings and the non-linearity impact at high angular frame deflections were accounted
for in the model.

2. DERIVATION OF THE MOTION EQUATIONS OF A GYROSCOPE ON ELASTIC SUSPEN-
SION

In Fig. 1, the following co-ordinate systems are introduced:
OzoYo%, — motionless absolute (inertial) system;
Og4zyz — movable system connected with a movable base;
Ogy1y121 — movable system connected with an external frame;
Og4z2y222 — movable system connected with the internal frame;
Ogz3y323 — movable system connected with the gyroscope rotor;

O42%y323 — movable system connected with the gyroscope axis.
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Fig. 1. General view of a gyroscope on elastic suspension together with the asumed coordinate systems,
velocity vectors and moments of forces

Mutual angular position of the axes of co-ordinate systems will be specified by means of trans-

formation matrices in the following manner.

1.

The matrix of transformation from the system connected with the base to the system connected
with the external frame — Ogyz1y121 system rotation with respect to Oyzyz about the O4y; axis

by 1, angle

costpg 0 —sineh,
M,, = B /il 0 . (1)
sinyg 0  costhy

The matrix of transformation from the system connected with the external frame to the system
connected with the internal frame — Ogz2y220 system rotation with respect to Oyz1y12; about
the Oyz2 axis by 9, angle

1 0 0
M,, =0 cosdy sind, |. (2)
0 —sindy cosd,

. The matrix of transformation from the system connected with the external frame to the system

connected with the internal frame — Oyz3y323 system rotation with respect to Ogz2y229 about
the Oy23 axis by @, angle

cos®, sin®, 0
Myr=| —sin®; cos®y; O |. (3)
0 0 1
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Hence the matrix of transformation from the system connected with the base to the system con-
nected with the internal frame will be obtained as follows:

oS 1Py 0 —sin,
Mpy = My - My, = | sindgsing, cos¥, sindgcosthy | . (4)
cosVgsintp, —sind, cosdycosh,

Similarly, we will obtain a matrix of transformation from the system connected with the base to
the system connected with the gyroscope rotor

cos thy cos @,
+ sin ¥y sin1, sin @

— sin g cos @,

cos ¥, sin @
g g . .
+ sin?y cos 1)y sin @4

My, = Myy - My = —Cos 1Py sin @,
+ sin4, sin1), cos P,

sin 1, cos P, . (5)

cos i, cos
g g . .
+ sind, cos 1, sin @,

cos ¥y sin 4y —sind, cos ¥ cos g

In the case, when the axis is joined to the rotor by means of an elastic element, the gyroscope
gains additionally two degrees of freedom and the respective transformation matrices (by analogy
with the matrices M, , M,,, and Mpy,) will be as follows,

cospg 0 —sinyy 1 0 0
My, = B ok 0 : M7,=]0 cosdy sindy |, (6)
singy 0 cos Py 0 —sindy cosdy
cos Py 0 —sinyp
My, = My, - M7, = | sindgsingy  cosdy sindgcosyy |, (7)

0 o3 o 3 o o o
cosdgsinyy —sindy cosdgcos g
where 17 , ¥ — angles which specify the gyroscope axis position in relation to the base.
Assumptions made:

1. The centres of mass of the rotor, internal and external frames, and the point of intersection of
the rotor and frames rotation axes, overlap.

2. The axes of frames and the rotor constitute the principal central system of inertia axes.

Quantities given:

1. m1, mo, m3 — masses of the external frame, internal frame (together with the axis) and the
gyroscope rotor, respectively.

2. Jg, , Jy, » J2, — moments of inertia of the external frame in relation to the axes Oyz1, Ogy1 , Og21,
respectively.

3. Jzy » Jys » Jz, — moments of inertia of the internal frame in relation to the axes Oyz2, Ogy2, Og22,
respectively.

4. Jgy, Jys, Jo3 — moments of inertia of the rotor in relation to the axes Oyz3, Ogys, Ogz3,

respectively.
5. Jg,, Jy, — moments of inertia of the rotor in relation to the axes Oyz9, Ogy5 , respectively.

6. Components of the angular base velocity vector (the base kinematic impact) &(ps, ¢s, Ts)-
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10.

11.
12.

. Components of the force acting on the rotor mass centre F(Fx, F,, F,) given in the system

connected with the base Ogzyz.

. Moments of forces:

(a) the base affecting the eternal frame Mg(Mce Mcy , Mc.),
(b) the external frame affecting the internal one Mp(Mg,, , Mgy, , MB,,),
(c) the internal frame affecting the rotor Mg (Mgs, Mgy, , Mk.,).

. Moments of friction forces in the external and internal frame bearings:

(a) viscous

e dd
MrC’=M7YC="7cd—tga MrB:M,z;:T]b—(‘ng,
(b) solid

MTCZMT(,‘:O-S'Trc'dm M7'B=M?B:0-5'Trb'db,

iy
where
. dvp : dd
Tre = peNesign (_d—ti) , Try = ppNpsign (_(_it—g)’
Ney My s Me, Mo — friction coefficients in frame bearings;

N., N — standard reactions in bearings;
d., dp — bearing pin diameters.

The moment of friction forces in the rotor bearing in the internal frame and aerodynamic drag
M,k .

Interference signals in the form of moments of forces directly affecting the rotor M,p, M,c .

Rigidity coefficient  of the elastic element connecting the axis with the rotor.

Quantities sought for:

I,

Yo T @ @ T

The angles 1, , ¥4 , 4, with the aid of which the rotor position in relation to the Ogzyz system
is specified.

The angles 1y , g, with the aid of which the gyroscope axis position in relation to the Ogzyz
system is specified.

. Angular velocities

_dng -_dﬁg . d®,
%95 gt Bo TuTgger Re.rmigpe

Angular velocities

o dyg . dY?
Uy = s g e

The rotor angular velocity vector amounts to

b dd, d®
*_d_%+_19£+_£, (8)
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whereas the gyroscope axis angular velocity vector is
_‘0 _‘0
o Y
5358 dt

The projection of the rotor angular velocity vector components on individual axes of the co-
ordinate systems can be determined as follows,

(9)

[ 1/:)91'1 g i [ ¢_gx2 ! 4 %xs z‘ﬁg cos ¥y sin @,
Yo | = | %o | Yoy | = Pgcosty | ; Yoys | = | g cos¥gcos Dy | ;
L d)gzl o L 0 L. wgzz e _wg Sin'l9g '1/ng3 _¢g sinﬁg
[ 19.91‘1 | [ 199 cos ¢y | [ 1?922 199 'l'?gxg 19_9 cos O,
"?yyl = ) 0 ; 1?gyz =1 0 |; nga = | —dysin®, |;
| Ogz | —gsingy | [ gz 0 Vygzs 0
F B, T a0
q)gys = 0
L Pyzs | @

In a similar manner, the projection of the vector components of the gyroscope axis angular
velocity will have the following form,

25 ~ e h
[ ¥, ¢ Vg, =
0 — 737 ke 0 £ 0 o7 |
’¢_'gy1 = 'l/)g ) 79y = ’L/j’g COS 199 H
o o St o
L '(/)gzl 4 L 0 SRR ’l/)g Sin 199
[ ego> e 0 r 9o o
1?!Jab‘l 199 o "ﬁg "?912 199
0 = : 0 =
1?93/1 2 . 0 7 ??gyz g 0
0 e 0
U, | —dgsingy | £ 0
Hence

1. Vector components of the external frame angular velocity in the Ogz1y121 system:

Wy, Ds Ygary Ps COS Yy — 75 8IN7g
Woyr | =Mpz- | g5 |+ | Yoy | = Py + s
Wyz, Ts gz Ps Sinthy + 15 cOS Py

2. Vector components of the internal frame angular velocity in the Ogzay222 system:

Wozy Ps 1?912 ¢g$2
Woyy | =Mpw- | @5 |+ | Tgyo | + | Yoy,
Wz, Ts 19922 1/)912

Ps COS g — T58IN1Yg + 19g ;
= | (pssinghy + 75 costhy) sindg + (qs + 1) cos I
(psintg + s cos ) cos Vg — (gs + 1) sind,,

3. Vector components of the rotor angular velocity in the Oyz3y323 system:

Wyzs Ps ‘/fgxa ’?gn (i)gms
Woys | =Mpr- | s |+ | Ygys | T | Ygus | T | Pous | =
(0]

Wyzs Ts Vozs Vg2, 923
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Wz = Ps(C08 g cos By + sinddy sintpy sinPy) + (g5 + 1hy) cos 9, sin ®, + 9, cos P,
+ 7,(cos 1Py sindd, sin @, — sin 1), cos By),

Weys = —Ps(cos g sin @y — sinddysintp, cos D) + (g5 + ¢g) cos ¥y cos Py — 19g sin @,
+ 75(cos 1hg sin 1y cos 4 + sinh, sin By),

Wyzy = PsSintpycosdy — (gs + 1[19) sinty 4 74 cos hy cos ¥y + ‘i>g :

4. Vector components of the gyroscope axis velocity in the Oyz,y,2; system

o 0 0 : 0
Wosey Ds Q/ggzl Ds COS 1/{9 — Tssinyyg

o - 0} ., o 2 o
woy, | =Mz | ¢ | | bgy | = by +4s

o o 3 o o
wedh Ts Yoz Ps sintpg + rs cos g

5. Vector components of the gyroscope axis velocity in the O z5y929 system

o o 0
Wozy Ps 199302 %ng
o = 5 o 0
Woyy | = Mpo- | g5 | + | gy | + | Yoy,
o (] o
Wozy Ts 19922 Yoz,

Ps cos Py — rssingy + 19"
= | (pssinyyy + rscospy) sindy + (gs + ng) cos ¥
(ps sintpg + 75 cos 1bg) cos 190 (gs + 1,!19) sin 19"

The gyroscope motion equations will be derived with the use of 2"¢ kind Lagrangian equations.
For that purpose, we will determine the system kinetic energy Fj (it is equal to the sum of the
kinetic energy of the external and internal frames, the rotor and the axis), as well as the system of
the potential energy Ej,:

1 1
By = ) [‘]leswl + Ty wiy, + Inwp, ] + 5 [Jo2wga, + Jyz“’gyz + JnyWy,|
1 i Y
+ 5 [J gz3 + Jyawgyg + J23wgz3] [‘]o ( gzg) + J;/)Q (wgy2)2] ’ (10)
1
B, = 5&(1/)9 1/19) : KZ(’19 Tt 190) (11)
Lagrangian function will thus be equal to
L=E;—E,. (12)

If we take into account the fact that the generalised co-ordinate ®, is cyclic, the gyroscope motion
equation will assume the following form:

Equations of the gyroscope axis motion

d o (0]}
J;" dt( gy2 COS ¥ ) F szwgzzwyzl Jz?zwgyzwgrl sin 19; ==y (¢g & ¢3) = Mc¢ — M,c, (13)
J£2 .gmz ngwgyzwgzz — K,(’l99 - ’19;) =Mp— M,p. (14)

Equations of the gyroscope rotor motion

Sy wey, — (Jzy — le)“)gzl“’gh + (Jz, + st)wgzzwgn + “(¢'g £ "ﬁ;)
y d . .
e [angz2 + (Jyp + Jya )Wy Wogis F JzBat—(wgz2 + Qg)] sind,

£ [(Jyz + Jys )Wy, — J2aWeasWezy — Jzg(Wezy + d)g)wgzz] cosVy = Myc, (15)
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(Jzy + Jz3) gz, + (Joy = Jyp — Jys )wgys Wz, + Jzg (wgz, + d’g)wgyz + K(dg — 19;) =M;B, (16)

- dt(wg;,2 + <I>g) = Mg — M,k . (17)
In case of a motionless base, the equations will take the form:
d2 o
X5; T I cos® 9y — J 7,0019" sin 209 — K(1hy — g) = Mc — Mrc, (18)
0 d.2'l92 0 0,90 o (o]
Jl‘z dt2 + 2‘]y2¢ '19 Sln2'l9 (’09 —'199) = MB _MT37 (19)
2 d?4h, b 4. si
[y + Joy + (Jyp + Jys — Jz,) cos® 9] — (Jyg + Jys — Jza)W0gP48in 29,
- sta(q)g — thgsindg) sindy — J,; (Py — thg sindg)dy cos Iy + k(1hy — tg) = M, (20)
d219 2. o
(Jzs + Jus) =5~ T2 I+ - (Jy2 + Jys — Jzp) Wy sin 29, + k(94 — 93)
- Jz3(<i>g - ng smﬂg)'ﬂg cost¥y = Mg, (21)
d . .
sta(¢9"¢931nﬁg) = Mg — M,k . (22)
If, on the other hand, we disregard the inertia of frames and introduce the notations J;, = Jy, =
Jok s I3y = Jyy = Jgk (the rotor and the axis are axially symmetric), J,, = Jy0, the equations will
be as follows,
dw?
_gk dgtys Cos 00 + Jgk( gz1 gy Sln'ﬂo) Wozs — (1/"9 - 1/{3) = Mc — MrCa (23)
J;kwgza ~ g kwgyg 923 = ’i('ﬂg = "9g) = Mp — M,p, (24)

dw ' e
Jok diw o8 Vg + JgkWoas (Wyz, + Wyy, Siny) + Jyo(wyz, + @4) sind,

— Jgo(wgz, + (i)g)ngz cos ¥y + k(1 ¢g) M,c, (25)
dw :
Jok di&gc2 — JgkWey,Wyz, + Jgo(Wgzy + Pg)wgy, + k(I — Jg) = My, ol
d .
Jgo&(wgn e q)g) = Mg — Mk . (27)

3. LINEARIZATION OF THE MOTION EQUATIONS OF A GYROSCOPE ON ELASTIC SUS-
PENSION

The gyroscope axis and rotor motion can be affected by the moments Mp and Mc¢ being the
gyroscope motion input due to external forces. Another kind of impact is provided by the base
angular motion, specified by angular velocities ps(t), gs(t) and r4(t) and representing the motion
parametric input. The equations are strongly non-linear and the methods of their analytic solution
are not known. We will deal with the impact of the gyroscope parameter selection, non-linearity
and the base angular velocity on the gyroscope axis and rotor motion. All the analyses will be
carried out by means of numerical methods. In order to select the optimum gyroscope parameters,
Egs. (23)-(27) will be linearized.
Let us take the following simplifying assumption,

1. The moments of inertia of the external and internal frames are disregarded, i.e.

Iy =0; Jy, = 0; Juy = 0; Iy =0; Jy, = 0; I3, Si;
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2. The gyroscope rotor and axis are axially symmetric, thus J;, = Jy, = Jy, ng = J;’2 — ;’k.

Additionally we will notify J,; = Jgo .

3. The base angular motion velocities ps , gs, s are very low and the gyroscope axis performs small
deflections, i.e.

P&l cings €y, - Ky s 0y s v B € L . HpE L

Then
Wezy = Ps Wey; = ’(/)g +qs, Wgz = Ts, Wozy = Wgzz = Ps + '(99 5
wgyZ = ‘*’gys = ‘-"gyl = "/’g o qs wgzz = Tgy wgzg = Tg 1 q)g .

4. Friction in the bearings is of the viscous type and the moments of friction forces in the external
and internal frame are assumed to have the form

dx 9
MrC = ncd_tg ) MrB = nbd_tg )

5. The moment of forces driving the rotor is equal to the moment of friction forces in the rotor
bearings and the aerodynamic drag

AMK — MT‘K i
Then Eq. (27) will take the form

o, g
—= =const =n
dt ’
where n [rad/s| is assumed to be a known quantity.
Taking into account the above-mentioned assumptions and the notations introduced, the lin-
earized equations of the gyroscope motion will take the form

Wgz, +

d 1. 5
;’ka(«/);’ +q) + ncpy — K5y — ¥g) = Mc, (28)
. R :
;ka(ﬂz +p) + My — k(dy — Jg) = Mp, (29)
d . :
Jgkgt'(l/)g +q) = Jgon(Fg + p) + K(thg — 7/’;) = Mc, (30)
s O ;
Let us introduce dimensionless time
QN (32)
where
Jao + 1
o) Rl Rl .

The independent variable 7, changing the time scale, makes the numerical analysis easier as it
equalises the value of the components of equations and enables the introduction of numerically
greater integration scale. As a result, numerical errors will decrease.
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After substituting (28)—(31) with (32) and introducing appropriate re-arrangements, the lin-
earized Egs. (28)—(31) will take the form

@uisis do . dyg . Ao o ot
sy 3 M,5— M
=25 ve—Fu—+ by = (kp + Ko)V + M. B+, (33)
d?o dv ddy dypg B E
riE R P i - Mo — &g,
s e s e S (34)
d29° d o
d'r2g = —by dTg + KoV + Mp — . (35)
d2,¢o d,(po N d
d7'2g = -—bcd—Tg + Koo + Mc — Eg . (36)
where
Jo + Jok
I/:'l9—'l9;, O':’lp—'l/J;, U:ijg_ki,
b nc K K

by = bo = T . 4Bt
A L Rl L I < N
SorsiiMp el s 4 M,5 < M,c
M R I e , 0 Sy

LTigap “Rr e B 702 g P

4. SELECTION OF THE OPTIMUM GYROSCOPE PARAMETERS

The gyroscope parameters should be selected in such a way as to ensure its stability and the damping
of the transient process in the shortest time. Let us first introduce the following notations,

dv do dﬂzk dlﬁgk
=V, w?'“aa 3 =0, m4_d—7_a xS“‘—'—dT_) xG—T- (37)
After taking into account (37), the system (33)-(36) will be as follows,
x'=Ax (38)
where
7
x=[x1 Ty T3 T4 T 1'6] )
§ 0 1 0 g 0 ]
—(kp+Ko) O 0 v b v
0 0 0 I 0 0
A =
0 —v —(kp+kKo)) 0 —v b (39)
Ko 0 0 0 b O
i 0 0 Ko B0 —0 ]

In order to determine stable and optimum parameters, a modified Golubiencev method [5, 6]
will be applied. The algorithm based on this method has the following form. Let us introduce a new
variable

x(F) 29 (e | (40)
at the same time

6=TrA=—%(bb+bC). (41)
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After the transformation we will obtain

where
[ =) 1 0 0 0 TR
—(kp+Ko) —6 0 by v
0 0 -0 1 0 0
i 0 —v —(kp+hKo) =0 —v be &)
Ko 0 0 0 —-by—9 0
i 0 0 K% 0 0 —b.— 4 :

The characteristic equation of matrix G whose Tr G = 0 is transformed to the characteristic
polynominal of the form

WS + gow? — g3w® + gaw® — gsw + g5 = 0. (44)

We seek such values k,, kp, U, by, be for the matrix G so that the characteristic equation (44)
would have roots, which are only imaginary or equal zero [5]. For that purpose, the characteristic
equation (44) coefficients g2, g3, 94, g5, g6 (the coefficient gy = Tr G = 0) should be determined
as the sums of all possible determinant combinations of principal minors of the degrees 2, 3, 4, 5
and 6, subsequently, of the matrix G described by (43). At the same time, it is necessary to carry
out the maximisation of the absolute value of the matrix A trace described by the expression (41).

In order to reduce the errors in the gyroscope axis motion, which result primarily from non-
linearity impact and friction forces in frame bearings, a linear-square regulator will be applied [9].
The law on the regulator control has the form

u=-K-x. (45)
The conjugation matrix K occurring in Eq. (45) is determined from the following relation,
K =R!BTP (46)

where BT is the control transposed matrix

orljmo?oooo

ke a AP ald bl
7o

0 8 fhd B0 oﬁ,

and P is the solution to the Riccati algebraic equation
ATP + PA - 2PBR!B’P +Q =0. (47)

Weight matrixes R and Q occurring in Eqgs. (46) and (47) are selected in such a way as to get
the quickest damping of transient processes and interference connected with the angular motion of
the base. It is obvious that the technical limitations of the control execution device must be taken
into account.

The software covering the algorithm responsible for the gyroscope parameter optimisation based
on the modified Golubiencev method and conjugation K matrix determination was written in
Matlab-Simulink [8].
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5. RESULTS OF INVESTIGATIONS

Numerical investigations into a gyroscope on elastic suspension were carried out for the following
initial data,

Jgo=5" 10~* kgm?; Jok = 2.5+ 10~* kgm?; n = 300 rad/s; v = 1.5.

In all cases the gyroscope was affected by the input in the form of the following initial conditions,

3 dd(0) 50 [rad] s dy(0) 50 [rad]
=0, ZR-2/2); yo-o HD--2[=; (48)
E o dd,(0) _ e dipo(0)
190(0) o Oa dT = 0’ /‘;Z)O(O) = 07 dT - 0 (49)
We assume that the base vibrations are of harmonic character:
" & .
= %_q sinvT; g = %3 COS UT; Pl ﬁ sinvT, (50)

and that pso = ¢so = 750 = 2rad/s; v = 10rad/s as well as they appear at the time instant t = 0.2 s
and operate for the time ¢ = 0.1 s.

Figure 2 presents angular vibrations of the gyroscope rotor with non-optimum parameters. Fig-
ure 3 shows the impact of the optimum parameters on the transitory damping process both for the
rotor and the gyroscope axis. It is clearly seen that the gyroscope does not demonstrate asymptotic
stability — it does not keep the axis angular position in space as pre-set by initial conditions (48)
and (49). What is more, the impact of the base vibrations, described by the expressions (50), on the
axis additional getting off is clearly noticeable. In order to obtain asymptotic stability of the gyro-

? = : ==} N i o ¢ ; TR R RN ETS b S S R
008 Voo Eoof f % eooo
5%0.00f n=0.01 5«9’ 0.00f Ygo 1\{;[%23 :
S =0.01: -0.02F : iy
% L » N N.=3:32
-0.05 | ‘ : < oodf ‘ ¥ ‘
-0.10F (R A ‘ i > _0.06F i
| Hw“W“‘"M 5 -0.08 TR g
=015k (I ‘ (O = G0k > linear Ii
‘ 5 2030 / > non-lineay
-0.20} : -0.12f - e S
: : : godlsadhe fnidiNtata .............. BTG -
-0.25} i ‘ ---------- i i . i . 5 B L i e e et i —
“0.250.0-0:2"04° 060810712 ‘1416 0.06 0.08 0.10
T [s] T s]
Fig. 2. Fig. 3.
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[3*)
(=}

[rad/s]

—
QN D

“Pg, \Pgo

-20

0100002 004 006 008 0.10 0° 0° 10 20 30 & W
T [s] 9% 9o [rad/s]

Fig. 5. Fig. 6.

scope under consideration (thus keeping by its axis the pre-set position in space), the conjugation
matrix K described by the expression (46) was applied. Its elements possess the following value,

—48.66 78.35 —1.72 79.03 70.48 3.09 0.74 —1.48
~1.72 -8593 —63.34 4898 —0.18 —-0.36 62.55 —12.76
67.96 —1.95 0.11 0.23 -67.35 -31.91 0.00 0.00
0.32 0.64 71.70 5.55 0.00 0.00 —65.98 —13.50
The course of changes of the control values in time is shown in Fig. 4. Additional effects of the

damping of transitory processes after the application of linear-square regulator are presented in
Figs. 5 and 6.

€ =

6. CONCLUSIONS

Simulation investigations show that the gyroscope with an elastically mounted rotor is not asymp-
totically stable. It is, however, possible to increase the stability of the gyroscope axis and rotor
motion by means of proper selection of the optimum parameters with the modified Golubiencev
method. However , due to the friction in frame bearings, at the interference from the base, the
gyroscope axis gets off the pre-set direction. This undesirable phenomenon could be neutralised by
the introduction of an additional stabilising control described by the expression (45).

The final conclusion is that the gyroscope with the construction parameters and controls selected
in accordance with the algorithms presented in the paper can be applied to the co-ordinator scanning
the defined space in a homing missile [3, 4, 7].
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