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A general solution of the diffusion problems which concern the R.C. structures, may be deduced by the
limit analysis, by means of truss schemes suitable to model the load transfer mechanism. In particular
such schemes allow us to share the carrying functions between concrete and steel reinforcement. Latest
developments call this kind a solution Strut-and-Tie (S&T) modellization. In this paper a procedure for
the automatic search for optimal S&T models in R.C. elements is proposed. A highly indeterminate pin-
jointed framework of a given layout is generated within the assigned geometry of the concrete element and
an optimum truss is found by the minimization of a suitable objective function. Such a function allows
us to search for the optimum truss according to a reference behaviour (the principal stress field) deduced
through a F.E.A. and assumed as representative of the given continuum.

After having explained the theoretical principles and the mathematical formulation, some examples
show the pratical application of the procedure and its capability in handling complex stress paths, through
schemes which result rational and suitable for a consistent design.

1. INTRODUCTION

The design of R.C. elements can be viewed as the translation of the results of the structural analysis
onto a reinforcement layout, which according to the resistant capacities of the steel and of the
concrete, shares their carrying role in the composite continuum. Well defined criteria for the cases
of axial flexure, shear and torsion states exist in the design of slender beams. Such criteria assume
certain kinematic hypotheses on the strain state (e.g. the sections rotate remaining plane) and allow
us to deduce, from a conventional state represented by the generalized sectional forces (N, T, T},
M, , M, , M), reinforcement assemblies which work according to a 2D, 3D carrying mechanism,
as is assumed for the shear and torsion cases. When a structural element can no longer be viewed
as a De Saint Venant beam, a sufficiently simple deformative model is not available to solve the
problem with similar criteria. In these cases the design procedures refer to experiments and schemes
specialized in characteristic situations (deep beams, dapped end beams, corbels, etc.).

From the point of view of the structural analysis, the study of any complex structure can be
carried out by means of the F.E.M. The design of the same structure as a R.C. element is neither
immediate nor unique. For instance, one can subdivide the flow of the tensile stresses into influence
areas and, working at an assigned level of stress, attribute a corresponding amount of reinforce-
ment to each of them. This, in truth, is a debatable criteria. In this way, for instance, the bars of
reinforcement in a rectangular simply supported beam, will result proportionally distributed along
the entire depth in tension, instead of near the bottom edge, as the R.C. theory suggests. Moreover
similar automatic criteria consider a single component of stress, generally along one of the principal
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directions, and even if they allow us an estimate of the reinforcement amount, they tend to neglect
any check on the concrete which in absence of suitable thickness and/or fitting local reinforcement
details, may be prone to early failures. Hence one can say that there isn’t a general procedure for
passing from a given stress field to a corresponding resistant scheme.

In the theory of R.C., schemes of resistant mechanisms having some similarity to the methods
of the limit analysis, have been employed since the beginning of the century. They were not imme-
diately related to the theory of plasticity and they were used to model the shearing and torsional
behaviour of slender beams [20, 21, 23]. The classical truss model was then applied to study many
cases of diffusion regions. The initial hypotheses were widely corroborated by experimental studies,
through which many aspects which were difficult to deduce a priori were defined (for instance the
collaborating areas of the compressed struts). Many Conferences and Colloquia contributed in defin-
ing the actual state of art [11, 12, 13]. At present the Strut-and-Tie (S&T) modellization is proposed
as a common tool for a general and consistent design of R.C. structure [1, 14, 18, 19, 26, 27].

A S&T model is generally formed by concrete struts, steel ties and nodal zones, intended as the
polygonal areas surrounding the intersection among the axes of the bars and/or of the lines along
which the loads and the reactions act. If the equilibrium and the limiting strength of the materials
are satisfied, such a model, according to the lower bound theorem of the theory of plasticity, leads
us to underestimate the ultimate load carrying capacity of the structure [7].

The usual criteria configure a S&T model which moves from a reference stress field and disposes
the elements of the truss following the path of the isostatics by modelling their curvilinear flow
through polygonal lines. The multiaxial stress states inside the nodal regions, generally pseudohy-
drostatic, are not considered in the layout of the solution scheme and they must be verified only
with reference to the final configuration of the resistant truss. However, even if a wide literature
and special publications present solutions for many cases of the practice [6], the problem in creating
a S&T model of an arbitrary given structure remains open. As a consequence the actual shape of
the truss depends on the intuition and on the experience of the designer, who, in any case, must
verify that its model can be developed effectively, even though from a theoretical point of view it
is conservative. For these reasons, the formulation of methods able to individuate a proper S&T
model in a systematic way, results of great importance.

In this work a procedure for the automatic search for optimal S&T models in R.C. elements is
proposed. The bases of the method and the criteria adopted to make the model work according
to the behaviour of the given continuum have been shown in previous papers [3, 4, 5], and are
here recalled. The procedure is developed for 2D systems but can be extended to 3D cases. The
pratical application of the method is shown by giving some examples which lead us to appreciate
the capacities of the optimal models in handling complex stress paths through schemes which are
rational and suitable for a safety and consistent design.

2. OPTIMIZATION OF S&T MODELS

We consider a generic structural element with a given geometry and assigned boundary conditions
(Fig. 1a). The region within this element defines the existence domain of the admissible S&T models.
Given that in Nature the load transmission happens in such a way that the associated strain energy
results minimum, a rational design philosophy will search for the maximum stiffness truss [15].

A search for absolute optima requires a selection from an infinite set of possible trusses. An
approximation of the optimum can be achieved by covering the assigned continuum domain with a
closely spaced grid of n nodal points interconnected by m < n(n —1)/2 bar elements and assuming
this network as the new existance domain [2, 24|. Clearly the net of the nodes of this basic truss
must include all the load points and all the supports. Therefore eventual distributed loads and
continuous supports will be respectively represented by statically equivalent concentrated loads and
by consistent punctual restraints (Fig. 1b).
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Fig. 1. (a) The structural element with assigned loads and displacements; (b) Basic truss

2.1. Equilibrium and conformity equations
With reference to the symbols in Fig. 2, we can write the equilibrium equation of the generic bar k,

in the local (',%) and in the global (z,y) reference systems, rotated, with respect to each other,
by the angle £ [16]:

fk ! 0 fgf,jl 0 f][c/ it hf’nk
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Fig. 2. Reference systems and sign conventions
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By assembling the force vectors converging to a generic node s:

f,=9

k—s

one obtains the overall equilibrium equation for a truss having n nodes and m elements:

ni

5 By o WP b, if ks with i
f. hl h? : hm ny . i
Pl e e L L B R e
£ e o e L B 0, otherwise
Nm
or:
f =Hr

where f is the vector of nodal forces, r is the vector of the axial forces and H is the equilibrium
matrix. After the assembly, the previous system will be modified to take the prescribed displacements
through the known methods of the structural analysis into account. In the following we will implicitly
assume that the equilibrium matrix H has rank 2n < m. This assumption justifies the search for
an optimal solution. Finally, the vector r of the axial forces in the bars must comply with the
conformity conditions:

—r_grgr+

where r~ > 0 and rt > 0 are respectively the limits due to the tension and compression strength
of the m elements.

2.2. Maximum stiffness—minimum volume truss

For a given load condition, the truss of maximum stiffness coincides with that of the minimum
volume of material [10]. If one calls respectively a; and Ij, the area of the cross section and the
length of the generic bar k, the total volume of the system results:

m
V=) a="Fa.
ke=1

The problem in finding the truss having maximum stiffness and satisfying equilibrium and confor-
mity conditions can be reduced to the following linear programming problem [9]:

min{ifa|Hr=f, r€ota, 2> c 88> 0}

which involves 2n constraints and 2m variables r and a. The stresses 0~ > 0 and ot > 0 are
respectively the level of tension and compression strength of the material. They are here assumed,
for simplicity and without loss of generality, the same for all the elements.

If one introduces 2m additional variables a— and a*, defined as follows:

r—ota+(c”+o0t)a” =0
r+o a— (0" +ot)at =0

and removes the vector r, the previous linear program can be reduced to the following normal form:
min {I” (a= +at) |H(c*a* —07a™) =f, a~ >0, at >0}

again with 2n constraints and 2m variables a~ and a’, which respectively represent the possible
areas of the cross section of the ties and of the struts (a,;a;r = 0). In particular:
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(a) if @i > 0 and a,': = 0, the element k is a strut having ax = a; and r, = —07;
(b) if a =0 and a,j > 0, the element k is a tie having a = a,j and rp = o,
(c) if af = aj =0, the element k doesn’t belong to the optimal truss.

For the equivalence of the search criterion between tensioned and compressed elements, initially the
following bounds 0~ = o+ = ¢ are assumed and the linear programming problem results:

min{I” (a~ +a*) |cH(a" —a”)=f, a~ >0, a* >0} .

When the optimum truss is found, the actual resistant sections of the bars are deduced on the basis
of the actual limit strength of the materials ¢~ and o*.

In truth the previous approach ignores the actual two-dimensional behaviour of the assigned
continuum system and the assumed one-dimensional model has to be considered as a qualitative
reference. Hence for a consistent design some new criteria are needed.

2.3. Improvement of the optimum criterion

The guidelines to improve the optimization process can be derived from a critical proof of the model
just found. In particular, by starting from the same initial basic truss, a more refined force path
can be deduced if some condition of similarity to the actual stress field in the given linear-elastic or
non-linear-cracked continuum is imposed. To this aim, the following new bounds can be introduced:

(1) Each bar of the basic truss has to be enforced to work as a strut or a tie according to the type
of the prevailing stress around its location.

2) The objective function V has to be optimized by giving a more relevant role (precisely a lower
J giving p y
penalty weight) to the bars whose orientation results, on average, closer to one of the principal
directions in their zone.

(3) For the tensioned elements, to be built through steel bars, a regular and straight tracing is
preferable. Hence a lower penalty weight again has to be attributed to the longer ties instead of
to the shorter ones. However, curved trajectories can be better fitted by short elements. Hence
by giving a lower penalty weight to the shorter struts, one increases the capability to better
adapt the compressed members to the local stress path.

All these conditions are now translated into mathematical bounds to search for an improved opti-
mum truss. We suppose that the same two-dimensional element has been studied separately as a
2D continuum. We call it reference continuum.

Let o1(z,y), 02(z,y) < o1(z,y) and 0 < a(z,y) < /2 respectively be the principal stresses and
the angle which the direction 1 forms with the axis z. Hence, along each element k oy(z'), o2(z')
and «a(z'), are known functions as well as the angles i, (z') < 7/2 and yor(z') = 7/2 — y11(2')
shown in Fig. 3. By assuming:

p={t | y(z') = min [y1x(z"); yar(a")] < /4, t =1,2},
g={t| (") = max [yix(z'); yar(z')] > /4, t =1,2},

we can define an average angular deviation of the bar k& with respect to trajectories of the principal
directions which intersect it:

| g A
=0 Yor{z)d .
Ik Jo
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Fig. 3. Orientation of the generic bar in the principal stress field

We can again define the following parameters:

1 [l 1 [k 4
ok = E/o opk (') cos ypr (z')dz’, Olk= E/o gk (') sinygr(z')da’,

which in average indicate the type of the prevailing stress around the element. The parameter oy
leads us to recognise if a bar is a strut or a tie. The number of variables, in this way, halves and the
linear programming problem assumes the following form:

min{lTa | cHa=f, a>0}

where:
B B B
— hy: hi .. B - o
i et ¥ 274> ht = e ¢k
1 E2 im Lo |
BB oo a By

Now, as mentioned, a closer modellization of the actual structural behaviour can be achieved by
weighting the contribution of each bar according to its orientation with respect to the stress of the
reference continuum and to its attitude in reproducing the continuum stress path. Let

Uk
I =150
Tk () = tany € [0;1], Ao gh= 4 e e | i ,m}
T
mag il |k =1 . M

€ [O; 1], if Ok >0,

€ [0; 1], if O||k <0,

the weighting penalty function is chosen as follows:
wi (Y, k) =T € [0;1]

where p > 0 is a numerical coefficient heuristically deduced. With these assumptions, the new total
volume is the sum of the single weighted volumes:

Vw = Z wkaklk = (Wl)Ta = lz;a
k=1

where W is the diagonal matrix of the weights and l¢, is the vector of the equivalent lengths. The
final form of the linear programming problem is given by:

min{lz;a|aI?Ia:f, a>0}.
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Now the S&T models result consistent with the stress field in the reference continuum and suitable
for the actual design. However also in this case, especially if the basic truss grid is not closely spaced,
some lacks with respect to the design practice can appear. In particular, some elements may fall on
the edges of the given dominion and many local stress diffusions around the points of application of
the loads or around the supports may be completely ignored. Finer nets can certainly give better
results, but they involve a definitely higher computational effort, which is a function of n2. At
this point, a different way for a more refined research of the S&T model uses the aforementioned
criteria, but now applied to the new basic truss represented by the family of the already specialized
truss given by the parametric transformation of the nodal coordinates which define the shape of the
previously optimized truss. These developments are shown in the application section.

2.4. Dimensioning the bars

Let feq the design uniaxial compression strength of the concrete. In the struts the design limit
strength is assumed as [22]:

fc*d = 1:(0.85fcq) = vefera

where the coefficient 0.85 takes the long term effects into account and v, is an efficiency factor
which is assumed according to the actual stress state of the reference continuum as follows:

0208 Sty it s 0,
Vek = :
1.0 , ifoig <O0.

In a similar way, we can write fyq = vsfc1q4 for the steel. By putting o = f.14, it is then possible to
evaluate the effective areas of the resistant section of the optimal S&T model:

ask = ag/vsk , if oy >0,
ack = ak/Vek , if o < 0.

3. APPLICATIONS

A general search strategy for an optimal S&T model can be summarized through the following
steps, as shown in the corresponding windows of Figs. 5-9 in more detail.

(1) A F.E.A. gives the internal state of the given structural element and, in particular, its field of
the principal stresses. Such an analysis may consider the structure as linear-elastic or cracked
and non-linear in both the component materials [17]. From a theoretical point of view the S&T
model, being related to the lower bound theorem, is independent with respect to kinematics
and then may refers indifferently to the working or to the ultimate state. But, to this purpose,
it must be remembered that, while for ideal rigid-plastic systems the lower bound theorem
can be directly applied, its use in dealing with R.C. elements requires checks of their actual
deformability [4]. So if the assumed load path differs sensibly with respect to those which develop
in the cracked structure, it may not be considered among the actual possible redistribution
schemes. For these reasons the design usually refers to the working states and, hence, to the
stress field given by the linear elastic analysis.

(2) After the boundary conditions are discretized in such a way that the forces acting on one face
of the structure will be self-equilibrated or in equilibrium with those acting on an opposite face,
as suggested by the load path method, a first basic truss defined by a closely spaced grid of n
nodal points interconnected by m bar elements is constructed within the region of the assigned
continuum. In this domain we search for the maximum stiffness truss by attributing at first the
same weight (yu is set to zero), and then selected weights (u is set to unity) to the volumetric
contribution of each bar in function of its affinity to the actual stress flow.
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(3) Based on last model, with the aforementioned criteria (4 = 1) a searches for a more refined
S&T model in a new basic truss generated by moving its nodes position in a properly way. The
forces acting on the bars of the S&T model so obtained are used to verify the concrete struts
and to dimension the steel ties.

(4) The reliability of the internal forces path, which the optimal S&T model implicitly defines, is
evaluated by a comparison with the direction of the principal stresses, respectively maximum
and minimum, and with the stress diagram along significant sections.

The previous procedure is now applied in the analysis of a prismatic element of depth d and
subjected to localized loads, as in the case of the anchorage zone of a post-tensioned beam. The
prismatic element is extracted from the whole structure according to the De Saint Venant principle.
The main factors which influence the stress diffusion process are the number, the extension a and
the relative position of the loaded areas [8, 25]. In the following, localized loads having the same
intensity P and a loaded area/depth ratio a/d = 0.1 are considered. In particular, the load conditions
shown in Fig. 4, obtained by varying the number and the arrangement of these loads in some basic
combinations, are investigated.

Figs. 5-9 show, in the corresponding windows, all the phases of the definition of the optimal
S&T models. The adimensional values of the axial forces and the corresponding efficiency factors
are listed in Table 1. All the presented S&T models agree with the solutions presented in literature.

. F L A PolaP F A0 i
SEEERERARRIIRRRS: AF‘?'?'H”'""/‘/A”‘H"T'?‘

A B B+B B+A B+A+B

Fig. 4. Prismatic structural element subjected to several load conditions
Table 1. Optimal S&T model: member forces nix = aro and efficiency factors vy

- A \ B \ B+B 1 B+A [YBEAED —
Bar ni/P Vi ny/P Uk ni/P vy, ny/P Vh ny/P Vg Bar
1 —0.500 1.000 —1.000 1.000 -1.000 1.000 —1.000 1.000 —1.000 1.000 1
2 -0.553 0.757 —=1.026 1.000 -1.061 0.790 -—1.000 1.000 -—0.500 0.739 2
3 —-0.500 0.782 —0.353 0.763 —1.000 1.000 —1.011 1.000 —1.054 0.781 3
4 ~0.237 1.000 -1.000 1.000 -0.356 1.000 —1.008 1.000 -0.601 0.730 4
) 0.237 Vss —0.268 1.000 0.356 Vgs —0.048 1.000 —1.000 1.000 )
6 — — —0.230 1.000 = — —1.000 1.000 —0.500 1.000 6
7 s e 0.230 Vgt — = —-1.000 1.000 -0.333 1.000 7
8 — = 0.268 Vs e 3 —0.045 1.000 0.333 Vsg 8
9 = = o e e — —0.145 1.000 0.333 Vsg 9
10 T == = == — e —0.017 1.000 oF% o 10
11 rE Ty T rEE 2T T 0.145 Vsi11 e b 45|
12 = s = — — — 0.017  vgo — — 12
13 — = i — s = 0.045  vas3 = — 13
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In particular, one can observe that the alignment of the bars accurately averages the flow of the
actual stresses and that the principal struts and ties are localized near the centroid of the stress
diagram of typical sections. The resultant tension and compression forces, as well as the relative
lever arms, are accurate and in accordance with the theory and the experiments.

4. CONCLUSIONS

A procedure for the automatic search for optimal S&T models in R.C. elements is proposed. The
structural problem is discretized by replacing the assigned continuum domain by a suitable basic
truss and is translated into a mathematical linear programming problem. In particular, the layout
optimization process is carried out by weighting the contribution of each bar to the ob jective function
(the volume of the truss) according to a given reference stress field.

A comparison between the models obtained disregarding the actual two-dimensional behaviour
(1 = 0) and the optimal one (u = 1) lead us to appreciate the capacities of the proposed optimum
criterion in handling complex stress paths. In particular, the optimal S&T models show a good
agreement with the solutions presented in literature. The alignment of the bars accurately averages
the flow of the actual stresses. The principal struts and ties are localized near the centroid of the
stress diagram of typical sections. The resultant tension and compression forces, as well as the
relative lever arms, are accurate and in accordance with the theory and the experiments.
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