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Rigidity of square grids with holes
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Bolker and Crapo gave a graph theoretical model of square grid frameworks with diagonal rods of certain
squares. Using this model there are very fast methods for connected planar square grid frameworks to
determine their (infinitesimal) rigidity when we can use diagonal rods, diagonal cables or struts, long rods,
long cables or struts. But what about square grids containing some kind of holes? We will show that the
model can be extended to the problem of holes too.
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1. PRELIMINARIES

In the case of hall structures and blocks of flats the rigid frame of the roof is often a grid of squares
(or rectangles). To prevent the horizontal deformations we have to make this grid rigid. Moreover
the ground-plan of the building is not a rectangle in general, and the building may have a court
inside. But how can we check the rigidity of the construction? And which are the minimal rigid
structures? In this paper we will show a fast method to solve these problems. (We have to mention
that in practice the buildings have much more rigidifying elements than they would require in the
minimal case.)

Throughout, every framework consists of rigid rods and rotatable joints (in the plane). The
deformations of a square grid can be described with the rotations of the rods in rows and columns
(see Fig. 1). A diagonal rod in a square of the grid results that the rotations of the corresponding
row and column must be equal. If we use a northeast-southwest position cable or a northwest-
southeast position strut then the rotation of the corresponding row must be greater than or equal
to the rotation of the corresponding column. If we change the position of the cable or the strut the
inequality will be reversed. We can observe that the effect of the cable and the strut is the same,
so we will use only cables.

Long rods and cables can connect any two joints of the grid, but the horizontal and vertical ones
cannot prevent the infinitesimal motions so we will ignore them. The range of a long rod consists
of those rows and columns of the grid which are touched by the rod (see Fig. 2).

Let the rotations of rows and columns be denoted by o;’s and S;’s, respectively. Considering an
infinitesimal rotation «; there is a horizontal relative translation a; (the edge length of the grid
is supposed to be 1) between the bottom and the top of the i-th row. This translation can be
projected to the diagonal: a; cos~y (where v denotes the angle of the long rod to the horizontal line).
Similarly, 8; produces a vertical relative translation §;, and its projection is —B; sin~y. Together all
the rotations in the range of the long rod must result no change of distance between the marked
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Fig. 1. Deformations of a square grid
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Fig. 2. The range of a long rod

points (the ends of the long diagonal):

(a3 + ) cosy — (B3 + B4 + Bs + B6) siny = 0.

Multiplying by the length of the rod:

4(az + ag) — 2(B3 + Pa + Ps + Ps) = 0,

where the coefficients are the number of columns and rows in the range, respectively.
So, in general, the long rod results the following equation:

|{columns in range}| Z a; — |{rows in range}]| Z B;=10.
rows in columns
range in range
The effect of a long cable — similarly to the case of diagonal cables — is an inequality between
the sums of rotations which depends on the position of the cable, for example in the case of a
northeast-southwest position cable:

|{columns in range}| Z a; — |{rows in range}| Z 8 0.

rows in columns
range in range

(See also [3].)

If we have a k x [ square grid we can define a bipartite graph G (A, B; E) where |A| = k and
|B| =, the vertices of A correspond to the rows of the grid and the vertices of B correspond to the
columns of the grid [4]. If there is a diagonal rod in a square of the grid then we put an (undirected)
edge between the vertices of the corresponding row and column. If there is a northeast-southwest
position cable in the square then we put a directed edge from the vertex of the corresponding row
to the vertex of the corresponding column, and we put a directed edge in the opposite direction if
the cable has the other position.
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Now let us consider this graph. If we take the strongly connected components of it we can state
that the rotations of the rows and columns whose vertices are in the same component must be equal
(see [2] and [1]). For example, if we have a k x [ square grid with diagonal rods and cables then this
structure is infinitesimally rigid if and only if its graph is strongly connected. If we have long rods
and cables too then we get a very simple system of equations and inequalities.

Using this model we can determine very quickly whether a k x [ square grid with rods and cables
is rigid or not. The engineers’ usual method, checking the rank of the rigidity (geometrical) matrix
would require O(k31®) operations. But in this way, checking the graph condition requires O(k + [)
operations only, i.e. it works in linear time and — in the case of long rods and cables — the size of
the coefficient matrix is much less than the size of the rigidity matrix.

We have to mention that these methods work without changes in case of square grids with any
shape without holes, we only have to define the vertices of the graph for the connected sections of
rows and columns. Moreover, if we have a grid of paralelograms the only changes will be about the
coefficients in the equations and inequalities of the long rods and cables.

In Section 2 we will show how this model can be applied in case of square grids containing holes
and with diagonal rods of certain squares, and finally in Section 3 we will study the most general
case of planar square grid frameworks.

2. HOLES IN THE GRID

Let us consider at first a k x [ square grid containing one hole and some diagonal rods of certain
squares, like in Fig. 3. We want to construct a graph similarly to the former cases. The number of
vertices will increase because the rotations of the disconnected segments of the rows and columns
which are cut by the hole can be different, so we need different vertices for the segments in the graph.
For example, the graph of the framework in Fig. 3 has 23 vertices, 11 vertices from rows and 12
from columns. They will be numbered from top to bottom and from left to right, so their rotations

C ! 1 " !/ 1 / /! / /!
will be denoted by a1, az, a3, a3, a3, o, ay, ..., ar and B, Bo, B3, B3, By, By s -, Ds.
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Fig. 3. Walking around the hole

“Walking” around the hole let us sum the rotations of the touched row-segments with positive or
negative signs depending on the direction of our walk. We can observe that this sum must be equal
to zero, because after walking around the hole we arrive at the initial point. Similar equation holds

for the touched column-segments, too. In Fig. 3 it means that

ay +aoy+as—as+a; —a; —ay —ag =0,

(1)
B3+ By +PBs+Ps—Bs — B — Py —B5 =0.
The framework is rigid if and only if the equation system (1) has a one dimensional set of solutions,

because the constant vectors, which form a one dimensional subspace, realize the congruent motions
of the framework.
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Let @1, ¢2, ..., @5 be the common values of the rotations in the connected components of the
graph of the framework. We have only two equations as the effect of the hole, so the number of
connected components of the graph can be at most three if we want the framework to be rigid. Now
the equation system (1) can be reduced to the following system:

N{p1 + N2 + N3p3 = 0,
Nfp1 + N3ps + N5ps = 0,

where N; equals the number of row-segments in the i-th component with positive sign minus the
number of row-segments in the i-th component with negative sign, and similarly N7 equals the
number of column-segments in the j-th component with positive sign minus the number of column-
segments in the j-th component with negative sign.
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Fig. 4. Nonrigid and rigid systems of diagonal rods

For example the three component of the graph of the framework in Fig. 4a are the following:
n

{al,aé,ag aaa’7af5,a77/31718.‘13, L”,Ialgz’l, zllla/B(IjMBS}; {a27a£1aag7a67/327 ga é',ﬂ7};{a'3'a é})
so the reduced equation system is:

01 + Ops + O0p3 = 0,

Loy — 292 + 1p3 = 0.

The rank of the coefficient matrix of this system is 1, so the solutions form a 2-dimensional space,
which is too large, the framework is nonrigid. But changing the place of one rod like in Fig. 4b the
framework become rigid, its matrix is:

1 -1 0
1 -2 1
which has rank 2.

Now we obtained the following

Theorem 1 A framework composed of a square grid with a hole in it and some diagonal rods of
certain squares s rigid if and only if

a) the graph of the framework is connected, or
b) the graph has two components and at least one of N]’s or N7’s is nonzero, or
c) the graph has three components and the rank of the matriz
( N{ Nj Ni )
Nf Ny N3

equals 2.
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Since the sum of the three columns of the matrix above equals the zero vector it is sufficient to
N{ N;
Ni Ny

If we have p holes in the grid then we get a larger system of equations, the number of equations
is equal to twice the number of holes. We can construct the bipartite graph of the framework:
vertices correspond to the row-segments and the column-segments, the edges correspond to the
diagonal rods just as above. The connected components of the graph will be numbered from 1 to
¢ and the common rotation of the segments corresponding to the i-th component will be denoted
by ;. N7(s,i) will equal the difference of the number of bordering row-segments of the s-th hole
corresponding to the i-th component of the graph with positive and with negative sign which came
from an arbitrary walk around the hole, and N¢(s, j)’s will be the same for the column-segments.

Now reducing the equation system on the basis of the graph of the framework we get the following
system:

check whether det =-() “or'net.

NT(1AYuNT(1,2) . ~NT(1,¢) ©v1 0
N¢(1,1) N¢(1,2) ... N¢1,q ©9 0
Nr(za]-) NT(252 Nr(27Q) ®3 = 0
Nc(pal) Nc(p72) Nc(pa Q) (pq 0
All the (c,¢,...,c) constant vectors satisfy this equation system so the framework is rigid if and

only if the set of solutions is exactly 1-dimensional.

Theorem 2 A framework composed of a square grid with holes in it and some diagonal rods of
certain squares is rigid if and only if the rank of the matriz

NT(LL) NT(L,2) ... N"(Lq)
Ne(,1) Ne(1,2) ... N¢(1,q)
NT(2,1) NT(2,2) ... N'(2,q)
N(p,1) Ne(p,2) ... N°(p,q)

is ¢ — 1, where q is the number of connected components of the graph of the framework.

The engineers’ usual method about this problem is checking the rank of the rigidity matrix. In our
new method we have to do the same with the coefficient matrix. So, why is this model better? Recall
that the size of the rigidity matrix is proportional to the number of joints in the framework while
the size of the coeflicient matrix is proportional to the number of the row- and column-segments in
the framework, which is much smaller. For example, if £ = [ then checking the rank of the rigidity
matrix requires ck® operations. Our method requires O(k®) operations if p = O(k). Even in the
extreme case of p = O(k?) the above constant ¢ decreases.

3. THE GENERAL CASE

Let us consider a square grid of any shape with some holes in it and some rods and cables between
any pairs of joints. We can suppose that the rods and cables are neither horizontal nor vertical
because these kinds of rods and cables cannot prevent the infinitesimal motions of the framework.

We can construct a directed bipartite graph in which the nodes correspond to the row- and
column-segments and the edges correspond to the “short” diagonal rods and cables.

The (really) long rods and cables determine linear equations and inequalities, respectively, where
the rotations of the row- and column-segments are the unknowns. Applying the graph of the frame-
work (its strongly connected components exactly, to be precise) we can decrease the number of
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unknowns. This number will be denoted by u. The remaining diagonal cables which correspond to
the directed edges leading from a strongly connected component of the graph to another determine
linear inequalities, too. The total number of equations and inequalities will be denoted by L. If we
fix the value of the rotation of a segment as zero we only have to decide whether the polyhedron in
the u-dimensional real space determined by the linear equations and inequalities of long rods and
cables contains only the origin of the space. But this can be done in at most O([max(L, u)]®) time
which is much better than the time of the original method with the rigidity matrix.

For example, let us consider the framework in Fig. 5a. The sets of variables corre-
spond to the strongly connected components are the following: {oq, ag, a3, 03,0y, of, af,
Bis B, Bs, By, Bs, Brts {as, ar, B7, Bi}; {ch}; {Bs}; {BY}. Let o1, 02, 03, s and @5 de-
note the common values of the rotations within the respective strongly connected components. Now
we have five unknowns, two equations from the hole, one equation from the long rod, one inequality
from the long cable, one inequality from the diagonal cable which is in the intersection of a row and
column from different components of the graph and one more equation fixing the value of one of
the variables as zero:

201 + @3 — 3p1 = 0,
01+ s — P2 — @5 =0,
4(2¢1 + ¢4) — 3(3p1 + p3) = 0,
3(2p2) — 2(2¢1 + ¢4) >0,
P2 — 1 >0,
p1 = 0.

From the first, third and last equations we obtain that ¢ = 3 = ¢4 = 0. The remaining equation
and the inequalities now look like this:

0— w2 —p5 =0,
6(,02 > 0, (2)
P2 > 0.

This system has an infinite set of solutions, so this framework is not rigid (a deformation is shown
in Fig. 6). But if we change the position of one of the diagonal cables as in Fig. 5b the system (2)
will change in the following way:

0— 92 -5 =0,
62 >0,
P2 < 0.
This system has the only solution (0,0,0,0,0), so this framework is rigid.

-
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Fig. 5. Nonrigid and rigid systems of rods and cables
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Fig. 6. The deformation of the previous nonrigid system

4. CONCLUSION

In this paper we could show that using the results of the graph theoretical model of square grids
we have a very fast method to determine the rigidity of gridlike buildings if we can use only rigid
rods, cables and struts to make them rigid.
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