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We study a phase-field model for the isothermal solidification of a binary alloy which involves the relative
concentration and the order parameter. We prove the existence of weak solutions as well as regularity
and uniqueness results under Lipschitz and boundeness assumptions for the nonlinearities. A maximum
principle holds that justifies these assumptions. A numerical approximation and some numerical results
are also presented.

1. INTRODUCTION

Phase-field models have become of standard use to describe the solidification of both pure metals [1,
2| and more recently, alloys [11, 12]. One of their main goals is to obtain a regularized description
of the phenomena of dendritic growth, which was earlier described by sharp-interface Stefan-like
problems [10]. Most past works deal with thermal dendritic growth on pure metals, while we are
interested in the description of solutal dendritic growth during the isothermal solidification process
of binary alloys. The model we study is very similar to the Warren and Boettinger model [11].
This model involves the relative concentration ¢ and an order parameter ¢ which accounts for the
solidification state of the alloy by being equal to 0 if the system is in a solid phase and equal to 1 if
it is in a liquid phase. For mathematical analysis, we study an isotropic model. The time evolution
of ¢ and ¢ is governed by the following equations:

: a% — 20+ Fi(¢) + cFa(9) iniGoclariaot (1)

e %g = div (D1(¢)vc + Ds(c, ¢)v¢) in © x (0, +-00), 2)
ap ol ide (§

5 o f 0 on 90 x (0, +00), (3)

L ¢(0) =0, ¢(0) =co in Q, (4)

where §) is an open subset of R¢ with 1 < d < 3 and with boundary 92, n is the unit normal to
0Q and a, € are given positive constants. This model is isotopic in that ¢ is taken as a constant.
For physically meaningful numerical simulations, € is replaced by a function of the local angle 6
between the vector V¢ and an arbitrary axis. -

The functions Fy, Fy appearing in (P) are given and satisfy F;(0) = Fj(1) = 0 for ¢ = 1,2,
function D; is bounded from below by a positive constant and function Dy is such that Dy(0,¢) =
Ds(1,¢) =0 for ¢ € [0, 1].
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Moreover, initial physical data ¢y and ¢y are given with values between 0 and 1. The solutions
¢ and ¢ of Problem (P) must be found with the same property.

In this paper, we present a number of mathematical and numerical results for Problem (P). First,
in Section 2 we begin with a short description of the modelling leading to Problem (P). Then, in
Section 3 we investigate the well-posedness of this problem. Section 4 is devoted to the numerical
approximation of (P) by means of a finite element method. Finally, in Section 5 we present some
numerical results for the isotropic problem (P) as well as for an anisotropic version of Problem (P).

2. MODEL

We consider a mixture of two pure elements A and B, present both in liquid and solid states inside
a domain 2. The system can be characterized by a relative concentration ¢ = ¢(x,t) of element B
with respect to the mixture, for z € 2 and at time ¢. The relative concentration of element A will
then be 1 — ¢, and the variable ¢ will take values in the interval [0,1]. We further characterize the
system with an order parameter for solidification, the phase field ¢ = ¢(z,t), which also takes values
in the interval [0, 1]. A value of ¢ = 0 corresponds to a solid region, and a value of ¢ = 1 to a liquid
region. Since we do not want to account for thermal effects, we assume the temperature 7" to be
constant.

To have a thermodynamical description of the evolution of the variables ¢ and ¢, we introduce
a Ginzburg-Landau free energy functional (see (3, 8|) s

&

F(T,c,¢) = /Q (f(T, ¢, ¢) + %W)I?) da, (5)

where f is a free energy density and € a small parameter (in the case of the isotropic model).
The evolution of the quantities ¢ and ¢ for the isotropic model can then be described by the
following equations:
of

Bigivr_elsdds g i 18§

5 A BEY of
5 = div (MVE) =div (uVac), (7)

where (0F/6¢p) and (0F/dc) stand for the functional derivatives of F with respect to ¢ and ¢
respectively.

Under the hypothesis that the coefficient « is positive and p is a positive function of T, ¢
and ¢, the previous equations guarantee a locally time decreasing free energy (second principle of
thermodynamics) as well as the conservation of matter (see [11, 12, 5]).

The general form (6)—(7) of solutal phase-field evolution equations is used both by Wheeler,
Boettinger and McFadden [12] and Warren and Boettinger [11]. To ensure that we have a thermo-
dynamically consistent model, we shall choose a free energy density f(7T',c, ¢) alike to that used by
WB [11]. :

Warren and Boettinger’s thermodynamically consistent free energy density [11] is given by

RT

Um

f(Tye,¢) = (1= ) fAT, ¢) + cf P (T, 4) + ——[(1 = ¢) In(1 ~ ¢) + eIn(c)], (8)
where T is a constant, R is the Boltzman constant, v,, is the molar volume and f4(T,¢) and
fB(T, $) are the free energy densities for the pure elements (¢ = 0 and ¢ = 1 respectively). We
construct the functions f4 and f? in a similar way to Warren and Boettinger [11] in order to ensure
thermodynamic consistency. We assume that at the melting temperatures T4 and T2, functions
f A(T,f}, ) and fB(TB,.) are of double-well potential type and that at a given temperature T' between
TA and T,B, functions f4(T,-) and fB(T,-) have each only two minima for ¢ € [0, 1], namely at
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# =0 and ¢ = 1. Using some basic thermodynamical principles, we can obtain a general form for
fA, fB and then for f at any temperature T'. A particular choice for f is a polynomial function in
¢ of at least 5th degree when T is different from the melting temperatures TA and TB. We refer
to [5] and [11] for the details.

Thus, we can infer that

0
-5 = Fi(#) +cP(9), )
where Fy, F, are functions of ¢ which vanish for ¢ = 0 and ¢ = 1, and
o Y- 63
Va = —Fy(¢)Vop + % R ve. (10)
Hence, Eq. (6) with (9) becomes
0
o2 = 20p+ Fi(g) +cFa(). (1)

Moreover, in order to recover a classical diffusion equation for ¢ whenever ¢ =0 or ¢ =1 i.e.ina
totally solid or liquid phase, we choose
Um
p =gz c(l =) Di(9), (12)
where D; is an increasing smooth function such that Dy = D1(0) > 0 and D; = Dy(1) > 0 are
respectively the solid and liquid diffusion coefficients, and D, is bounded above and below by two
positive constants. Thus, equation (7) with (10) and (12) leads to

_g% = div (D1(¢)Vc + Ds(c, ¢)v¢) ; (13)

where
Da(e,$) = =g ¢(1 = ©) Da($) Fx(#)

is a smooth function vanishing for c =0 and c = 1.

The evolution equations (11) and (13) can be coupled to homogeneous Neumann boundary
conditions on ¢ and ¢, ensuring that both matter and non-thermal free energy are confined on the
domain €. Furthermore, considering initial conditions this leads to Problem (P).

We point out that the possible choice of a polynomial function of 5th degree in ¢ for f entails
through (9), that F, and F, can be choosen as polynomial functions of 4th degree (see [11]).
However, functions Fy , F5, D; and D, have no physical meaning outside the sets {0 < ¢ < 1}
and {0 < ¢ < 1}. So, the functions Fy and F> we consider subsequently are truncated outside the
interval [0,1] to 0 as shown in Fig. 1. We also truncate Dy to 0 beyond the set {0 < ¢ < 1}.

These truncations are fully justified in the next section in which we establish a maximum principle
guaranteeing that the solution (¢, c) remains between 0 and 1 provided the initial data (¢o, co) does.
Moreover, this truncation procedure will enable us to prove existence, regularity and uniqueness
results.

3] B

/\_ $ i /\ b

Fig. 1. Source terms Fi and F; obtained by truncation to 0 outside the interval [0, 1]
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Sharp-interface limits as ¢ — 0

The parameters a and € can be related to physical parameters by exhibiting a special solution for
the phase-field in a one-dimensional case for a pure element (¢ = 0 or ¢ = 1) and performing an
asymptotic analysis as € tends towards 0 (see [11, 5, 4]). In that way, €2 is proportional to the
liquid-solid interface thickness d. Furthermore, it is possible to study general asymptotic limits of
the model when § — 0. Sharp interface Stefan-like problems are then found. The sharp-interface
I'(t) splits  into two regions Q4(t) (solid) and €(t) (liquid). The concentration ¢ and the interface
I'(t) satisfy the following general form (see [4]):

( Jdc .
== D;Ac in  Qt),
% =.D;l\¢ in Q(2),

{ “Wule] = [Dl %cl-]l on T(t),

\ [f—c%]s=.7:(Vn,n) on I'(2),

where V, and « are respectively the normal velocity and the curvature of the interface I'(t) and [g]?
denotes the difference of the quantity g between the solid and liquid sides of the interface. According
to the dependency of « and other parameters inside F; and F, with respect to €, the function F will
linearly depend either on V;,, on &, on both or on neither of them. The three interface conditions can
be easily interpreted as the conservation of matter through the interface (first condition) and the
eventual shifting of the equilibrium phase diagram due to interface curvature and normal velocity
(second and third conditions, whose solving give the limit values of ¢ on either side of the interface,
as functions of k and Vj,).
Without loss of generality, we may choose a = 1 for the rest of the article.

3. MATHEMATICAL ANALYSIS

In this section, we investigate the well-posedness of the isotropic solutal phase-field model (P).
We suppose that the nonlinear functions F; and D;, 1 = 1,2, satisfy Lipschitz and boundeness
assumptions. More precisely, we assume that

(H1) Fy, F, € C(R) are Lipschitz and bounded functions.

(H2) D, € C(R) is a Lipschitz positive function, bounded above and below by two positive con-
stants.

(H3) Dy € C(R x R) is a Lipschitz and bounded function.

These assumptions are fully satisfied through the truncation procedure presented in Section 2
(see also Fig. 1). We first prove a maximum principle which justifies those assumptions and then the
truncation procedure of Section 2. Then, under assumptions (H1)-(H3) we establish the existence
of weak solutions and a regularity and uniqueness result. All these results have been obtained in [9],
which we refer to for complete proofs.

We also assume that © is an open bounded domain in R¢, d < 3 with a smooth boundary 89 of
class 0. We note V = H'(Q) and V" is the dual space (H'(2))" of H'(£2). We denote by (-, )y v
the duality product between V' and V. Finally, for T > 0 we note Qr = Q x (0, 7).

To begin with, let us define a weak solution of Problem (P).
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Definition 1. Let (¢o,co) € L*(Q) x L2(Q) and T > 0. A couple of functions (¢,c) is a weak
solution to Problem (P) if ¢, ¢ € L*(0,T; H*(Q)) N H(0,T; V"), with ¢(0) = ¢o, c(0) = co and

<%(§,U>V,’V+E2/§2V¢'Vvdm=/Q(F1(¢)+CF2(¢))vdm,

(14)

<g§, w> F / (D1(¢)Ve + Da(c,¢) V) - Vwdz = 0,
\ZA% Q

for all v, w € H(Q) and a.e. in (0,T).
Remark: Since ¢, ¢ € L2(0,T; H'(Q)) N H(0,T; V"), it follows that ¢, c € C([0, T]; L*(22)).

3.1. Maximum principle

In addition to (H1), (H2) and (H3), we suppose that the nonlinear terms Fy, F, and D, satisfy
the following extra assumptions:

(H4) Fy = F, =0in] - 00,0 U[1,40c0[.
(H5) Dy(-,m2) =0in]— 00,0] U [1,+oo[ and for all r» € R.

These assumptions correspond to the truncation procedure of Section 2. The following result
allows to justify the extensions of Fy, F and D3 to 0.

Theorem 1. (see [9]) Let assumptions (H1)-(H5) be fulfilled.
Suppose that the initial data (¢o,co) € L*(2) X L?(R) is such that

0 < ¢o(z), coz) <1 for a.e. z € Q.

Then for any T > 0, every weak solution (¢,c) € (L2(0,T;H1(Q)))2 N (HY0,T; V’))2 satisfies for
all t € [0,T)

0< P(z,t), oz, t)<l for a.e. x € Q.
Proof: Let ¢~ = max(—¢,0) and ¢~ = max(—c,0). We have (¢~,c7) € L%(0,T; H'(Q))? and

3¢ pis 2 12 e = &
~(%0), ret [ Vo Pan= - [ (R +chaesas,

T <Qf,c—> +/D1(¢) |Vc"|2 = / Ds(c,$)V¢ - Ve dz.
ot viv Ja Q
Using assumptions (H4) and (H5), we infer that

(Fi(¢) +cFa(¢)) ¢~ =0 and Da(c,¢) =0 if c < 0,a.e. in Qr.
Thus, we obtain

F g A Bl

35167y + 22 [ (V9P dz =0,

1 S 7y

55;”0 220 +/QD1(¢)|VC |*dz =0,
for a.e. t € (0,T). Since ¢y = c; = 0, we conclude that ¢~ (¢) = c™(t) = 0 for all ¢ € [0, 7] and
a.e. in Q, and we have therefore proven that ¢(z,t),c(z,t) > 0 a.e. in Q and for all ¢ € (0,T). It is

sufficient to take (¢ — 1)* and (c— 1)* instead of ¢~ and ¢~ to prove that (¢ —1)* = (c— B'=0
and consequently that ¢(z,t),c(z,t) <1 a.e. in Q and for all ¢ € (0,7).
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3.2. Existence of weak solutions

Under the Lipschitz and boundeness assumptions on the nonlinear functions F; and ik te=slsd,
the following existence result holds.

Theorem 2. (see [9]) Let assumptions (H1)-(H3) be fulfilled.
For any (¢o,co) € L*(R) x L?(Q) and T > 0, there exists a weak solution to Problem (P}

Sketch of the proof: We employ a Faedo—-Galerkin method. We consider the sequence 0 = A\; <
A2 < Az... of the eigenvalues of the operator (—A) with homogeneous Neumann boundary con-
ditions and wy,v9,v3,... the corresponding eigenfunctions such that (v, ;) Q) = Ox; - We set
Vin = span(vy,v2,...,vn,) and we solve the finite dimensional problem:

/
Q

(Pm)§ Jq Bt ¥ dz + /Q (D1(¢m)Vem + Da(cms dm)Vdm) - Vwdz = 0,

3;5;’11) dz + €2 /Q Vém - Vodz = /Q (F1(¢m) + cmF2(¢m)) vdz,

for all v, w € V},, and for a.e. t € (0,7),

L m(0) = dom € Vi, cm(0) = com € Vi,

where ¢o,,, and cg,, are L2-projections of ¢o and ¢y onto V;,, .
By using assumptions (H1)-(H3), we prove there exists a unique maximal solution (¢, cm) on
the interval [0, T;,[ with T;,, > 0. Moreover we can establish the following a priori estimate

[ (@m, cm)“L°°(0,Tm;L2(Q))2 e,

where C' is a constant independent of m. This result proves that 7}, = +oo. It is not difficult to
obtain two other a priori estimates:

” (¢m7 CTR) ”LZ(O,T;HI(Q))Z S c

and
Obm dcm
ot ot

Now, we recall the following well-known fact that

<.

L2(0,T;V")2

W) = {u € L*(0,T; H' (), g—:: € L*(0,T; V’)}
is compactly embedded in L?(Qr) and
00 2 Ou 2 !
Wy =<u € L®(0,T; L°(R)), EGL(O,T;V)
is compactly embedded in C°([0,7],V’). From this result we can deduce that
($ms cm) = (9,) strongly in (Z*(Qr))” n (C°([0,T, V")),
($mycm) = (8,0) weakly in (L2(0,7; H'(2)))*,

(%)~ (25) wion wonvy
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It follows that
Fi(¢m), Fo(¢m), D1(dm) = Fi(d), Fa(¢), D1(4)

cmFa (¢m) — cFy(¢)
D1(¢m)Vem — Di(¢)Ve

Dy (cms $m)Vdm — Ds(c, )V

in Lp(QT)a Vpe [17 +OO),
in Lq(QT)a Vge [172)7
Wea'kly in Lq(QT)a Vq € [172)7

weakly in LY(Qr), Vq € [1,2).

Taking the limit in Problem (P,,), we conclude that (c, ¢) is a weak solution of Problem (P).

3.3. Regularity and uniqueness
Under the additional assumption that the initial data are smooth enough, we have the following
regularity and uniqueness result.
Theorem 3. (see [9]) Let assumptions (HI)-(H3) be fulfilled.
Let ¢ € H?(Q) such that 6_710 = 0 on 9N and ¢g € H'(Q). Then for any T > 0, there exists
a unique couple of functions (¢, c) satisfying

¢ € L0, T; H*(Q)) N H'(0,T; H(Q)) and
such that ¢(0) = ¢o, ¢(0) = co and

c € L*(0,T; H¥(Q)) N HY(0, T; L*(Q)),

%‘f — &2A¢ = Fi () + cFa(¢) ae inQx (0,T),

% = div (Di(@)Ve + Do(c, ))V4)  ac.inQx (0,7), (15)
96 o

8_2 = 8_; = a.e. on 092 x (0,7).

Remark: We infer from the regularity of the solution that ¢ € C°([0,T]; H*(Q)) and
c € C°([0, T}; H' (%))

Theorem 3 is proved by establishing further a priori estimates in the Faedo—Galerkin procedure.
These estimates are obtained thanks to Gagliardo-Nirenberg inequalities. We refer to [9] for the
proof.

4. NUMERICAL APPROXIMATION

In order to approximate Problem (P), we use a semi-implicit scheme in time. Let us denote the
time step by 7 = T/N, for N > 1 and the current time by t" = n7, forn =0,...,N. We consider
the approximations ¢" and ¢ of ¢(-,¢") and c(-,t") respectively, which are defined by the following
scheme:

w_ £ oA A ATFLLSE n n n
—F —2A¢™ = R(¢") + " B(4"), (16)
TE v (DT 4 Dol V) (17)

The space discretization is made by means of a IP-finite element method. This provides the approx-
imations ¢} and c}! of the exact solutions ¢(-,#") and c(-,¢") at time #" . Suppose that ¢y and cj
are known. Then we determine gbZ“ by first solving space discretized equation (4) and afterwards
the resolution of equation (4) gives cﬁ“.

We have the following convergence result for the above scheme.
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Theorem 4. (see [6]) Suppose that assumptions (H1)-(H3) are fulfilled and that the solution (¢, c)
of (P) is smooth enough. Then there exists a constant C > 0 such that
n n n n
max (167 = 8" lgaqe) + 116 = elt™)lz2qq)) < Olh+7). (18)
The proof is based on the use of a the H!-projectors of ¢ and c. We refer to [6] for the proof. This
error estimate is not optimal as shown by numerical simulations. However, it is possible to improve
the order of convergence in O(h? + 7) by introducing a generalized elliptic projector for ¢ and c

(see [6]). Let us remark finally that the constant C appearing in estimate (18) unfortunately depends
on 1/¢€2.

5. NUMERICAL RESULTS

Problem (P) previously presented, corresponds to an isotropic situation, that is, there is no pref-
erential solidification direction. Nevertheless, in this isotropic case we numerically observe that the
mesh has an influence on the growth direction of the solidification front (see Fig. 2 (left) for a struc-
tured mesh of Fig. 3 type with 50 x 50 nodes). When the mesh is very fine the numerical simulation
leads to a good symmetry of the solution (see Fig. 2 (right) for a structured mesh of Fig. 3 type
with 160 x 160 nodes). These two figures were made for the same set of physical parameters and
initial condition, the latter beeing a small isotropic solid germ in the middle of a liquid region.

interface thickness:
h=72x10"8 [m] §=50x10"8 [m] h=225x 10=8 [m]

Fig. 2. Concentration in the isotropic case with a fixed and structured mesh of 50 x 50 nodes (left) and
160 x 160 nodes (right)

Fig. 3. Structured mesh
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For the finite element method, we also use an adaptive mesh strategy. At each time t", we
compute an estimator nx on each triangle K based on the jump of the normal derivative of c;:_l
and c} across the edges of triangle K. The mesh is computed at time ¢" in order to satisfy:

(1-a)?TOL* <> nk® < (1 +a)*TOL?,
K
where TOL is a tolerance for the error and « is a variance. The new mesh is then generated by a
Delaunay algorithm. For a complete description of this strategy we refer to [7].
Using the adaptive mesh procedure we obtain a perfectly circular numerical isotropic solution,
with a mesh composed by less than 2500 nodes.

Anisotropy

From a physical point of view, it is interesting to consider anisotropic situations where preferential
solidification directions are assigned. The anisotropic version of Problem (P) is obtained by choosing
a function € = €(V¢) in the expression of the Ginzburg-Landau free energy (5), more precisely by
making € depend on the angle between the gradient of ¢ and the horizontal axis in (5) (see [11]).
Thus, in place of the isotropic evolution equation (1) for ¢ in (P), we obtain the following anisotropic
equation:

% — Av(A(V4)VY) + Fi(9) + cFa(8), (19)

where A(V¢) is the anisotropy matrix given by

L B —eB(9)0(79)
A(W)‘(e(e(w»e'(o(w» 2(6(99) )

0.5

0.25

0.0

o o 0475
.- 0,455
s 0435
\ : 0415
0395

Fig. 4. Dendrite in the anisotropic case
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where 6(V¢) is defined by

vo=1vol (5000 )

Then, Eq. (19) is discretized in time as follows:
¢n+1 ¢n

T

= div (A(V@")V§™H) + 1 (§) + " Fa(¢").

In Fig. 4 is shown an example of an anisotropic situation where the 4 cardinal directions are
assigned to be preferential solidification directions. For this example, we have chosen ¢(f) = 1 +
£ cos(460), where £ is the amplitude of the anisotropy, and ¢’ is the derivative of € with respect to .
Figure 4 is obtained by solving the discretized problem with an adaptive mesh strategy.

In this case, the initial data corresponds to a small spherical grain at the center of the box.

6. CONCLUSION

We have worked with an isotopic solutal phase-field model closely based on Warren and Boettinger’s
model [11]. The peculiarity of this models’ equations is having higher degree polynomial source terms
and more complex cross-terms than the more standard pure element thermal phase-field models.
We have successfully established existence and uniqueness results, as well as asymptotic sharp-
interface limits for the exact problem, and we have also established a working numerical aproxima-
tion. A paper on a priori error estimates on the proposed discrete scheme is currently in preparation.
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