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Numerical simulation of frontal polymerization
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Frontal polymerization has been studied for many years experimentally and theoretically. This technique
can exhibit a phase change between a liquid monomer and a solid polymer and many studies, both
theoretical and experimental, have been devoted to the stability of the front which separates the two phases
in the presence of thermal convection. We present here a new technique for the numerical simulation of
this process which takes account of the chemical reaction, the phase transition and the hydrodynamics; it
is based on the method of characteristics and a fictitious domain method. These two methods are known,
but the coupling of them and the application to this problem is new. We also present and discuss some
results of simulations.

1. INTRODUCTION

Frontal polymerization is a technique for preparing polymers via a propagating thermal front which
converts a liquid monomer to a polymer. A typical experiment is shown in Fig. 1: the monomer
is put in a cylinder, and the polymerization is initiated near a boundary (by heating the bottom
for example). The reaction is localized in space and it propagates along the cylinder. In front
of the reaction zone there is a cold monomer and a hot polymer behind it. The polymer can
be in a liquid or in a solid phase. We are interested here in the latter case: there is a phase
transition and the liquid-solid interface propagates together with the reaction zone. An example of
this process can be given by the frontal polymerization of methyl-methacrylate [14]. The stability
of the reaction front is a fundamental concern, the key for industrial processes to get high quality
polymers at the end of the process. Ground based experiments show that the ascending fronts are
generally unstable, due to thermal convection. A stability analysis is fulfilled in [6]. Low gravity
studies have been performed, but the effect of convection remains to be explored (see 7, 15] for the
descriptions of the experiments). Numerous studies of combustion and polymerization fronts have
shown that the detailed chemical kinetics is not usually very essential for the peculiarities of the
front propagation [22]. In this work we study a simplified model where we assume that the chemical
kinetics can be described by a one-step reaction. In the case of a radical polymerization for example,
this assumption means that the concentration of the initiator is sufficiently large.

g

Fig. 1. Frontal polymerization
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The coupling of the chemical reaction, phase transition and hydrodynamics makes the problem
difficult to simulate numerically. There exist different numerical methods to take account of a phase
change (see [17] for a review). They can be divided into two groups: the variable grid methods,
where a mesh is adapted at each time step to the front, and the fixed grid methods. The second
group seems to be better adapted to our problem where some equations need to be solved on the
whole domain, and we use this approach.

2. MATHEMATICAL MODEL
The model consists of the reaction-diffusion equations coupled with the Navier-Stokes equations
for the fluid:

OT +(U-V)T -k AT = qW(C,T),

E 1

8C+(U-V)C—eAC = W(C,T), (1)
iz o = e bildk
3tU+(U-V)U—uAU+;VP=kog'(T—TO),

—

V.U =.0.

(2)

Here, T is the temperature, C' is the depth of conversion (0 < C < 1) and U is the velocity of the
fluid.  is the thermal diffusivity, ¢ is a diffusion coefficient, v is the kinematic viscosity of the fluid,
p is the density, ko is the thermal expansion coefficient, ¢ is the adiabatic heat release and g is the
gravitational acceleration. For the Navier-Stokes equations, we have made the assumption that the
density in all terms is constant, except for the buoyancy term (Boussinesq approximation).

The reaction rate W(C,T) is given by the mass action law with the Arrhenius temperature
dependence

W(C,T) =k (1—C)e B/, (3)

Here, R is the ideal gas constant, F is the activation energy and k is the pre-exponential factor. Real
experimental domains for this process are typically cylindrical tubes (see Fig. 1), but we restrict
our simulations to a two dimensional rectangular domain 2 (see Fig. 2).

Equations (1) and (2) must be completed by initial and boundary conditions:

e At time t = 0, we take U = 0, T = Ty (a constant positive value), and C' = 0 everywhere in
(for C this means that we have only the monomer, everywhere in the domain).

e For the boundary conditions, we take U = 0 on all the boundary of 2. We take the flux 97'/0n = 0
on the “large” walls (2) and (4) (see Fig. 2), T' = Ty on the wall (3), and 7' =T} on the wall (1),
with 77 > Ty. We impose dC/dn = 0 on the boundary of Q.

Fig. 2. The computational domain Q2
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Other initial and boundary conditions can be taken as well, but these ones closely mimic the real
experiments.

The phase transition between the liquid monomer and the solid polymer occurs when the con-
version C exceeds a critical value Cy. We will put Cy = 0.5. We should note that the choice of the
critical value is not very essential because the reaction zone is narrow [19]. The evolution of this
system (depending on the choice of the parameters and of the orientation of ) is the following:
a reaction front propagates, starting from wall (1) (see Fig. 2), and the phase change occurs near
this front: the domain € is splitted into two subdomains €2y (the fluid phase), and €; (the solid
phase). When the angle « is near 0, laboratory experiments show that the ascending front which
separates g and € can be unstable; with & = 7 no convection occurs and, with our model, the
descending front is stable.

3. NUMERICAL METHOD

Even without the phase change, the model (1), (2), (3) exhibits numerical difficulties:
1. this is a coupled system of nonlinear equations;
2. this system is convective;

3. we have the usual difficulties of the discretisation of the incompressible Navier—Stokes equations
(i.e. we need a compatible choice of the discrete velocity and pressure fields, see [12]).

3.1. Spatial discretisation

e for the Navier-Stokes equations, we have chosen the classical Taylor-Hood finite element: P
(second order polynomial approximation) for the velocity and P; (first order polynomial ap-
proximation) for the pressure, on embedded grids. This finite element respects the well known
Inf-Sup condition [12];

e for the temperature T and for the depth of conversion C, we use P, approximations on the same
grid as the velocity.

These discretisations are of the second order (see [10, 12]).

3.2. Time discretisation

Having in mind that the phase change will complicate the problem, we must split our system
of equations to be able to solve it in a reasonable computing time. Splitting of non-linear PDE is
generally performed by some alternate direction method: for example, if we want to solve numerically
the scalar equation

ov
a3 @ Av + f(v),

it is classical (see for example [20, 21]) to build a method involving approximate integration over
time steps of

ov

== 1), @
and
e Av. (5)
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More precisely, let 6t > 0 be the time step of the discretisation and ¢, = ndt. Let v, be an
approximation of v at time ¢,; we can compute the approximation of v,41 at time ¢4 in two

sub-steps:
Un+1/2 — Un
S /6t = f(vn41/2) (6)

and

Un+1 — Un41/2
ot
As the computations must be done only at the nodes of the finite element discretisation (or at

quadrature points), we see that the first step can be performed by solving a finite set of independent
algebraic equations. Note that:

= Avn+1 . (7)

e the two sub-steps (6), (7) are discretisations of (4) and (5) by the implicit Euler method. It is
possible to use the explicit Euler method in one or both step, but the resulting scheme is less
stable;

e a formal application of the Taylor formula shows that this scheme is of the first order.

Let us now consider a scalar advection—diffusion equation:

ov = 5

E+V(ﬂ($7t)v>_Av_‘f(x)7 V’U—O’ (8)
for which we modify the sub-step (6). We consider for any & € 2, the characteristic curve )?g“(t)
issued from ¥ at time ¢,y defined by the ordinary differential equation (integrated backward in
time):

aieles) by i
z = n+l
—L— = f( Xzt (s)is) )
Rt ()i
The solution at time #,41 of
v >, 5
S+ V- (8@ tw) = 1@,
v(Z,tn) = vn(Z),
is exactly
on+1 o In+1
vnsz2 = v (X2 (t) + /t £ (Ki(s) ds. (10)

For practical computation, Eq. (10) must be discretized. A classical choice is to approximate the
characteristic curves defined by (9) by the Euler method, replacing the exact solution by

X2 (ty) = & — B(E, tnt1) B,
and the integral in (10) by ¢ f(Z). Then, (10) can be rewritten as

Uy, — vy X’g“(tn)
= &( ) 1o,

We have replaced the left side of (6) by a discretisation of the material derivative of v. This
method, together with the diffusion step (7) is known as the method of characteristics. It is a first
order method, which results in a stable discretisation of the convective terms [3].
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Let us now return to our problem. As a result of personal numerical experiments, as well as of
some benchmarks [16], it seems that a correct qualitative simulation of convection diffusion processes
must involve a second order time discretisation (at least). A second order method of characteristics
has been developed by Boukir, Maday and Métivet [5]. This method is based on the second order
backward differentiation formula (BDF2) [11]. Let us recall that, for an ordinary differential equation
like dv/dt = f(v), the BDF2 formula defines vn41 as a function of the previous known values vy,
and v,_1 at time ¢, and t,_ as

3vnt1—4vn+vn-1
2 0t

= f(Un—H) .

For the advection—diffusion equation, with the second order method of characteristics of Boukir,
Maday and Métivet, v,y is given by

3vpp1 — 4w +w
2 0t

— Avpy1 = fa(Un41) -

where

Wi = Unitl—i (X;f+1(tn+1_i)) e /tthrl fi (X;”‘H(s)) ds. (11)

n+l—1i

Here, we have decomposed f in two parts: f = f1+ f2. This decomposition is arbitrary. As proven
in [5] the characteristic curves in (11) can be approximated by the (first order) Euler method, but
the integrals must be approximated by a second order method, like the trapezoid rule. For Navier—
Stokes equations and for our problem, the convection field B3 is the unknown velocity U and we
must replace it by a suitable approximation. The following is an adaptation of this method to the

system (1), (2), (3).
Denote U & T_’f and C* the approximations of U , T and C at time ¢, = kdt. We compute the
approximations U1, T"*! and C™*! at time t,11 = (n + 1) 6t in four sub-steps:

First step: definition of a convection field and approzimation of the characteristic
curves

As explained above, we must define a convection field, as U™+! is unknown. For this, let
U’n+1 2 2[717. = U-n—l’
c

which is a second order approximation of the velocity at time tp41 = (n + 1) 6t. We approximate
the characteristic curves X2 (t) by:

g = =

- +1
dg; = i (Xg (t)>’ (12)
X2 (tnr1) = %, t € (tn-1, tnt1)-

These differential equations need only to be computed at the quadrature nodes of the finite elements
mesh. They are discretized to get approximate solutions at tp and t,—1; as it is proved in [5], one
can use a first order method like the explicit Euler formula (i.e. X;.‘“(th_i) = =10t U'ZLH AN
without destroying the second order of the scheme. In practice, a good choice is to take a second order
explicit formula (like the second order Runge-Kutta method) to reduce the numerical diffusion.
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Second step: convection of temperature and concentration

Let us define:

! t—t; t —t ( :
RUOT,E 1) = L W(C@),T(@) + 1 — W(0) (@), 1(2). (13
Ui by A
We compute T , Th :
a = tnt1 o
Fi(ErsrT (e ) +q/ Fom (O, T X200 ) (14)
tn
& on+tl i 141 (A dn . ntl
Ty (&) = T (Xg+ (tn_l)) +q /t POk (CQ,TQ,X;H (s),s) ds, (15)
n—1
and 01 j 02
i 4 tnt1 A
Ci@ = 0" (X)) + [ f2m (LT, K2V (6),5) ds, (16)
tn
= on+1 bt In+l (A A ntl
Co(F) = C™1 (X;+ (tn_l)) s /t fo-Lnt (CQ,TQ,X;“L (s),s> ds. (17)
n—1

This is an adaptation of (11). The formula (13) for f#* is not the same as in Boukir [4] where she
used, for Navier-Stokes equations, a second order extrapolated formula which we can rewrite here
like:

fe(®) = 2W(C™(Z), T"(&)) - W(C"~\ (), T" ().

With this last choice of f. and with the trapezoid rule, the resulting scheme for this step is explicit.
This method is not surprisingly unstable in our problem. Proofs of consistency and order can be
modified for our formula (13) from the original paper [4] in a straightforward way.

Our choice of fcj ! and the trapezoid rule make the step implicit; we obtain algebraic systems of
equations for 7' (Z) and C1(%) (and corresponding systemes for T5(Z) and Cy(Z)):

{Tl(f) = T™(2) +q(6t/2) [W(C\(%), Ty(F)) + H] (18)

Ci(&) = C™(z) + (6t/2) [W (Cv(3), Tu(2)) + H] ,
with Z = Xg“(tn). Here H = W(C™(z), T"(z)) is known. These algebraic problems are local: this
is what provides the uncoupling of the system. They can be easily solved by Newton iterations for

each node & of the finite element discretisation (or at quadrature nodes). Note that we can even
eliminate one of the unknowns.

Third step: diffusion

We calculate 7™t as a solution of

3 R ) B

Y Nl
g kAT 0, (19)

(with the corresponding boundary conditions), and C™*! as a solution of

3 gt —40_'1 +C_'2 =

257 eACTT =0, (20)

(with homogeneous Neuman boundary conditions).
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Fourth step: resolution of a Stokes problem

We compute

0@ = 0" (X3* () Oal@) = 0" (X3+ (tnn))
and finally U1, solution of the generalized Stokes problem:

3ﬁn+1 —4[71 +02 -
20t

A i—vp =k g(T"*' -Tp), V-U"*=0, Otl=0o.
(21)

3.3. Simulation of the phase transition by a fictitious domain method

Let Q) = {# € Q; C(Z) > Cy} be the solid polymerized zone and Qo = Q\Q; the fluid domain.
We want to impose the velocity of the fluid to be approximately zero in €. For this, we use
a penalisation method.

Consider the generalized Stokes problem:

gﬁ—v-(u(vﬁ+vﬁ‘))+vpzf; Rt 10, o aasad: (22)
Set € a penalisation parameter (0 < & < 1) and choose:

¢(Z) = Co, v(Z) = v, Vz €, : (23)
(&) =Gofe,  v(T) =w/e, Vz € Q. (24)

When ¢ is small enough, U will be close to zero in (21 . Trying to solve directly this problem would

be practically impossible, due to the bad condition number of the linear system, but this can be

done in a performing way by the fictitious domain method of Bakhvalov [1]. We describe it shortly.
Let

V={3€H)(Q)? V- 7=0; vaq=0},
5.5,9) = [ (c96 +v(Vi+ Vit)v4) do,
Q

and S} be the corresponding formula for the constant coefficient problem (i.e. £ = 1). Set

W = {17 evV; (T-U)+v (V(U— U)+ V(& - 17')‘) Vé =0, Vée H ()
Qo

$oa, =0, V'$=0}-

The solution U of (22), (23), (24) is the solution of the variational problem:
s(0.9)=[ 16 viev (25)

In [1], it is proved that the linear operators corresponding to S. and S; are spectrally equivalent
on W. As these two operators are positive definite on W we can solve (25) by the conjugate gradient
method, using the constant coefficient generalized Stokes operator S; as preconditioner. If we take
the starting vector of the iterations in W the iterations will remain in W (see [1]), and we will
obtain a rate of convergence which depends only of the domain Q; (and not of the mesh size, nor
of €).
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3.4. The complete algorithm

The modification of our splitting method is obvious. We choose ¢ (as small as possible). Once we
have computed 7"t and C™"*!, we modify the last step to introduce the fictitious domain method:
first we compute the set Q1, then after modification of the coefficients of (21) in € like in (22),
(23), (24), we solve this modified system, imposing U+l ~ 0 on Q :

Modified fourth step of 3.2:
1. compute the domain Q; as a function of C™*1,
2. choose a starting vector in W (a solution of S; (7, JJ) ={f q?) by example),

3. solve the modified Stokes system by the gradient method preconditioned by S .

Note that we solve only constant coefficients generalized Stokes problems.

3.5. Implementation

To achieve a good performance (and also to simplify the implementation) we have used rectangular
structured grids. This allows a very simple and very efficient implementation of the method of
characteristics. We solve the Stokes problems by the conjugate gradient method on the pressure
Schur complement, with a Poisson equation on the pressure as preconditioner [8]. Then all the
linear systems that we need to solve are Poisson equations on the different grids, for which we have
at our disposal fast algorithms like multigrids or the cyclic reduction method [18]. The algorithm is
easy to implement and it seems to be efficient; but the computing time remains large (16 hours on an
INTEL-PII 450 Mhz for the experiment shown on Fig. 4). We must remark that the fictitious domain
method of Bakhvalov cannot be easily improved as it furnishes an optimal (spectrally equivalent)
preconditioner. Improvements can be implemented for the Stokes solver (the inner loop!) embedded
in the method, for which we have used a very classical preconditioned Uzawa method: multigrid
methods on the Stokes problem could certainly achieve much better performances; an adaptive time
step method could also improve largely this method. Another point which needs to be explored is
the use of adaptive refinement for the meshes, which would certainly give a better description of
the front and of the related phenomena in its vicinity.

We have limited our simulations to two dimensional problems because we lack an efficient three
dimensional Stokes solver, but there is no theoretical limitation to dimension 2 for this method.
Moreover the fictitious domain method, having an optimal rate of convergence (independent of the
mesh size), should give good results in dimension 3.

We have tried other time discretisations: it seems interesting to use the fictitious domain method
with Chorin-Teman and related schemes |9, 4, 13]: but all these methods impose very small time
steps and the global iteration process could not compete with our scheme.

4. NUMERICAL RESULTS

Let us recall that that we are looking for conditions where the front remains almost plane along
the process: this is the interesting case for applications. Otherwise, the front is considered to be
unstable. We show here two computations with different (albeit arbitrary) values of a.

e Figure 3 shows a case where the inclination of the tube is & = 37 /4. The front is stable, descend-
ing, and propagates with a constant velocity. Laboratory experiments have been conducted with
a good agreement with the numerical simulations [2]).
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Fig. 3. From top to bottom: snapshot of the front, T', C and the stream function 1 (isovalues have been
drawn by increment of 10 degrees K (7'), 0.1 (C) and —0.01 (%))

e Figure 4 shows the instability of a vertical ascending front (a = 7). This is in agreement with
the experiments of [7]. Figure 5 shows the corresponding stream function.

In two dimensional fluid simulations, the stream function 1) is often computed using the relation
A1 = —curlU. Here we use the relation

P(F) = Usdzy — Ur das,
)

where [(Z) is a path from a fixed arbitrary point on the boundary to Z. Since V - U = 0, the
computed value is independent of the path {(Z). We can compute 9 everywhere in § by integrating
the above expression on the edges of the finite element triangulation. This is a much faster method,
the numerical cost being proportional to the number of nodes in the finite element discretisation.

The computations were performed on a grid with 32x120 nodes P, . For the time steps we have
not encountered stability problems, but too large steps result in a divergence of the Newton method
in (18). Figure 6 shows the number of conjugate gradient iterations for the fictitious domain method
along the whole computation of a polymerization process (with oz = 10 degrees). We can see that this
number is moderate and does not depend too strongly of the size of ;. In all the simulations, the
choice of the penalisation parameter €, as predicted by the theoretical study of the algorithm, was
not critical for the convergence: choices between £ = 107° and & = 1072° do not affect the number
of iterations. The following table gives the number of iterations for the solution of a problem in
Q = (0,1) x (0,10) as a function of the number of points in the grid, (horizontally — number of
discretisation points along the horizontal axis (0,1), and vertically — number of points along the
vertical axis (0,10); the fixed domain is (0,0.5) x (0, 10)):

10 | 20 | 40
50 | 5 | 7 |14
100-| 4- 1 5 10

200 3 | 4|5

We see that except for the case when the aspect ratio of the elements is very poor (that is to
say the quotient hy/hy of the sizes of the elements along the 2 coordinates axis is far from 1), the
number of iterations does not vary much.
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Fig. 4. Snapshots of C' (first line), T' (second line) and position of the front for different values of ¢
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Fig. 5. Stream function
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Fig. 6. Number of iterations for the fictitious domain method
5. CONCLUSION

From a numerical point of view, this method seems to give interesting results. Even the first simu-
lations seem to agree surprisingly well with the experiments. The location of the front is in a good
agreement with the experiments, for values of Cp in a large range (between 0.3 and 0.6 at least
in our simulations): this is in agreement with the conclusions of [22]. But one must keep in mind
that the mathematical model is very simplified, and that not all experimental situations can be
simulated. The weak point is certainly the description of the physics of the phase transition which
is short—circuited here. Physical experiments with descending fronts show that the front can be
unstable, and this cannot be simulated with a constant density material and a sharp transition
from liquid to solid. Some other phenomena are neglected, like the surface tension of the front,
which may have some importance at least in some experimental situations like micro-gravity. The
real chemical reactions are much more complicated than the one step model. We think that some
of these phenomena may be added to our model, and that these simplified computations can help
the understanding of the whole phenomenon.
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