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The aim of this paper is to present a numerical method to determine a field of constrain forces which
hydrodynamically represents the effect of the blading of the impeller of a radial-flow pump. The field of
constrain forces are perpendicular to the stream surfaces of the relative velocity field and congruent to
the blade surface of the impeller. The calculation of the constrain force field is based on the solution of
the inverse problem of the hydrodynamic cascade theory. In the determination of the constrain force it is
supposed that the frictionless and incompressible fluid flow is completely attached to the blade surfaces.
The constrain force field can be calculated by the change of the moment of momentum in the absolute
inviscid fluid flow which depends on the state of the pump. Knowing the constrain force field it is possible
to calculate the distributions of the relative velocity, pressure and energy loss on the mean stream surface
(F) of the impeller by solving the governing equations of the viscous relative flow. By calculating the
energy loss belonging to different volume rates an approximate real head-discharge characteristic of the
impeller also can be computed.

1. THE FIELD OF CONSTRAIN FORCES IN THE BLADED SPACE OF THE IMPELLER

The basic equations of the calculation method are formulated in cylindrical co-ordinate system
rotated together with the blades, where the co-ordinates in cyclical order are r, ¢, z. Figure 1 shows
the meridional cross-section of the impeller, the shape of the blades viewed from the direction of
the rotational axis of the pump, the directions of the co-ordinates and the vectors of the absolute
velocity ¢ , the relative velocity w , the peripheral velocity u and the specific constrain force f at
any arbitrary point of the blade surface. In the middle of Fig. 1 the velocity triangles can be seen at
inlet-, outlet- and any arbitrary sections of the impeller. The blade angle 8 which can be measured
between the tangents of the co-ordinate line r = constant and blade surface at the same point is
also shown in Fig. 1. The blade angle 8 uniquely determines the normal unit vector n of the blade
surface.
The tangent unit vector of the blade surface can be written as

t =sinf e, —cosfe,

Knowing the components of vector t, the normal unit vector n of the blade surface can be calculated
as follows:

n=e,xt=sinfe,+cosfe, (1)
Let us go through the significant assumptions in determining the field of specific constrain forces f:

e The specific constrain force f - similarly to every mechanical constrain force — is a friction-proof
effect, in this way the specific constrain force f is parallel to the normal unit vector n of the
blade surface

an=4. (2)
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Performing the vector multiplication in (2) yields

fr”(p:fwnr- (3)

e The frictional force is parallel to the wall near it, so the specific constrain force and the friction
force are perpendicular to each other:

el 20 (4)

where o is the stress tensor. Carrying out the multiplications in Eq. (4), we get the following
expression between the components of the specific constrain force, normal unit vector of the
blade surface and the stress tensor:

fTTTlpn(p+ftpT(anT:0' (5)

e Since it is supposed that in the determination of the constrain force the fluid is inviscid, so the
specific constrain force and the relative velocity vectors are perpendicular to each other

f-w=0. (6)

¢ The mean surface (F) of the meridional channel is a stream surface of the relative flow con-
sequently the relative velocity component of w, is equal to zero. At the same time, along this
stream surface, the stress vector (it is the third column of the stress tensor o) and the relative
velocity vector are parallel to each other. So we can write

w X o, =0. (7)
Performing the vector multiplication in Eq. (7), we get
Tipz Wy = Try Wy . (8)

By using equations (1) and (3) we come to the expression between the different components of
the specific constrain force as follows

frszs—;:f(pcotﬂ. (9)
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It is easy to realise that the component f, of the constrain force can be determined by the
geometrical data of the blades (8 is the blade angle) from Eq. (9) if the component f, of the
constrain force is known. The component f, of the constrain force is uniquely determined by the
change of the moment of momentum in the absolute inviscid fluid flow.

Because the component f, of the constrain force is equal to zero, thus by using Eq. (6), we can
write

frwr+fgowg0:0- (10)

In view of Egs. (3) and (5) and by using the fact that the stress tensor is a symmetrical tensor it is
plausible that the component 7, of the stress tensor has vanished.

Let us sum up the results obtained up to now. It is easy to see that along the co-ordinate surfaces
determined by z = constant the unknown components w;, and w, of the relative velocity and the
unknown components 7,, and 7y, of the stress tensor depend on the co-ordinates r and z. The
unknown components f, and f, of the constrain force depend on the co-ordinate r.

The relative velocity vector and the magnitude of this vector on the main surface (F') can be
expressed by the components of the relative velocity as follows

W = Wy € + Wy €y ; w =y [w? +w? . (11)

The stress vector and the magnitude of this vector on the main surface (F') are calculated in a
similar way

Oz = Trz € + Tpz €p; = \/Tr?z‘l‘@%z, (12)

where 7 is the resultant shear stress.
The equation of the motion relating to the absolute inviscid fluid flow is as follows [5]

2 2
curlcxw=f——V<B+w——u—>.
p 2 2
Multiplying this equation by the co-ordinate unit vector e, , we get the relationship for the calcu-
lation of the component f, of the constrain force:
w, 0

fo =y (curle), = e (rep) - (13)

The product of 7 ¢, in Eq. (13) means the change of the moment of momentum in absolute frictionless
fluid flow. We should remark that the peripheral component f, of the constrain force is uniquely
determined by the meridional velocity w;, and the change of the moment of momentum rc,, in the
absolute frictionless fluid flow.

By assuming that the number of the blades are infinite, the energy transfer between the fluid and
the blades is taking place continuously in the annulus domain determined by rg < r < rx . Thus
the line integral of the absolute velocity for a closed curve in this domain, namely the circulation
', belonging to the closed curve (L,) at any arbitrary radius r can be calculated as follows (see
Fig. 2):

: G f{c-ds=2w(rc¢—rgc¢3). (14)

(Lr)

By using Eq. (14) it is possible to write down the expression to calculate the circulation difference
AT belonging to the radius difference Ar by the subtraction of the line integrals for the closed
curves of (Ly4ar) and (L,). Neglecting the terms which are small in second order yields

&P = }{ c-ds—]gc-ds:27rA(rc¢).

(LH—AT) (Lf')
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The difference of the circulation AI' can be expressed by the specific circulation vy as follows
AT =947,

Comparing the last two equations, the change of the moment of momentum r ¢, with respect to r
is expressed by the following equation

A(rey) = 2_77_r Ar . (15)

By using the expressions developed above, the value of the circulation I'; at any arbitrary radius r
in the interval of rg < r < rg is calculated

Fr=27r(rc¢—r36¢3)=/7dr. (16)
B

Of course, the integral of the specific circulation y with respect to r between the inlet- and outlet
cross-section of the impeller provides the total circulation I'pg of the impeller.

(L) = (rg) + (M)+ () (G) = (rg) + (r) + (M) + N(L,,) + N(L,;)

Fig. 2. Fig. 3.

Considering Eqgs. (13), (14), (15) and (16), we arrive at the relationship for the peripheral com-
ponent f, of the constrain force

fo=om (17)

GriPm

The meridional velocity component w, and the specific circulation v depend on the state of the
operation and so consequently the constrain force also depends on the operating conditions of the
pump.

Since the number of the blades N of a pump is finite, the energy transfer between the fluid and
the blades is carried out only along the blades, but it is not taking place continuously in the annulus
domain determined by rg < r < ri . It is easy to see that blade circulation comes from only the
specific circulation placed on the blades and the absolute flow is vortex-free in the domain between
any two neighbouring blades. Similarly to Eq. (14) the line integral of the absolute velocity for the
closed curve ( G, ) belonging to any arbitrary radius r (see Fig. 3) can be written down. By using
Stokes’ theorem yields

0= %c-ds: fc-ds+fc-ds—l—N /c-ds— / c-ds

(Gr) (rB) (r) Lny) (Ls2)
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Comparing this equation with Eq. (14), it is evident that the circulation I'; can be determined by
the line integrals of the absolute velocity along the curve sections (Ly,) and (Ly,) placed on the
suction and pressure sides of the blades

The circulation I'; can also be expressed by a specific vortex distribution yp1age placed on the blade
sections as it is well known in the field of the hydrodynamical cascade theory

s(r) s(r) s(r)
I'.=N / Ac-ds=N / Acids = N / Yblade ds - (18)
s(rg)=0 s(rp)=0 0
By using Eqs. (15), (16) and (18) it is possible to develop the connection between the specific

circulation v belonging to infinite number of the blades and the vortex distribution 7paqe attached
to the finite number N of the blades as follows

ds
=N =
Y Volade 3~ (19)

The specific vortex distribution ypjaqe is obtained from the solution of the second task of the hydro-
dynamical cascade theory relating to the absolute inviscid fluid flow [1].

For the 2-D flow on the mean surface (F') of the radial-flow impeller (see Fig. 1) the equation of
continuity is

0
—(re)+—===0.
ar(rc)—i— 12 » (20)
The equation expressing the condition that the absolute flow is vortex-free can be written as follows
0 dc,
it ik ey 1 21
Sl i (21)

To find the unknown distributions of the velocity components ¢, (r, ¢) and c,(r, ¢) it is necessary to
write down the boundary conditions belonging to the system of partial differential equations (20)
and (20). By knowing the shape of the blades of the impeller these boundary conditions can be
written at 7 = rp (at the inlet section of the impeller)

Cr = CrB; Cp = CypB

As it is well known, the specific vortex distribution 7ypjage , which is hydrodynamically represented
by the blade effect, can be determined by applying the following numerical procedure.

The 2-D flow on the mean surface (F') of the impeller can be mapped on to the one on a
complex plane. Since the absolute flow remains vortex-free on this plane, the expressions for the
determination of the velocity distribution can be obtained by the solution of a Poisson-like partial
differential equation by using the theory of potentials. The kinematical condition of the relative
flow can also be written down, which expresses that the blade section is a streamline of the relative
flow. The specific vortex distribution 7pjaqe can be looked for as a form of a trigonometric series.
By substituting this series into the governing equations and satisfying the kinematical conditions at
discrete points along the blade sections the unknown coefficients of the series can be calculated by
solving a system of linear equations. Knowing these coefficients, the current vortex distribution, the
components of the constrain force, the velocity and pressure distribution along the blade sections
and the bladed space of the impeller, the characteristics of optimal state of the impeller and the
theoretical characteristics of the impeller can be calculated, belonging to different operating states
of the impeller [1, 2, 7].
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2. APPLICATION OF THE CALCULATION METHOD

To determine the specific vortex distribution attached to the finite number of the blades, and
then using that to calculate the components of the constrain forces, is necessary for analysing the
turbulent flow in the bladed space of the turbomachines. In our calculation method the effects of the
blading, fluid friction and turbulence of the flow are taken into consideration separately. The effect
of the blading of the impeller is represented hydrodynamically by the field of constrain forces [2]-

Computerised solution as an application of the numerical method presented above is carried out
for the impeller of a radial-flow pump designed by cylindrical blades with constant thickness. The
first main step of this calculation method is to determine the change of the moment of momentum
of the absolute inviscid fluid flow based on the solution of the second task of the hydrodynamic
cascade theory. The vortex distribution attached to the finite number of the blades can be calculated
by the results of the second task which is necessary to determine the components of the constrain
force field.
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Fig. 4. Distribution of the radial component of the constrain force

The final result of this computation are presented here. Figures 4 and 5 show the distributions
of the components of the constrain force field belonging to five different volume rates. The current
volume rate is noted by @ and the volume rate at the optimal state of the pump by @, . In every
case the ratio between the two volume rates are printed on the top of the figure. Under the title
of the figures the current values of the roughness height k of the wetted walls of the pump and
the angle ap determined by the direction of the absolute velocity at inlet section of the impeller
belonging to the different volume rates are also printed. In Fig. 4 the distributions of the radial
component of the constrain force with respect to r can be seen. In Fig. 5 the distributions of the
peripheral component of the constrain force with respect to the radius are plotted belonging to the
same volume rates.

By knowing the components of the constrain force it is possible to solve a system of the ordinary
differential equations based on the equations of the continuity, motion and energy of the viscous
relative flow on the mean stream surface (F) of the impeller. to determine the distributions of the
relative velocity, pressure and energy loss can be calculated [2,4,6,7,9]
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Fig. 5. Distribution of the peripheral component of the constrain force
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