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A finite element model has been developed for the computation of melting/solidifying process under the
combined action of buoyancy and surface tension forces. Validated on the square cavity benchmark of
Gobin and Le Quéré (Bertrand et al. [3], Gobin and Le Quéré [17]), the numerical model is used to extend
this previous analysis to the free surface case where surface tension can drive the flow (capillary flow).
A comparison of the results obtained for three types of boundary conditions applied at the top of the
melting pool is performed. It shows that in the studied case of tin where the thermal Bond number is
moderated (Bo = 200), the flow is still mainly dominated by buoyancy effect as long as the melted pool
is deep enough like in the square cavity case of the above mentioned benchmark.

Keywords: phase change (melting, freezing), natural convection (buoyancy, thermocapillary flows), in-
compressible Navier-Stokes equations, finite element method

NOTATIONS

Fo — Fourier number v - Surface tension coefficient
Ste — Stefan number Lr - Latent heat of melting
Pr - Prandtl number o — Thermal diffisivity

Ra - Rayleigh number t o2 Time

Ma - Marangoni number H — Height of the cavity

Bo — Thermal Bond number u  — Velocity vector

p  — Density priioc Pressure

g — Dynamic viscosity T - Temperature

B - Volumetric expansion coefficient g - Heat flux

Cp - Specific heat coefficient g - Gravity acceleration vector
k- Thermal conductivity fr, — Volumic liquid fraction

1. INTRODUCTION

It has been established that fluid motion has a great impact on the heat transfer during melting
or solidification, as well as on the morphology of the solid-liquid front (Fleming [14], Viskanta [43],
Gau and Viskanta [15]). The mechanisms leading to bulk fluid motion during phase transformation
are (Kobayashi [26], Viskanta [43]):

e natural convection induced by thermal gradient or/and solute gradient;
e shrinkage due to the density differences between the solid and liquid phases;

e thermocapillary or/and solutcapillary forces, in the presence of a free surface.
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One must add to this list the driving forces specific to each industrial process, like rotation induced
forces in industrial crystal growth processes (Jones [22]) or electromagnetic forces in welding (Oreper
and Szekely [32]). Sometimes, these forces are applied to stabilize the fluid motion, but they must
be taken into account in the analysis if present.

Most today analysis of solid-liquid phase change problems take into account natural convection.
For a review, see Samarskii et al. [34] or more recently Voller [45].

Shrinkage-induced convection becomes important in the absence of other mechanism for sustain-
ing liquid flow. It has been studied by Chiang and Tsai [8] and has been also taken into account by
Voller and Sundarraj [47] in their analysis of inverse segregation.

In order to understand the basic mechanisms of heat transfer and fluid flow occuring during
the melting process, combined action of buoyancy and thermocapillary force has been investigated
by many authors without phase change and in simplified geometry (Kirdyashkin [25], Villers and
Platten [41, 42], Carpenter and Homsy [6], Ben Hadid and Roux [20], Gouesbet et al. [18], Shyy
and Chen [37]). In the last years, some studies have also incorporated the deformation of the free
surface (Brown et al. [5], Sasmal and Hochstein [35], McClelland [30], Chippada et al. [9], Cliffe
and Tavener [10]). However, very few works have focussed on the action of surface tension forces
on solid-liquid phase change processes. Actually, most of the studies have been undertaken for
weld pool in welding processes or surface processing, where surface tension is the dominant driving
mechanism (Oreper and Szekely [32], Chan et al. [7], Kou and Wang [27], Basu and Srinivasan 1],
Hsu and Rubinsky [21], Tsai and Kou [40], Zacharia et al. [49], Ravindran et al. [33]). From the phase
transformation point of view the problem is then simplified by the fact that the stationary regime is
quite reached. On the other hand, the problem is a challenging one because of the complicated shape
of the free surface (Keanini and Rubinsky [24], Medale and Jaeger [31]). In systems of crystal growth
from the melt, the importance of studying the influence of surface tension forces has been pointed out
by Schwabe [36]. Computations have mostly focussed on the thermocapillary flow in a melt column
between two heating or sample rods (see Lan and Kou [28] and references therein). Katsumura
et al. [23] have studied numerically the melting of metal by induction heating in an axisymmetric
configuration taking into account the deformation of the free surface. Liu et al. [29] have investigated
numerically the melting as well as solidification of a pure medium (of low and moderately high
Prandtl number) in a 2D rectangular cavity heated from one side under the combined action of
buoyancy and surface tension forces. However, as noticed by the latter authors, solutcapillary forces
oppose thermocapillary forces in most liquids. Thus, the importance of thermocapillary convection
depends on the degree to which solutcapillary effects are present within the system. They conclude
finally that “regardless of the uncertainty associated with surface effects, the actual phase change
behavior is likely to be bracketed by the limiting cases represented by the effective no-slip and pure
thermocapillary treatment of the liquid surface boundary condition”.

In the frame of the benchmark proposed by Gobin and Le Quéré (Bertrand et al. [3], Gobin and
Le Quére, [17]), on the melting of pure medium (tin and octadecane) in a 2D rectangular cavity,
only no slip boundary condition is considered. The aim of the present study is to extend the analysis
of this problem when the upper boundary is a free surface instead of a rigid wall. Two kinds of free
surface boundary conditions are considered, namely perfect slipping and thermocapillary conditions.
The medium under consideration is tin. *

2. PROBLEM DEFINITION

The global description of the problem under consideration is given in the definition of the benchmark
(Bertrand et al. [3], Gobin and Le Quéré, [17]). A 2D square cavity (height H = width L = 0.1 m) is
filled with solid tin at the solidus temperature Tr = 232°C. At the initial time, the temperature of
the left vertical wall is raised up to a value T} = 235°C, while the other vertical wall is maintained at
the initial temperature. The horizontal walls are assumed to be adiabatic. In the benchmark, both
are rigid walls with a no-slip boundary condition. In the present study, the liquid upper horizontal
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Fig. 1. Schematic diagram of the problem

boundary is assumed to be a free surface, with either perfect slipping or thermocapillary conditions.
The free surface results are compared to the reference results of the benchmark, in order to show
the significance of the Marangoni convection.

The thermophysical properties used (the same as the ones of Bertrand et al. [3], Gobin and
Le Quéré, [17]) yield a Prandtl number of Pr = 0.02 (Pr = v/a), a Stefan number of Ste = 0.01
(Ste = Cp(Ty — Tr)/Lr) and a Rayleigh number of Ra = 2.5 - 10° (Ra=gB(Ty — Tr)H?/av).

The thermocapillary aspect of the problem is characterized by the Marangoni number

dvy H
Ma=— (T} — Tr) — 1
s dT( . r) e’ (1)
where the surface tension v is assumed to vary linearly with the temperature
dy
T=Yr=18) t 370 (T ~Tp) (2)
For tin, the literature gives roughly dy/dT = —10~* Nm~'K~!, which yields a Marangoni

number of Ma = 1.25 - 10® and corresponds to a thermal Bond number of Bo — Ra/Ma = 200.

3. MODEL DESCRIPTION
3.1. Governing equations

Our model is based on the finite element method and an enthalpy formulation fixed grid methodol-
ogy. In the classification established by Voller et al. [48], it is the latent heat source method. That
is, the energy equation is written in the classical convection-diffusion heat equation form with an
additional source term in order to take into account the latent heat release or absorbing, depending
on either solidification or melting has to be considered (Voller and Prakash [46]).

For an application to non-isothermal phase change, the momentum equations must be modified,
in order to model the liquid flow in the mushy region. This can be done by adding a Darcy-like term
in these equations (Voller and Prakash [46]), thus leading to the enthalpy-porosity approach (Brent
et al. [4]). However, for the solidification or melting of a pure medium, the thickness of the mushy
layer tends to zero. Therefore, such a modeling of inter-dendritic fluid flow is not needed. Actually,
a temperature dependant viscosity, taking a very high value in the solid phase, is sufficient.

As for the benchmark, we have the following assumptions:

e the problem is two-dimensional;
e viscous dissipation is neglected;

e the flow in the liquid phase is laminar, incompressible and Newtonian;
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e the Boussinesq approximation is valid;
e thermophysical properties are constant and uniform (except viscosity and surface tension).
So the set of equations to be solved is:

a) continuity and momentum

Wit (3)
po[g—Z+(u-V)u}:—vp+v-5+f” (4)

Here u designates the velocity vector, p the pressure and po the density at the reference temper-
ature Ty = T . For Newtonian fluids the viscous stress tensor is given by

Bzu[(V®u)+(V®u)T] (5)
where the dynamic viscosity takes a different value in the solid and liquid phases

p=p,=6-103Nsm 2 if T>Tr

. : (6)
p=ps=pr-10 i a LG
With the Boussinesq approximation, the body force f¥ writes
fP=po[l =B(T—To)lg, (7)
where £ is the volumetric expansion coefficient and g the gravity acceleration vector.
b) heat transfer
oT
poCp l:-a—t‘“f‘(U'V):\ :V-q+ST_ (8)

Here T is the temperature, Cp the specific heat coefficient, and ¢ = —kVT the heat flux (with
k the thermal conductivity, thus a = k/pCp is the thermal diffusivity). In this equation, the
latent heat release is taken into account by the source term

ST = —poLp [%ft—L o) fL] , (9)

where Lp = 6-10* Jkg™! is the latent heat of melting and fr, the volume fraction of liqufd. The
latter, which is actually a step function for isothermal phase change, is modeled by

0 if T<Tp—',
fL={(T—-TF+8)/2£ if Tp—e<T<TF+e, (10)
1 if T>Tp+e,

where ¢ is a small parameter that controls the size of the mushy region. We have used € =
1073(Ty — Tr).
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This set of equations is submitted to the following boundary conditions:

a) momentum
— on the two vertical walls and on the lower one:

— on the fluid upper boundary (free surface):

0 for perfect slipping
R 3ud ol = { g—; VT -tg for thermocapillary convection 2
where n and tg are respectively the external normal and the tangential vectors;
b) heat transfer

— on the two horizontal walls:

q-n =0, (13)
— on the left vertical wall:

=, (14)
— on the right vertical wall:

T=Tp. (15)

3.2. Finite element formulation

The weak forms and the finite element formulations of the fluid flow problem (Egs. (3)-(4)) and of
the heat transfer one (Eq. (8)) are obtained following the standard procedure of the Galerkin finite
element method (Gresho and Sani [19]) and will not be given in detail here.

Concerning the fluid flow problem, we have used a primary variables (u,p) formulation with a
penalty approach. The space discretization is obtained with degrees of freedom are eliminated at
the element level a quadratic approximation for the velocity and a piecewise linear disicontinous
approximation for the pressure whose Q2 — P_;. The surface tension action appears in the weak
form through a boundary integral. This part is discretized using a specific three-node boundary
element as usual.

The weak form of the heat transfer problem is discretized in space with the C° rectangular
four-nodes Lagrange element.

Both problems are integrated in time with the first order backward Euler scheme.

3.3. Solution strategy

At each time step, the two algebraic systems resulting from the finite element formulation of the
fluid flow and heat transfer problems are solved separately, starting with the heat transfer one. The
initial temperature and velocity fields are set to T and 0, respectively. Then, each problem uses
the last available solution of the other one, but we do not loop between the two problems within
a time step. Thus, the model is not fully implicit, leading to a limitation in the time step size. In
practice this limitation is not penalizing in regard of the time scale of the process that we have to
analyze.

Since the fluid flow system is non-linear we use the Newton linearization to solve it. Less than
four iterations are almost needed.
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The key point for the efficiency of the model lies in the solution strategy of the heat transfer
equation. Let us write the corresponding algebraic system as

([M] + At [K]) {T} = [M{T}** + At {F}, (16)

where At is the value of the time step, [M] the consistent mass matrix and [K] the “stiffness”
matrix taking into account the convection and conduction terms. {F'} is the “load” vector taking into
account the contribution of the latent heat source term (9). {T'} is the unknown vector containing
the nodal temperatures and {T'}°'¢ contains the nodal temperatures obtained at the previous time
step.

In the standard source term method, the liquid fraction f; is considered as an independent
variable. The algebraic system (16) is then linear, but iterations are needed (substitution algorithm),
with updating of the liquid fraction, until the temperature is consistent with the current liquid
fraction field (Voller et al. [48]). As noticed by Voller [44], the efficiency of this iterative approach
can be greatly improved by considering more the temperature dependence of the source term in
the formulation of the system. The Newton linearization is a natural and rigorous way to do this
in a finite element framework (Storti et al., [39]). The corresponding iterative procedure consists in
solving at iteration 4 + 1, the following system

U {ATY* = —(RY  with  {AT}* = (T} (¥, (17)
where { R} is the residual vector
{R} = ([M) + At [K]) {T} — [M]{T}" — At{F}, (18)
and [J] is the Jacobian matrix
g C IR s
[J] = (T} [M]+ At <[K] 8{T}> : (19)

As noticed by Voller et al. [48], this builds a natural bridge between source based methods and
apparent heat capacity methods. Actually, if in equation (19) the derivative of {F} is computed
exactly, the two methods are equivalent at the condition that the same approximation for fj, is
used.

4. RESULTS AND DISCUSSION

Three kinds of boundary conditions at the upper liquid boundary have been considered, namely
no slip, perfect slipping and surface tension gradient (Eq. (12)), whereas at the other walls of the
cavity zero velocity has been taken. Thermal bounday conditions are given by Eqgs. (13)~(15).

A uniform structured grid, made up of 200 x 100 (horizontal x vertical) quadrilateral finite
elements (Q9) and, a uniform time step of At = 10~* have been considered. The non-dimensional
time is defined as SteFo, where Fo = at/H? is the Fourier number. Calculations have been continued
up to SteFo = 0.1, which corresponds to 1000 time steps.

In the following, three types of results are provided to give a global view of the influence of the
upper liquid boundary condition on the melting process. The isotherms and streamlines plotted,
respectively in Figs. 2 and 3 at four different times of the process, give an overview of the heat transfer
and the fluid flow structure in the liquid phase. Moreover, the Nusselt number distribution along
the hot wall and the melting front position and its shape are provided in Figs. 4 and 5, respectively
in order to compare the results to experimental or other numerical studies. Finally, Figs. 6 and 7
show time evolution of the average Nusselt number along the hot wall and of the volume liquid
fraction. These last results can be compared to existing correlations, namely to Gobin and Benard’s
one [16] for the average Nusselt number, and to the classical solution of the Stefan problem [38] for
the volume liquid fraction.
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The isotherms plotted in Fig. 2 and streamlines plotted in Fig. 3 show that two regimes can be
distinguished. Up to SteFo = 4 - 1073, the heat transfer is mainly conductive, however a natural
convection flow a very small magnitude already exists. As the melting area widens, the natural
convection flow strengthens and the main convective vortex splits into four secondary circulations.
This convective nature of the heat transfer can be also observed on the isotherms plot. As the melting
process goes on in time, a sequence of bifurcations occurs in the fluid flow pattern. As it is well
known (Bergholtz [2], Daniels [11] and Daniels and Wang [12]), the range of admissible wavelength
depends on the aspect ratio, for a given set of the Prandtl and Rayleigh numbers. Thus, as the
melting area extends, the upper vortex, which is the most energetic one, embodies its neighbor as
already observed by Dantzig [13]. This reduces a vortices of accordingly to the evolving admissible
wavelength. This behavior prevails as long as the aspect ratio of the melting pool reaches its limit
value of unity, where only one main circulation can exist.

The influence of the fluid flow on heat transfer results in both a wavy isotherms pattern and the
corresponding wavy front shape, depending on the number of acting vortices. At the late stage of
the melting process, the upper part of the remaining circulation is again the most active, bending
further more the phase front. Whenever the early stage (up to SteFo = 0.01) looks like the thermal
convection in a tall laterally heated cavity of increasing width, the later one moves far away from
that reference case owing to the curve of the melting front.

The results obtained from the no slip and perfect slipping models are very close, both in terms
of temperature field and fluid flow patterns. However, one can notice that the bifurcation from the
four vortices pattern to the three vortices one occurs a little bit earlier in the perfect slipping case
than in the no slip one. Moreover at the late stages of the process, the upper vortex is more energetic
in the perfect slipping case, since it isn’t slowed down at the upper boundary, advancing a little bit
faster the front in the upper part of the cavity.

When surface tension is present, the behavior above described must be slightly adjusted. The
fluid flow pattern and isotherms remain globally similar to those discussed except in a narrow layer
just beyond the free surface, which depth is related to the thermal Bond number (Ra/Ma ratio). This
region is always under the influence of Marangoni convection, and no conductive regime can exist,
even at the earliest times. It can be observed in Fig 2, where isotherms are curved toward the right
by the action of the small Marangoni-induced vortex (Fig. 3). Since the effects of thermocapillary
and buoyancy forces add to each other, and owing to a large thermal Bond number considered in
this study, the influence of the surface tension is less pronounced at the later times of the process.
Compared to the perfect slipping case, the energy of the upper vortex and the size of the melt in
the upper part of the cavity are further increased.

The above conclusions are further confirmed by comparison of the Nusselt number distribution
along the hot wall for the three cases analyses (Fig. 4). As mentioned previously, the most significant
difference between the Marangoni model and the two other ones observed at the beginning of the
process. This is also clearly seen in Fig. 4, where at SteFo = 0.004 the Nusselt number curve in the
Marangoni case presents a completely different shape in its upper part than the two other curves.
This shows the contribution of the Marangoni-induced vortex to heat transfer during this early
stage of the melting process. This contribution cannot be ignored for the Nusselt number is up to
40% different than in the other cases. On the other hand, the Nusselt number curves are roughly
identical for the no-slip and perfect slipping cases (differences less than 10%). To further elucidate
the impact of the Marangoni convection on the melting process, the temporal phase front position
is compared in Fig. 5 for the three cases of boundary conditions at the upper wall.

All these comparisons show two general trends:

e going from the no-slip boundary condition to the Marangoni one results in pulling up the vortices
towards the free surface, and shifting accordingly the Nusselt number curves;

e the perfect slipping model yields results that one bracketed by the two limiting cases of the
no-slip and thermocapillary upper boundary conditions.
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There is also interesting to notice that the change from the four-vortices pattern to the three-
vortices one already takes place at SteFo = 0.01 for the perfect slipping case, and the Nusselt
number displays three main waves instead of four (The second plot of Fig. 4, and Fig. 5).

The results displayed in Figs. 6 and 7 represent the integrated quantities, i.e. the total liquid
fraction in the cavity and the average Nusselt number. No difference can be observed during the
conductive regime between the three models. Concerning the volume liquid fraction, plotted versus
time in Fig. 6, the values predicted by the three models are very close. In the Marangoni case the
volume liquid fraction increases only 4% over other at the final computation (SteFo = 0.1). For
again the perfect slipping case its value is between the two limiting cases. The evolution of the
average Nusselt number, goes in a very similar way for all boundary cases and its values are close to
the Gobin and Benard’s correlation [16]. It is, however, noteworthy to notice that some deviations
from this correlation exist. They appear between the change from the 3-vortex pattern to the 2-
vortex one at SteFo = 0.023 and the between change from the 2-vortex pattern to the one-vortex
structure at SteFo = 0.05. It seems that the sensitivity of the system to the three considered upper
wall boundary conditions is very high in the latter case. Later on, the three models merge again
towards the Gobin’s correlation until SteFo = 0.07, where a new deviation can be observed. At the
end of the computation time, the no-slip curve tends asymptotically to the correlation, whereas the
perfect slipping and Marangoni models do not.

5. CONCLUSION

The influence of the free surface effects on the melting of a pure medium (tin) in a square cavity
heated from one side has been numerically investigated. For this purpose, a model based on the
finite element method and on the enthalpy formulation on a fixed grid has been developed.

The nature of the upper liquid boundary condition (no-slip, perfect slipping or thermocapillary)
has little impact on the relevant integrated parameters of the melting process (average Nusselt
number and volume liquid fraction). The differences observed between the three models are less than
few percents for the considered cases, since the buoyancy remains dominant over the thermocapillary
convection (Bo = 200). However a detailed analysis of the flow structure and the pertinent isotherm
pattern reveals that the influence of the upper boundary condition is significant in a narrow layer
adjacent to the free surface throughout the whole melting process. It has also been noticed that the
upper boundary condition has an impact on the fluid flow dynamic, causing bifurcations between
successive vortices.

Finally, this study shows that the developed, model based on a fixed grid methodology, is able to
handle isothermal phase change problems with combined buoyancy and thermocapillary convections.
A more comprehensive study, considering a wide range of the aspect ratio and of the thermal Bond
number, would be very useful in order to determine when the thermocapillary effect must be taken
into account in the thermal and/or fluid flow analysis. Furthermore, the understanding of many
industrial processes (like metal casting, welding, surface processing, coating) could benefit from
that study.
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