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Optimal airfoil in an inverse problem of jet aerodynamics'
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The paper deals with a special inverse boundary problem, when the boundary of the domain is completely
unknown and a singular integral equation for the velocity angle is obtained. For the model of free plane
symmetric incompressible jet forked by an airfoil, the boundary equations and airfoil shape are “a poste-
riori” determined, while the velocity along them is “a priori” prescribed. With the aim to obtain minimum
drag, in the present paper there is solved the optimization problem for airfoils, using the penalty method
and the golden section method. In the case of optimum, numerical computations are performed and the
airfoil design together with the drag coefficient are obtained.
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1. INTRODUCTION

The stationary potential plane flow of an inviscid fluid is considered in the absence of mass forces
(Hyp). Relating the velocity field w(z) = wu(z,y) + iv(z,y) to the zOy frame in the physical
flow domain D, , z = = + iy, then in the hypothesis (Hyp) formulated above, we have rotv = 0,
(v = grad ¢(z,y)), divy = 0. The complex potential f(z) and the complex velocity w(z) are defined
through the analytic functions:

1) = play) +ib(ey), =G =ve™, (1)

u =V cosb v = V siné.

Here ¢ = ¢(z,y) is the velocity potential, ¢ = (z,y) the stream function, V' = (u? + ’UZ)% and
6 = arctan(v/u), are the velocity magnitude and respectively its angle with the Oz axis. Passing to
the hodographic plane (V,8), i.e. W = V 416, using (1), f is analytically generalized by W [3, 5, 9]:

1

b= —sVor  Bo=Vy  w=Vi,, b, =t @
In the case of the direct problem the flow will be determined using the hodographic method 3, 4, 8]
and f(W), z(W) will be obtained. In the case of a curvilinear domain D, it is generally difficult
to obtain directly f = f(z) and w = w(z) by solving the Dirichlet or Volterra boundary problem,
therefore a canonic auxiliary domain D¢, { =& +1in, n > 0; [2, 5] should be introduced.

To the domain D, , y > 0, of the plane symmetrical jets, it corresponds the domain Dy, f =
@+ith, p € (—00,00), 0 < < % < 00, where @Q is the total flow mass. We try to determine the
analytic function f = f(z) which realizes the conformal mapping Dy > D¢ with

Qe =5 oy ==tg; o fz=0. (3)

1 Abbreviated version of this paper was presented at the VII Conference Numerical Methods in Continuum Me-
chanics, Stara Lesna, High Tatras, Slovakia, October 6-9, 1998, and published in its Proceedings.
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To obtain the analyticity conditions for the velocity (V,6) in (2) we introduce the Jukovski
function w, considering that along the stream lines (free lines), V = V. That is,

0
w=t+160, V=V . t=lnl—/‘7, PV V" (4)
Op=tp, Op=—ty; wo=—t, @r=%p; w5=0, fz=0. (5)

In the case of free surface flow, the flow domain D, is generally bounded by polygonal rigid
walls, (curvilinear) obstacles and stream lines that diverge from the walls or the obstacle [6]. Along
these free lines the velocity, pressure and density are V, p% r® = const., respectively, and in the
point whose velocity is zero V =0, p = pg, p = pp = const. Applying Bernoulli’s law in the case of
incompressible flow along a stream line 9 = const. we obtain

0 2 02
P Siea pV ’ D5 e poV
Pobiod B PO SgToby vt D o (6)

1 p 1.4
—Viy—=_V

2 Y s i:
Now we consider the Theorems 1 and 2 [5, 6].

Theorem 1. In the hypothesis (Hyp), if there is a conformal mapping f = f(¢), fz = 0 with
Dy <> D¢ then z = z(() is analytic (conformal), with D, <+ Dy .

That can be easily proved: f is analytic of z, fz = 0 and from (Hyp) z is analytic of f, z5 =0.
If f is analytic of ¢ then their composition z = z(() is analytic, too. At this stage, we shall find
f = f(¢) so that the boundaries of the domains D, , D correspond to the boundary of Deyn=0,
€ € (—00,00), on which we have the stream lines 1) = const. As 'Oz is the axis of symmetry, we
shall prove that for the founded function f = f({) the following conditions hold: 7 = 0, 1) = const.
and %ﬂn:ﬂ =

In this case, the passing relations (1) dz = %ewdf become in D¢, on n =0,
9

dz +idy = <8_§) %(cos@%—i sin @) d¢. (7

Performing the separation of the real and imaginary parts, the geometrical equations of the boundary
(the BOB' airfoil), are derived:

dz i "Ycos @ dy/ 28 mP e
E—waa 'd—g— R PE (8)
whence

€ cos € sinf

o6) = [ Gdtran,  w©)= [ Blacry,
o o

In the case of the inverse problem, the boundary D, is completely unknown and using these

formulae, it will be determined by Theorem 2. We only need to know w(¢), or w(().

Theorem 2. If in the hypothesis (Hyp) there is f analytic of ¢, and it is the conformal mapping
between Dy «» D¢ then w =t + 160 = w(¢) is analytic of (, wg = 0 and it is the conformal mapping
between D, <> Dy.

As demonstrated above in Theorem 1, if f is analytic of ¢, and using (5), w is analytic of i
then their composition w = w(¢) will be analytic, too. Usually, in D¢, n > 0, for w = w(¢) there is
a mixed boundary problem. Solving it, we obtain w(¢) and w(¢) to be used in (8).
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2. THE INTEGRAL EQUATION OF THE INVERSE PROBLEM

In the previously stated conditions, we consider the plane flow of a symmetrical free fluid jet,
bounded by the free lines (AD) and (A’D') along which the velocity is V°. At infinite upstream,
the jet width is AA’ = 2h, and the velocity is VO = V%, while the total flow mass is Q = 2hV?°.

The jet encounters the symmetrical curvilinear obstacle BOB'. The stream lines (BC) and
(B'C"), along which the velocity is V?, emanate from B, B’ and acquire an asymptotic direction at
infinite downstream in (CD),(C'D’) at an angle +ym with the 'Oz axis which is the symmetry
axis AgO of the figure. It is sufficient to study the flow in the halfplane D, , y > 0, and therefore
the domain boundary is (AgOBCDA). The velocity angle in O is 8(0) = ar and 6(B) = fr where
0 <y < B < ac<}and the velocity downstream (CD) is w = V%" (Fig. 1). The direct
boundary problem for analytic functions in D, is to find an analytic function in D, knowing the
real (imaginary) part or mixed values along the boundary 0D, , which is also known. The inverse
problem consists of determining an analytic function in D, which will fulfil the same conditions on
the boundary, but in this case the boundary is only partially known (or completely unknown, as is
our case here) and it needs to be determined, too. Direct problems have been studied using these

models — by Cisotti [1], Villat and Tacob [3].

Cl

o

Fig. 1. Motion range in the physical plane D,

For the problem stated above, the boundary (AgA'D'C'OBCDAAy) is unknown, but the stream
function 1, the velocity V? are known on this boundary and the distribution V = V(6) (p = p(6))
is given “a priori” on the (B'OB) profile. Therefore, it is important to determine “a posteriori” the
shape of this airfoil in the case.

Several papers, like [8] and [10], deal with the case of the flow with circulation. In order to solve
the mentioned problem, for #(¢), an integral equation will be derived. First the Theorems 1 and 2
will be applied.

Let us consider the biunivocal correspondence between the domains D,, D with the halfplane
D¢, n > 0, so that the boundary (A4gOBCDAAg) be placed upon the n = 0 axis, £ € (—00,00):
Ap(—00); O(-1); B(1); C; D(a); A(co) (Fig. 2). The parameter a > 1 will be determined.

We shall determine f(¢) = ¢ + 4% analytic in D¢, n > 0, such that Ay = 0 and with the
boundary values 1 = 0 for £ € (—00,a) and ¢ = % for £ € (a,00). The solution of the Dirichlet
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Fig. 2. Correspondence of fields plane Dy, D, with D¢

problem (Dy > D¢) when ¢ € (—00,00), % € [0, %] is [3, 5]

. 39 e el g 8 8 2
Ao = Owil g vy 0. D pie = i e

) 9)

Knowing the boundary values: § = 0, £ € (—00,00); 8 = 6(¢), £ € (-1,1);t =0, € (1,a) U
(a,00), we determine the analytic function in D¢, 7 >0, w(¢) =t +i6,t=1n VVO . This is a mixed

problem and we transform it into a Dirichlet problem for the function § = R +:iT = \‘;é%, in
which case along the boundary we have: R =0, £ € (—o0,—1)U(1,00) and R = \%—E_—) ,E€(-1,1).
Using the Cisotti—Villat formula for the n > 0 halfplane, we obtain S = S(¢) and
VC=T[ (' o d
w(¢) = Y& [/ 2l +C’]:t+19, CeD;; (10)
) _1V1—58-¢(

where the constant C is determined by specifying the velocity in O. If the function V = V(0) is
prescribed on the obstacle (OB) then, using (4), t = t[0(£)] is fixed for £ € (—1,1). Applying the
Sohotski-Plemelj formula to the integral part of (10), we obtain the singular integral equation of
the inverse problem [6]:

V1-— 1 9(s s
H0(¢)] = 1.4[/ il +o], cel-1,1] (11)

T “1 41258 —(

This equation is a non-linear one and the singularity of the integral is to be taken in Cauchy’s
principal value sense. Solving this we obtain 8 = 0(¢), then t = ¢(§) and V = V(§) for £ € (-1,1)
and returning to (10), we find w = w(¢) and W = W({) which determine the flow. Using (8), we
obtain the parameter equations of the boundary of domain D, , z = z(§) and y = y(¢) taking for
the (OB) airfoil £ = —1, £ € (—1,1].

We shall study this equation in two important cases.

Case 1. — Along the (OB) airfoil we prescribe “a priori” the distribution:

6—pBm
AN e e KQ =
V(o) = <T/—> 4:>t————7r(a_ﬁ) ln(V> =mb +n, (12)

where: V(0) = Vo, (0) = am, to = %, € = —1 and V(B) = V°, §(B) = B, t3 = 0, £ = 1, with
Vo < VO a > . The meaning of these conditions is that in the neighborhood of O, the velocity Vj
has a very little value, fact that may be experimentally verified. In this case, Eq. (11) is linear.
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We impose in O the condition ¢({ = —1) =1In ‘K/;l , and using (11) we obtain:

s <V°> /1 0(s) ds
= —In|l— | — .
V2 Vo T or—as+i
Next, considering again the linear equations (11) and (12), one gets:

VI=E 1 6(s) (1+¢&)ds 1=F v 1_/3 :
™ ./_1 \/l—s(s+1)(s—§)+ 2 1<VO), (13)

VO
m:-———l—ln<——), n = Brm.

ml +n =

m(a — ) Vo
Denoting 0(§) = (€ + 1)v/1 — £ g(€§), we obtain the following singular canonic integral equation:
b,/'1 g(s) Brm 1 (V())
a el ——ds= + In[ — | = h(¢ 14
) i) s g P T TIREAE S VALY E ey )
where: @ = m, b = —i, and h(&) is Holderian. Since a and b are constant [6, 7], we can compute
directly the solution. We introduce Schwarz’s operator
1 11 f s
sl == [ L

) 1S —§
where S? = I, the identical operator I(f) = f and then the regularization operator will be
1
m[aI—bS], 02~b2=m2+1.
Since the regularity conditions are fulfilled, we shall apply this operator to Eq. (14). Finally, like
in [6, 7], the solution is obtained as

b b
9(e) = ﬁh(é)—m%/_l s(jlfds. 5)

Computing the singular integral directly or through numeric methods, we obtain g = g(¢), 6 = 0(¢),
t=1(£), V = V(¢ and then w = w((¢) is found. Using (8), as mentioned above, we can obtain the
boundary and the shape of the airfoil.

Case 2. — Using the “semi-inverse” method, we shall prescribe a practical model of the velocity
angle

8(¢) = Tr(ﬂ—a)\/#-kmr, B < o € e[-1,1]. (16)

6(0) = 0(-1) = am; HB)=0(1] =f%

If we impose the condition V(0) = 0, (6 = —1) — oo, then it follows that C' = 0 in (11) and
the velocity is obtained through the computation of the Glauert singular integral [3, 5].

I _/’1 Mpgadd 1=
N TR l—ss—f—w’
1

1
S ds s fVB TS E 4
I ‘/_141—3(3—5)_21 <———> ¢ e (-1,1)

VITE

: VBST a7)
He) = l—z—g(ﬂ—a)+2a\/1_:21n<\/§+1_+1§f>’

204/1-€

V(€) = VO exp [w(a—ﬂ)”’f] {ﬁJ’ Lt

2 VgL
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where the conditions V(0) = V(¢ = —1) = 0, V(B) = V(¢ = 1) = VO are fulfilled. It is obvious
that eliminating £ from (16) and (17), V' = V(0), t = t(f) are obtained. In this case, the integral
equation is a nonlinear one.

Returning to (10), we have:

\/_/ \/ms(ig

Using (16) on the n = 0 axis and computing the integral, we shall obtain the distribution of the
velocity along the boundary:

w(¢) = t(¢) +10(¢) = (18)

e along the free lines (BCDA), V =V ¢t =0 from (18) for £ € (1,a) U (a,00) we obtain:

0(¢) = w_(_ﬁ_\/—i_a) (\/5 Hli=a/§ir 1) + 2aarctan~/€%1; (19)

u="Vcos6 v = V9sind.

We have used the quadrature formulas:

- Its L4l
I3_/ Vl—ss— ( §—1)’

2 2
I4=/_1 1_8(8_6)=—§_1Mctan E—;—l
e along (A400), &€ € (—oo,—1), because § = 0, using (16) in (18) we obtain:
o %4 (B—a)r s S s VIi=Et+2 5
(o () = =2 (Vite- vA17g) +1m (F f> (20)

phi= Yo Voe"t(f), v = 0.

1i

The following results were used:

1+s -1-¢
15_/ Vl——ss— < 1—{)’
. =/1 e cid it VI=E+2
T SRV e PR e W e

e along the airfoil OB; u = V(§) cos6(¢), v = V(€)sinb(¢), & € (—1,1) where 6(£) and V(£) are
given by (16) and (17). It may be verified that V(4y) = V(4) = V% V(0) =0, V(B) = V? and
from V(C, D) = V° when ¢ — a, §(C, D) = ~r, the parameter a may be computed. At the same
time, using (6), the pressure along (490) and (OB) can be determined.

3. DETERMINING THE SHAPE AND GEOMETRICAL PARAMETERS OF THE AIRFOIL

We study the problem in the 2-nd case. From the distribution (16), we note that along the airfoil

2 21
S ot Wnapey e g oAl IR

dz : @—ucos20<0
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i.e. the arc (OB) is convex and symmetrical relative the Oz axis. From (8), (16) and (17) we obtain
the coordinates of a point P (z(£),y(€)) describing the airfoil (OB):

Q € cosf(s) ds

2 J_; V(s) (a—3s)’
Q € sinf(s) ds
St Vi la—81

z(§) = fEL 1 (21)

y(€) =

(22)

The length of the elementary arc in zOy plane is dS = 7‘%—) d¢, and therefore the length of the
OB arc is:

il o8 dBar iopigranol o
2 | 7@e=g ~ @V e (23)

If Q = 2VOh, a = a(a, B, V) are given, then [ can be determined or conversely, if [ is given, then
a can be determined.

In (21), the coordinates functions X (§) = ﬂf—) - Yiké) = @ , are normalized and the airfoil may
be drown, see Table 1. Using (8), we compute the airfoil curvature. The airfoil curvature is

1 Im/ 1 ylxlll o 0[(6)

4O =R = wrrvr v
If one denotes

= B2 2R 5

Te— s Q — V7,

using (16) and (9), we find:

bl

“laZfle—g) [ VIRELIYEE cpg o) b _
=St | B el Saas Bt gLl (0

Introducing 6(£) in (19), the equations of the free lines (BC) U (DA) are derived. On these free
lines, the curvature has the expression k = |%’,|Vo, ie.

(a — B)
2v2(1 + €)
It may be observed that along the asymptotic direction ¢ — a, K(CD) — 0. Since the curvature

sign does not change, the free line (AD) is convex, while (OB) U (BC) is concave and there are no
inflexion points along them.

k(BC,AD) = € —al, €€ (1,6)U(a,00).

Remark. If the direct problem is examined, i.e. the flow around a given curvilinear airfoil
(BOB'), then the curvature k() is known and from

t—-ln(‘{;), Vzk(f)%,,a

using (11) or (18) we obtain — for the first time in this form — the singular integral — differential
equation:

' (£ — a) \/1— ds
k() l—s s—¢&°

From this equation, we find § = 6(¢), then V(¢) and w({) may be determined (in the particular
case of a circle arc, k(¢) = 1).

In

(25)
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Using (19) for £ = a, we find the equation
(8 — a)

V2

Application for the case when the asymptotic direction 7 is apriori prescribed. Usually, if we
know «, B and the lenght [ of the airfoil, from (23) we may find a and, then, from (26), 7.

Here, we shall study the case when «, are given and the asymptotic direction 7 is apriori
prescribed with 0 <y < 8 < @ < 5. In this case the nonlinear equation (26) defines a = a(a, 3, v)
and the geometrical parameters may be obtained from (21), (23), and (24); finally the shape of the
airfoil X = X (¢), Y = Y (&), is obtained.

As an example, for a = % A= % =y = % , V® =1 ais computed, than (¢), V (€), k(¢), Y (€) for
¢ € [—1,1] (Table 1). In Table 2, the values of a are given for other values of a, 3, 7.

Recently, in the case when the obstacle BOB' is in a symmetric channel with parallel walls AD
and A'D’, a study for the inverse problem was done [6].

(26)

(\/a—i— —\/a—1)+2a arctan 2 :

B :C) =%r= —

PR
e

PN

Table 1. The coordinates and geometrical parameters of the airfoil for o = % =

(&) Vi ks
1.047 0 0
0.989 | 0.174 | 0.487
0.964 | 0.252 | 0.481
0.946 | 0.316 | 0.476
0.93 0.374 | 0.46
0.916 | 0.428 | 0.464
0.904 | 0.479 | 0.456
0.892 | 0.529 | 0.447
0.882 | 0.577 | 0.438
0.872 | 0.623 | 0.427
0.862 | 0.669 | 0.415
0.853 | 0.713 | 0.402
0.844 | 0.757 | 0.389
0.836 | 0.799 | 0.374
0.828 | 0.84 0.358
0.82 | 0.88 0.342
0.813 | 0.918 | 0.324
0.806 | 0.953 | 0.305
0.799 | 0.985 | 0.285
0792 {71:011 | 0.263
0.785 1; 0.233

&i X; Y;
-1 0 0
—0.9 | 0.098 | 0.158
—0.8 | 0.143 | 0.225
—-0.7 | 0.179 | 0.277
—0.6 | 0.211 | 0.32
—0.5 | 0.24 0.358
—0.4 | 0.267 | 0.392
—0.3 | 0.292 | 0.425
—-0.2 | 0.317 | 0.455
—0.1 | 0.341 | 0.484

0 0.365 |- 0:511

0.1 | 0.388 | 0.538

0.2 | 0.411 | 0.565

0.3 | 0.435 | 0.591

0.4 | 0.458 | 0.617

0.5 ] 0.482 | 0.643

0.6 | 0.507 | 0.67

0.7 | 0.533 | 0.696

0.8 | 0.559 | 0.724

0.9 | 0.587 | 0.752

15 0.617 | 0.783

Table 2. The values of the parameter a and the drag coefficient C,

a B Y a Cy
1/4 (0.25 ) | 1/6(0.167) | 1/12(0.083) | 4.483 | 0.325
1/3 (0.333) | 1/4(0.25 ) | 1/6 (0.167) | 2.135 | 0.506
1/3 (0.333) | 1/6(0.167) | 1/12(0.083) | 6.336 | 0.423
4/9 (0.444) | 1/4(0.25 ) | 1/12(0.083) | 12.775 | 0.709
5/12(0.417) | 1/4(0.25 ) | 1/12(0.083) | 11.843 | 0.673
4/9 (0.444) | 1/6(0.167) | 1/12(0.083) | 9.298 | 0.598
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4. THE AERODYNAMIC FORCES AND AIRFOIL OPTIMIZATION

Using Bernoulli’s law (6), with

P=[ (-1,
OB
along the symmetric airfoil (B'OB), the resultant of the pressure forces is
B o2 [ 2
-2
o 2 L Vv
and passing on the ¢ € [—1,1] segment we obtain
g /’1 g% (VI
Jiqis2 I Vo

To compute P, the derivate %% results from (8), where 6(¢) and V(£) are defined through (16)
and (17), respectively. Using (27) and (23) the expression of the drag coefficient C; becomes:

dy

%y
9

de. (27)

Y, _ (VY| sinf(e) d¢
C_pz_/_l[l (7%) | e o 2
T /’1 ¢ ' G
BNZGICE

For the previous application, using the relation (8), there are presented in Table 1 and Table 2 the
computed values of C,, . These values agree with those obtained in the direct problem, by Tacob (3],
when the airfoil (B’OB) becomes dihedral a = 8 = 7.

Futher, for a given angle o and an airfoil length lop , we shall obtain the parameter (3(a) and the
asymptotic direction y(a), optimizing the airfoil shape BOB’, imposing the condition of minimum
drag, see (28).

Let then o € (0, 7], the airfoil length ! and the upstream jet width AA" = h = 1, V0 =1 given.
Then, the ratio k£ = % is fixed and we are conducted to the problem of finding the parameter a > 1,
which minimizes the function P = P(a), see (28).

14 1 5
Pl = /_ : 1—‘%%@ siné(s, ) a—d_—s (29)
where, from (16) and (17), we have
i T\ 2V
V(Saﬂ(a)) = exp |:7T(a 28 ﬁ) - 2 :| <\/§+1\-/F1—_§> ) s € [_1a1]7 (30)
(s, B(a)) = (8 — ) 1—;—f + ma, s €[-1,1]. (31)

The value 8 = fB(a) is obtained from the relation (23), by setting the length [ equal to k, or

1 ds
Re) = | yoaaiasy * (32)

and satisfies the inequalities

max{0,7(6,a)} < B < « (33)
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where, from (26),

=2

v(B(a),a) = \;ﬁa (Va+1-+va-1)+ 27aarctan

With the aim to prove the existence of the solution # = B(a) of Eq. (32), we shall assure the
verification of the implicit function theorem, specifying the monotony of the function R = R(B).
We analyse the restriction of the length of the airfoil (23), (32) and we shall obtain the bounds for
the parameter a. Denoting

9(s) = (T#TJT_)«—

from the inequalities 0 < 8 < a and using (30), we deduce

i g>1 (34)

a—1

3 s €[-1,1],

9(s) < V(5,8) < g(s) exp {m 1;‘9}

and then the lower and upper bounds

1 ds
ri(a) < /_1 Vo Ba—d)

where

< 1 ds wila) = : —ds_
T = /_1 (a — s)exp [Wa 1‘5‘5‘} g(s) , Hel /—1 (a—s)g(s)

We can affirm then that the resolvability of Eq. (32) is provided if the constant k is between ri(a)
and 7(a). In this manner, for a given k, the inequalities r;(a) < k < r4(a) are verified for certain
values of a, determining a set A(k), which can be named “the minimized scale”. One remarks that
the functions r;(a), rs(a) are decreasing and the set A(k) is then

A(k) = [ai,00) N (1, a4] (35)

where a; and as are the solutions of the equations r;(a) = k, respectively r5(a) = k.
From (30) we find

oV 1—s
—%(s’ﬁ) m 9

Vi(s,B)  V(s,0)

and consequently

s
LR AL
8,8 -1 V(SHB)(G'_S)
The conditions of the implicit theorem applied to the equation R(a,B) = 0 are fulfilled and the

existence of the function 3 = f3(a) satisfying R(a, 3(a)) = 0 is proved.
If we derivate (32), relative to a, then we obtain

dis. >0

B'a) = -
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Practically, using the bisection method [4], Eq. (32) may be solved efficiently.
We conclude that the function P = P(a) with a € A(k) is well defined and the optimization
problem becomes

P 1-V2(s,6(a) ds :
/;1 W sm@(s,ﬁ(a)) E — min! ac A(k) (36)
subject to the constraint
v(B(a),a) < B(a). (37)

Using the “penalty function method” [11], the optimization problem (36)—(37) is transformed
into the following optimization problem without restrictions

L1+ V2(5;8(a)) . ds :
/_1 Yo sinf(s, B(a)) e + I'max{0, v(6(a),a)—pL(a)} — min! a € A(k) .

where I is a big number.
This optimization problem (38) is solved numerically using the “golden section method” [4].
Once A(k) and a* derived, one proceeds to compute from (32) B(a*). Finally, from (27), (28)
we obtain Ppi, = P(a*) and C; = Cy(a*) and using (21)-(22), the optimum airfoil is derived
X = X(f,a*), Y = Y(f,a*), £6 [_17 1]

4.1. Numerical results

For a and k specified below, with the penalty constant I' = 10 [11] and with the imposed accuracy
1075 the numerical results are presented in Table 3. In Table 3, 8 and v mean 3(a*),v(B(a*),a*),
respectively. The computation were performed in MathCAD 7, which offers the necessary program-
ming facilities for our purposes. For a = 1/3, k = 0.7 the design of the optimum airfoil is plotted
in Fig. 3.
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Fig. 3. The plot of the optimum airfoil
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Table 3. The geometrical parameters for the optimum airfoil

a kel a: (k) | as(k) a* B vy 2lar) (&
1/3 0.7 | 3.3571 | 7.7004 | 3.714 | 0.043 | 0.043 | 0.1627 | 0.2325
1/3 | 1 | 2359 |5.3035 | 2.6462 | 0.0526 | 0.0526 | 0.2233 0.2233
1/3 | 1.3 | 1.8484 | 4.0167 | 2.0857 | 0.0609 | 0.0609 02771 . 0.2182
1/4 | 0.7 | 3.1421 | 5.5729 | 3.3821 | 0.0341 | 0.0341 | 0.09 0.1286
1/4 | 1 | 2.2368 | 3.8583 | 2.4276 | 0.0416 0.0416 | 0.1222 | 0.1222
1/4 | 1.3 | 1.7755 | 2.9494 | 1.9308 | 0.048 | 0.048 0.1501 | 0.1155

4.2. Conclusions

From the numerical results and the theoretical observations, the following conclusions can be
listed [3, 6, 9]:

e If the width AA’ of the upstream flow has a great value, the airfoil has a relatively little length
and 0 < k < 1 then B(a*) = y(a*) = 0. In other words, the width has a negligible influence, as
the aurfoil would be placed in unperturbed flow.

e For a little length of the segment AA’ and a long length of the airfoil, k& > 1, then B(a*) = v(a"),
like as the airfoil would be placed in uniform unperturbed flow.

e The theoretical and numerical results obtained in this paper can be used as a first approximation
for corresponding plane or axisymmetric problems, in the case of compressible fluids.
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