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A mathematical model of diffusion of vaporized interacting metal molecules in a fireproof material is con-
sidered. The model is based on microscopic kinetic equations describing the process under condition of
a strongly non-homogeneous temperature field. A two-dimensional structure is examined, where the inner
hot surface acts as the source of metal vapour and the outer surface — as a cooler. Due to interaction be-
tween metal molecules, a phase transition (condensation) proceeds near the outer surface. A conservative,
monotonous, and absolutely stable difference scheme is developed on the basis of a special exponential
substitution for the concentration of molecules. Results of 2D numerical experiments in non-steady state
are presented.

1. MATHEMATICAL MODEL AND DIFFERENTIAL EQUATIONS

The problem being studied is related to metal vapour penetration in a ceramic material (nozzle).
The heated metal is assumed to flow along the left and the right boundaries of a rectangular ceramic
sample of dimensions zy, and yr, . We choose the coordinate system so that the z and the y axes
are oriented along the bottom and the left boundary of the sample, respectively. The left boundary
line is maintained at a higher temperature, the right boundary line — at a lower temperature. For
this reason the left boundary line is referred to as the heater and the right boundary line as the
cooler. Due to the heat source near the cooler the distribution of temperature inside the sample is
non-homogeneous.

The two dimensional ceramic sample is considered to be a porous medium wherein the metal
molecules migrate. At the microscopic scale the kinetic process is assumed to be stochastic and,
due to a non-homogeneous temperature field, formation of a new phase is possible. One-dimensional
calculations [1] have shown a possible stochastic nature of phase transition. In the present study
the problem is generalized to a two-dimensional geometry. We propose the difference scheme for the
two-dimensional case and provide numerical simulation of molecular kinetics.

A method developed earlier [3, 4, 6] is adopted to derive diffusion equation from a microscopic
model. The particles (metal molecules) are assumed to occupy the sites of a two-dimensional square
lattice, the lattice constant being b. The neighboring particles attract each other and, provided
all the sites are occupied, the binding energy per molecule (two bonds) is —e. Migration of the
metal molecules is described as a stochastic process the particles being able to jump from one
site to another not occupied by any other particle. To describe the physical situation of molecules
moving through pores we have assumed the average distance of a single jump a being much longer
than the lattice constant b. To derive the diffusion equation, we consider stochastic jumping of
a particle between sites with coordinates (z,y) and (z + a,y). At the thermodynamic equilibrium,
the probabilities of opposite stochastic events are related to each other by the detailed balance
condition. In particular, we have

W —- Es ) = E(z + a,y)
e (KT(ac,y) KT(:v+a,y)> (1)
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where wy and w_ are the probabilities per unit time for the considered particle to jump from
the site (z,y) to the site (z + a,y) and vice versa, respectively; E(z,y) is the interaction energy
between the particle located at the site (z,y), and its neighbors; T'(z,y) is the temperature which
at the thermodynamic equilibrium is constant; and K is the Boltzmann constant. In our model, we
have assumed that Eq. (1) remains true if the temperature depends on the spatial coordinates z
and y, which is motivated as follows. Since the distance of a jump is remarkably longer than the
interaction distance b between particles, the probability per time to initiate the jump depends on
the local temperature and local binding energy at the place (z',y) (where ' is either z or z + a)
from which the jump starts, and is equal to v - exp (E (¢/,y)/KT (z',y)). The constant v is the
frequency factor characterizing the frequency of "attempts" a given particle makes to overcome the
potential barrier. In this case the detailed balance means that Eq. (1) is satisfied. According to the
above assumption, transition frequencies are

wi:QO.exp(il[E(%y) _ Bz +a,y) D @)

2 |KT(z,y) KT(z+a,y)
where
be 1[ E(z,v) E(z +a,y)
g s e"p(i [KT(:c,y) T KT+ a,y)]) i

is the characteristic jumping frequency of a particle. For further simplification E(z,y) has been
replaced by its average value —2¢ - C(z,y), where C(z,y) is the concentration of molecules, nor-
malized to be in the range [0,1]. Based on this assumption, the particle fluxes f(z + a/2,y) and
J-(z+a/2,y) in the positive and in the negative direction, i.e., the number of particles per unit time
jumping from site (z,y) to (z +a,y) and vice versa, can be evaluated easily. A jump in the positive
direction (from (z,y) to (z + a,y)) with the frequency w; can occur if the site (z,%) is occupied
by a particle whereas the site (z + a,y) is free. In the mean field approximation the probability
of such an arrangement of particles is equal to C(z,y) - (1 — C(z + a,y)). Similarly, a jump in the
opposite (negative) direction can occur if the site (z + a,y) is occupied and the site (z,7) is free,
which realizes with the probability C(z + a,y) - (1 = C(z,y)). According to this consideration and
Eq. (2), we have

fr(z+a/2,y) = QC(z+a/2Fa/2,y) [l -C(z+a/2+a/2,y)]
e (Clz+a/2+a/2,y) C(zr+a/2Fa/2,y)
% exP[—IZ (T(w-}—a/Z +a/2,y) T(z+a/2Fa/2, y))] :

The flow Jz(z + a/2, y) of the particles in z direction can be expressed as:

Jo(®+a/2,y) = fr(z+a/2,y) - f-(z+a/2,y). (5)

The flow of the particles in y direction at the point (z,y + a/2) can be expressed in the same way
by appropriate substitution (i.e., # and y exchange the roles). The final form for flow expressions is
obtained by expanding the values of C(z,y), C(z + a,y), and C(z,y + a) in the vicinity of space
points (z+a/2, y) and (z, y +a/2) assuming that the variation of C(z,y) is small within a spatial
distance a. Thus, we obtain:

(4)

oC
Jo(z+a/2,y) = —Qoa- ch(Ystay) ;4 +2Q0C (1 = C) sh(Vz4ay) (6)
oC
Jy(z,y+a/2) = —Qoa-ch(Vzy+ta) % + 8O- 0) sV 14a) » (7)
where

_ e (Cl@z+ay C(zy) _ ¢ (C(z,y+a) Clz,y)
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Note that C(z,y) is the probability that site (z,y) is occupied. Evolution of this probability with
time ¢ is determined by the sum of partial contributions to dC(z,y)/dt due to flows Jz(z + a/2,y)
and Jy(z,y £ a/2). Thus, we have

oC (z,

—(a—ti) =—Jo(z +a/2,y) + Jo(z —a/2,y) = Jy(z, y+a/2) + Jy(z, y — a/2). (9)

The macroscopic diffusion equation (the flow continuity equation) is obtained from (9) in the
limit @ — 0, where all quantities in Eq. (9) may be considered as continuous analytical functions of
coordinates. Neglecting the terms of order a?, we obtain

aa—fz—a-divf, (10)
where J is the flow vector with components J,(z,y) and Jy(z,y) defined by Egs. (6) and (7).

In the proposed model the macroscopic flow is created not only by the concentration gradient, but
also by the temperature gradient which plays the role of an external force. It should be noted that
in our further interpretation the phase transition (condensation) is caused by the temperature field
created by the heat source. In our opinion, other factors, such as the variation of temperature, the
heat conductivity, and the characteristic jumping frequency €2y due to the change of concentration,
are less important. Inclusion of all these factors would not cause principal problems in building up
the difference scheme. According to the above arguments the steady-state temperature distribution
T(z,y), calculated from the usual heat conduction equation

'

-
has been used as the first approximation in the continuity equation (10), where D = A/(cn) is the
heat diffusion coefficient and Q is the heat source. In this case X is the heat conductivity, c is the
heat capacity, and 7 is the density of the heat conducting medium. According to our assumptions,
we have chosen constant values for A, D, and .

In our calculations the diffusion coefficient is assumed to be D = 0.001 m?/s. The characteristic
jumping frequency and distance are chosen g = 10° s~! and @ = 1075 m. Dimensions z, and yy, of
the structure in the z and y directions are taken zz, = yz, = 0.1 m. The source of metal vapour and
the cooler are located at the boundary lines Qs = (z =0,0<y<yr)and Q¢ =(z=21,0<y <
y1), respectively. The temperatures T's and T¢ are constant at the corresponding boundary lines
Qg and Q¢ . On the boundary lines (y =0, 0 < z < z1) and (y = yr, 0 < & < ) derivatives of
temperature are equal to zero.

Equation (11) is solved in a traditional way by using the central difference scheme.

DV - (VT) +Q, (11)

2. DIFFERENCE SCHEME FOR DIFFUSION EQUATION

One of the problems of numerical solution of the non-linear diffusion equation (10) is the development
of an effective difference scheme. In the one-dimensional case, a conservative, monotonous, and
absolutely stable exponential type difference scheme has been elaborated [1] for solution of the
diffusion equation. In this work, the method developed in [1] is extended to the two-dimensional
case.

Let us introduce a nonuniform space grid with steps h; (i = 1,2,...,M;) and r; (j =
1,2,...,M>). The non-linear diffusion equation (10) is discretized using the balance method. Per-
forming algebraic manipulations, the balance equation is written:

01431 3T Cf,j s i | {(Jx)i+1/2,j — (Jz)i-1/2, 3 (Jy)ij+1/2 — (Jy)i,j—l/Z} (12)

* *
T h; T
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where: 7 — the time step, | — the time step index, h¥ = (h; + hi11)/2, r; = (rj +7j+1)/2. In this
equation the subscripts ¢ + 1/2 and j 4 1/2 correspond to the middle points of the space grid. To
obtain (Jg)it1/9,; and (Jy); j+1/o expressions, we have used existing approximation technique [5]
for 2D elliptic equation. To get (J3);+1 /2, » first we have to replace concentration C(z,y) by an
unknown function W (z,y):

C(z,y) = W(z,y) exp (Lo(z0, z)), (13)

where
A akar
Io (‘Tba .’L‘f) e dz (1 it C) th(7Z+a,y) )
aJg,
and g is an arbitrary real number which does not affect the coefficients in the final form of the
difference scheme. A tractable form for the flow J, expression can be obtained if Eq. (6) is substituted
by Eq. (13):

ow
Jr=—Qoa- Ch(')’:c+a,y) - €Xp (Io(l'Oa 13)) : '%’ . (14)

To obtain the flow approximation, the flow J, = (J3);41 /2, may be considered as constant within
the segment = € [z;, z;11]. In this case Eq. (14) can be rewritten

(Jz)it1/2,5 4 ow

=—-Qar —, 15
Ch('71+a,y) - €Xp (Io(zﬂ ) :L‘)) S Oz ( )
which, after integration in (15) over the segment z € [z;, z41], yields the grid flow expression
Cit1j-exp (—I,(zi, zi41)) — C; 4
Ji Yeoniite =G aealin 5t 10 olZi, Ti ij
( I)1+1/2,] ( Oa’) Id(.’L‘Z, $i+1) )
where
o exp(=Io(zs, 7))
Tg(zy 5z =/ dz ’ - 16
(= f) T Ch(7z+a,y) e

Assuming th(Ys+a,y) = Yo+a,y and ch(Yz4q,) = const within z € [z;, zi41], the integration in (16)
can be performed easily. Thus, for the grid flow (J;)iy1/2,; we have:

Qoa [ € (Ck—i-l m Ck m) a ]
J %o chi[t br b :
( )k+1/2,m R K Tk+1,m Tk,m hi—H /Bk+1/2,m

X [1 = exp(~Bis1/2m)] " [€xD(~Brs1/2m)Ceatm = Cham) » s

where:

3¢ Cr+1m  Ck m)
SRy m _ Ckm )
Brk+1/2,m K( Jk+1/2,m (Tk+1,m Tom

A substitution similar to (13) is used for Jy, (7) approximation, with the only difference that
integration is performed in y direction and function 7,4, is changed to ;444 . The expression for
(Jy)ij+1/2 can be written by use of substitution h; = r; and hiy1; = rj41 in Eq. (17).

After substitution of (J3)i+1/2,; and (Jy); j+1/2 in the balance equation (12), the following dif-
ference scheme is obtained:

Cllj]-l — CZ!J = ﬂcl+l Y %CH—I i Bi:j D 5

- h:: i—1,5 h:( i+1,5 'I"; 7,.; 1,7+1 %7

1<i<M,-1, 1 £g < Nlg=11,

WOt - QiClt (18)

I+1
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where:
1 1
Qij = 33 (Aivj + Bim15) + —(Bijar + Dij1).
7 J
The coefficients Ai,j y Bi,j, Ei,j, Di,j read:
Aij = P15, (19)
Ei; = exp (“ﬁfﬂ/z,j) P12 (20)
Bij = Sij-12, (21)
D j = exp (—ﬁé,j+1/2) Sij+1/2 (22)

ct. Cl y =g
5 5 -1, a
Pi—1/2,j i Qoa2 .ch | = (_l.]_ = l_i> h_zJ : 1{_1/2’]_ . [hi i (1 431 eXP(”ﬁ£—1/2,j))] )

lvj l—l,]

Ci; Ci; a i
e — QRERAGER | & | i _ MagSARTGH e g ot O _al _
SZ,J—1/2 0a” - ch K<Ti,j Ti,j—l r; /81,]—1/2 [7’1 (1 exp( le,_]—l/Z))]

It can be shown that the half-implicit difference scheme (18) is conservative and the coefficients
(19)-(22) satisfy the known monotony conditions. Besides, numerical calculations have shown that
difference scheme (18) is absolutely stable.

In the calculations presented below, it is supposed that at time ¢ = 0 the value is assigned from
segment [0, 1] for concentration C on the boundary lines Qg and Q¢ . On the other boundary lines,
the normal component of concentration gradient is kept zero. The initial condition is C' = 0 inside
the structure.

The system of linear equations (18) was solved by the ILUCGS method [2].

3. RESULTS OF CALCULATIONS

A nonhomogeneous stationary distribution of concentration is expected at large enough interaction
energies normalized to KT. This can be demonstrated by analytic formulae in the case of the
thermodynamic equilibrium when V7' = 0. The homogeneous distribution is stable with respect to
any small perturbation if the particle flow is opposite to the concentration gradient. In this case any
local concentration maximum dissolves since the particles flow out from the maximum region. The
opposite process, i.e., growth of a local maximum occurs if the particle flux is oriented in the same
direction as the concentration gradient. This leads to instability of the homogeneous distribution
and formation of a nonhomogeneous concentration profile. Such a phenomenon has been studied
in [3]. In our model, this phenomenon is interpreted as a phase transition or condensation of metal
molecules. According to Egs. (6)—(7) at VT = 0 this occurs if

5
2C - (1 C)-KT>1.

The marginal value of € corresponds to zero particle flux at any small concentration gradient.
From this inequality we see that the phase transition occurs at certain concentrations which are
larger than some lower critical concentration and smaller than some upper critical concentration,
if the condition € > 2KT is satisfied. For VT # 0 the same qualitative behavior takes place, as it
is evident from our calculations. The phase transition is observed at remarkably smaller values of
¢/(KT) as compared to the case VT = 0. At the given temperature distribution in our calculations,
the phase transition appears for ¢ > 0.002 eV which means that for ¢ < 0.002 €V the concentration
distribution always is homogeneous. Besides, the nonhomogeneous distribution is possible for & >
0.002 eV only if the concentration on the boundary lines exceeds the critical value C* =~ 0.2.



418 J. Kaupuzs and J. Rimshans

In the first example of simulation the heat source is located closer to the cooler: @ = 1000 K/s in
Q, Q= (042 <z <08z, 0.4y, <y < 0.6yL), otherwise @ = 0. The temperatures of the source
and the cooler are kept constant and equal Ts = T = 300 K.

The steady state distribution of temperature is shown in Fig. 1. From Fig. 1 we see that a strongly
non-homogeneous temperature distribution arises only in the €2 region.

Calculations have been performed at € = 0.012 eV with concentrations Cy and C, on the boundary
lines Qg and Q¢ both smaller and larger than the critical concentration C* = 0.2. At Cs = C =
0.1 < C* the steady-state distribution is homogeneous, i.e., C takes the value 0.1 which is equal to
the given boundary concentration. At Cs = C. > C* the steady-state concentration distribution is
nonhomogeneous, as shown in Fig. 2 where Cs = C¢c = 0.3.
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Fig. 1. Steady-state distribution of temperature. Fig. 2. Steady-state distribution of concentration.
Thermal source is located near the cooler Thermal source is located near the cooler

As it can be seen from numerical calculations, molecules are separated in two regions during the
transient kinetic process, and in steady-state, Fig. 2, the gas-liquid type system develops. In such
a way, our calculations confirm the qualitative picture outlined at the beginning of this section.

In the second example of simulation it is assumed that Ts = 1500 K and T¢ = 300 K, and the
heat source is located inside the region beyond the diagonal cross-section: @ = 6 - 10?2 K/s in ©,
Q = (z > y), otherwise Q = 0. The steady-state temperature distribution is shown in Fig. 3. As
shown in Fig. 3, a nonhomogeneous temperature distribution exists over the whole structure, which
causes the flow of molecules from the source to the cooler. The considered system is far away from
the thermodynamic equilibrium condition.

Concentrations of molecules have been calculated at different values of the bond energy and
Cs = Cc = 0.3, starting with small value ¢ = 0.002 eV and going up to values as large as
e = 0.032 V. In Fig. 4 the distribution of molecule concentration is shown in the y = 0 cross-section
of the structure in the direction from the source to the cooler. As shown in Fig. 4, the concentration
of molecules tends to a uniform distribution at small bonding energies, when ¢ = 0.002 eV. In
this case the distinct nonhomogeneous temperature distribution does not cause a phase transition
in the structure. At larger values of the bonding energy (¢ = 0.012 eV and e = 0.022 eV), the
concentration of molecules is increased near the cooler. A distinct nonhomogeneous distribution of
molecules appears at bonding energy ¢ = 0.032 eV. In this case, the concentration of molecules
reaches values close to the maximum possible C' = 1 within a region near the cooler, as shown in
Figs. 4 and 5. In Fig. 6 the distributions of molecule concentration in the y = 0 cross-section are
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Fig. 3. Steady-state distribution of temperature. Thermal source is located inside the region beyond the
diagonal cross-section
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Fig. 4. Distribution of molecule concentration in the y = 0 cross-section

Fig. 5. Steady-state distribution of concentration. ¢ = 0.032 eV
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Fig. 6. Spatial distribution of molecule concentration in the y = 0 cross-section at various time moments,
€=0.032 eV

shown at various time moments (at € = 0.032 eV). The spatial distribution of molecules changes
nonuniformly with time, as it can be seen from Fig. 6. Different changes can occur at the spatial
points which are close to each other, thus creating a strongly nonhomogeneous spatial distribution
of concentration.
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