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This paper presents an optimal design method of continuum structures by genetic algorithm. Profiles
of the objects under consideration are represented by the spline functions and then, the chromosomes
for the profiles are defined by the coordinates of the control points of the functions and the material
code of the structures. The profiles and the material code are optimized by the genetic operations in
order to determine the object satisfying the design objectives. The minimum weight design of the plate is
considered as a typical example. The present method is applied to the problem in which the profile and
the material of the objects are unknown.
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1. INTRODUCTION

In the shape optimization problems, firstly, the objective functions and the constraint conditions are
defined. Then, profiles of objects under consideration are optimized so that the objective functions
are minimized by changing the design variables such as the shape parameters, the physical constants
and so on. The problems are usually solved by applying the gradient-type search schemes using
the derivatives of the objective functions and the constraint conditions with respect to the design
variables (design sensitivities). The design sensitivity analysis schemes, however, encounter some
difficulties in the actual optimization problem. For example, when the discrete-valued objective
[unctions are defined, the design sensitivity analysis is not available. Besides, when the design
sensitivities are weak (very insensitive), the system of equations often becomes ill-posed. Therefore,
in these cases, we should use the search schemes without the sensitivities. Genetic algorithm (GA)
is one of such search schemes and moreover, much more efficient than the random search, one of
the most popular schemes without sensitivities [1, 2].

In this study, the minimum weight design of the continuum structures is considered as the nu-
merical example and then, the shape parameters for the profiles of the objects and the material
parameters such as the Young’s modulus and the Poisson’s ratio are taken as the design variables.
Since the objective functions and the constraint conditions are the discrete-valued functions of the
material parameters, the gradient-type search scheme is not available. By the way, the existing stud-
ies in the shape optimization schemes using the genetic algorithm mainly focus the truss structures
[3, 4, 5, 6, 7]. Therefore, we firstly describes the shape optimization method for the continuum
structures using the genetic algorithm. The profiles of the objects are represented by the spline
functions and then, the chromosomes for the profiles are defined by considering as the genes the
control points of the functions. The population is constructed by the individuals with such chro-
mosomes. The genetic operations such as the selection, the crossover and the mutation are applied
to the population in order to determine the individuals satisfying the deign objectives. Boundary
element method is employed for estimating the objective functions and the constraint conditions.
Since the boundary element method can solve the problems by the boundary discretization alone,
the mesh generation is much simpler than the finite element method.
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This paper is summarized as follows. In the Sec. 2, the shape representation scheme using spline
functions and the boundary element method are described. In the Sec. 3, the genetic representation
of the problem and the genetic operations employed in the present algorithm are defined. In the
Sec. 4, the present method is applied to the minimum weight design of a continuum structure. In
the Sec. 5, finally, we summarize the conclusions.

2. BOUNDARY REPRESENTATION AND NUMERICAL ANALYSIS

2.1. Shape representation by spline functions

The boundary profiles of the objects under consideration are represented by the spline functions
(Fig. 1).

Fig. 1. Profile representation by Riesenfeld spline function

The arbitrary point on the boundary has the coordinates (z,y) so that
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where (x;,;) are the coordinates of the control point of the functions. B\ is the B-spline function
of the order k and N, the number of the control points.

2.1.1. Comparison of shape representation scheme

When the Genetic algorithm is applied to the shape optimization of the continuum structures, the
following algorithm is often employed [8, 9]. The objects under consideration are divided into small
square cells and then, binary parameters are specified to the cells so that the parameter is taken
as 0 for the empty cell and 1 for the occupied one. The chromosomes for the profiles are defined by
the parameters. The population is constructed by the individuals with the chromosomes and then,
the genetic operations are applied to the population. By considering the cells as finite elements, the
finite element method is applied for estimating the objective functions and the constraint conditions.
This scheme, however, has some difficulties. The computational accuracy of the numerical analysis
and the obtained final profiles are dependent on the size of the cells. There are, besides, another
difficulty related to the mutation operation. In the mutation operation, the values of the genes are
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changed stochastically. Since the cells are, in general, very small, the mutation dose not affect the
shape and the topology of the objects.

In order to overcome these difficulties, we adopted the boundary profile representation by Free-
Form Deformation (FFD) in the previous study [10]. In the FFD [11], the grid is taken so as to cover
the profiles of the objects and then, the profiles are distorted by moving the grid points from their
initial positions. The chromosomes for the profiles are defined by the position vectors of the grid
points. This scheme can represent the profiles of the objects by the relatively short chromosomes
but, unfortunately, has some difficulties. Firstly, it is very difficult to modify only small parts
of the profiles. Secondly, there are some restrictions for specifying the boundary conditions. For
overcoming these difficulties, this paper adopts the representation scheme of the boundary profile
by the Riesenfeld spline functions. Since, in the Riesenfeld spline functions, the coordinates of the
control points are taken as the coefficients of the functions, the computational cost is much cheaper
than the other spline functions.

2.2. Boundary element method

We shall explain briefly the boundary element method for the two-dimensional elastic problem [12].
The governing equation and the boundary conditions without the body forces are given as:

0ij,5 = 0 (in Q) (2)
and

Ui = U; (on Fu) .
(i t_i (on Ft) (3)

where u;,t; and 0;; denote the displacement, the traction and the stress components of the two-
dimensional elastic problem. ( ;) denotes the partial differentiation in the z;-direction. 2, ', and I,
are the domain occupied by the object under consideration, its displacement- and traction-specified
boundaries, respectively.

By introducing the Kelvin functions as the weight function and applying the Gauss-Green for-
mula, the governing equation is transformed to the boundary integral equation:

Cu; = /(u;-'jtj = t;*juj)dF (4)
iR

where C' is the constant parameter depending on where the source point is placed. uf; and (f;
denote the fundamental solutions of the displacements and the traction components, respectively.
Discretizing Eq. (4) with the boundary elements, we have

Hu = Gt (5)

where u and t denote the nodal potential and flux vectors and H and G the coefficient matrices,

respectively. By applying the boundary conditions, the above equation is solved for the boundary
unknowns.

2.2.1. Boundary element method for shape optimization problem

The present method is considered to be one of the successively shape modification method. When
the finite element method is employed for numerical analysis, the shape modification distorts the
finite element mesh heavily and thus, the computational accuracy may become worse. For over-
coming this difficulty, the mesh generation must be carried out automatically after each shape
modification. Its computational cost, however, is expensive and the automatic system for the mesh
generation is not yet perfect. On the other hands, the boundary element method can solve the
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problem by the boundary discretization alone when the objects under consideration are governed
by linear and homogenous differential equations. Therefore, the automatic generation of the bound-
ary element mesh is much simpler than the finite element method. We, finally, can conclude that
the boundary element method is more suitable for the present method.

3. OPTIMIZATION ALGORITHM
3.1. Optimization problem and fitness function
We shall consider the minimum weight design of the continuum structures. The objective function
of the problem is given as:
pA
PoAo

where p and A denote the density of the material and the area of the object under consideration.
The subscript 0 denotes the best individual in the initial population.
The constraint condition of the maximum stress is given as:

— min (6)

Oc 2 Omax (7

where omax and o. denote the maximum principal stress on the boundary nodes and the reference
value of the material specified by user, respectively.
The constraint condition of the maximum displacement is given as:

e 5 Ui (8)

where Umax and u. denote the maximum displacement and the reference value specified by user,
respectively.
The constraint condition for the crossing of the boundary is given as:

gec = 0 (9)

where

0 when the boundary is not crossing.
g { " E (10)

1 when the boundary is crossing.

Besides, the body forces are neglected in this study, which is also important constraint condition
of the optimization problem.
The coordinates of the control points of the spline functions (z;, y;) and the code of the materials

km are taken as the design variables. The constraint conditions for the design variables are given
as

Zmin S X .<_ Tmax (1 1)
Ymin S Yi S Ymax

where kpax denotes the maximum number of the materials as the candidates. Then, Zwmin, Zmax, Ymin
and Ymax denote the minimum and the maximum values of z; and y;, respectively.

In the genetic algorithms, it is usual that the constraint conditions are included into the fitness
functions by introducing the penalty functions. In the present method, however, the populations
are constructed by the individuals satisfying the constraint conditions alone. Therefore, the fitness
function dose not include the constraint conditions;

pA
Sy
! poAo

(12)
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3.2. Genetic representation and genetic operations

3.2.1. Genetic representation of profiles

We shall introduce the new coordinates of the control points (m;, n;) in order to define the chro-
mosomes of the profiles (Fig. 2). m; and n; are the integer numbers taken as 0 < m; < M and
0 < ni < N, respectively. The coordinates (2, ;) are related to the coordinates (m;, n;) as follows:

i = Tmin + (2 po— )m,-
m'l R xﬂlln max min Tgy[ } i
]
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Fig. 2. (mi,n;) coordinates

By taking (m;,n;) and the material code k,, as the genes, the chromosomes are defined as
kmminimang - - - my_nn, (14)

where N, denotes the total number of the control points. Therefore, the length of the chromosome
is 2N, + 1.

3.2.2. Selection

The present method adopts the ranking selection scheme. The ranking of each individual is specified
according to the magnitude of the fitness function of the individual. While the highest selection rate
is given to the best individual, the worst individual has the lowest selection rate so that the worst
individual has, at least, one offspring individual. The selection rates of the other individuals are
determined by the linear interpolation between them. Besides, the elitist scheme is also employed
in order that the best individual at each generation survives at the next generation.

3.2.3. Crossover

The uniform crossover scheme is employed.
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3.2.4. Mutation

In the mutation scheme, the values of the genes are modified arbitrarily.

3.3. Present algorithm

The algorithm of the present method is shown in Fig. 3. This is the same algorithm as that in our
previous study [10].

START

Birth of initi'all population
-

Calculation of fitness function

Selection

Crossover

Y

Mutation

Evaluation

END

Fig. 3. Present algorithm

Step.1 An initial population is constructed by the individuals satisfying the constraint conditions
alone.

Step.2 The fitness functions of the individuals are estimated.

Step.8 The selection operation selects two individuals as parents.

Step.4 The crossover and the mutation operations generate individuals as children from the parents.

Step.5 If the children satisfy the constraint conditions, they are added to the new population. If
they do not satisfy, they are not added and then, the process goes to Step.3.

Step.6 If the new population is constructed by the individuals satisfying the constraint conditions
alone, the process goes to the Step 2.
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4. NUMERICAL EXAMPLE
4.1. Confirmation of validity of shape modification scheme

A plate is considered as a numerical example (Fig. 4). The objective of the design is to minimize
the weight of the plate by changing its lower profile. The boundary profile is controlled by 7 control
points.

\

Fig. 4. Object under consideration

Firstly, in order to confirm the validity of the shape modification scheme, the material of the
plate is considered to be invariant during the optimization process, i.e., kmax = 1. The stress
constraint condition (Eq. (8)) is considered. The Cartesian coordinates (z,y) is taken as shown in
Fig. 4 and then, the constraint conditions for the design variables are specified as:

=020 <- 33 < 12L
M3 < 9w £ 1AL |

The parameters are taken as follows:
Shear modulus G 10%kg/cm?

Poisson’s ratio v 0.3
Reference stress 0. 300kg/cm?
Population size 100
Crossover rate 1.0
Mutation rate 0.05
(M, N) (64,64)

In the following numerical results, the numerical analyses at the same initial population are
performed 10 times and then, the average values of their results are shown.
Figure 5 shows the fitness function values of the best individuals. The performance of the best
individuals is improved monotonously because the elitist scheme is employed. Figure 6 shows the
profiles of the best individuals at first, 10th and 100th generations. The profiles of the individuals
~ are improved as the generation goes. ‘
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Fig. 5. Fitness function value of best individual
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4.2. In case that profile and material are unknown

Next, we shall consider that the boundary profile and the material of the object are unknown.
The object under consideration and the parameters are identical to the first example (Fig. 4). The
material of the object can be selected from four candidates shown in Table 1. The material 0 is the
standard one. The material 1 is lighter and weaker than the material 0. The material 2 is heavier
and stiffer than the material 0. The material 3 is weaker and heavier than the material 0.

Table 1. Candidate materials

G(kg/em?) | v | p(kg/m3)
Material 0 | Go =105 | 0.3 po = L0
Material 1 0.5Gq 0.3 0.9p0
Material 2 2Gy 0.3 1.2pg
Material 3 0.5Gq 0.3 1.2pg

Firstly, the reference value for the displacement constraint condition is taken as ue = 0.5¢cm.
Figure 7(a) shows the fitness function values of the best individuals. The performance of the best
individuals are improved as the generation goes. Figure 7(b) shows the rates of the individuals of
the different materials. In the initial population, the rates of the individuals of the different mate-
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(b) Rates of individuals of different materials

Fig. 7. In case of displacement constraint condition us = 0.5cm
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rials are identical. As the generation goes, the individuals of the material 2 and 3 decrease rapidly
and almost zero after 30th generation. On the other hands, the individuals of the material 1
increases.

Secondly, the reference value is taken as u. = 0.25cm. Figure 8(a) shows that the performance of
the best individuals is improved monotonously as the generation goes. Figure 8(b) shows that the
individuals of the material 1 and 3 decreases rapidly and then, almost zero after 20th generation.
On the other hands, the individuals of the material 2 increase.
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(b) Rates of individuals of different materials

Fig. 8. In case of displacement constraint condition u. = 0.25cm

The material 2 is stiffer and heavier than the material 1. Since, in the case of u = 0.5¢cm,
the displacement constraint condition is relatively slack, the material is selected according to the
density rather than the stiffness. On the other hands, in the case of u. = 0.25cm, the constraint
condition is rigid and thus, the stiffer material is selected.

5. CONCLUSION

This paper presented the optimal design method of the continuum structures by the genetic algo-
rithms. The profiles of the objects are represented by the spline functions and then, the chromo-
somes of the objects are defined by taking as the genes the coordinates of the control points of the
spline functions and the material code. The objective functions and the constraint conditions are
estimated by the boundary element method.
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The plate under a shear force was considered as a numerical example. The design objective
was to minimize the weight of the plate. Firstly, the material was assumed to be invariant and
only boundary profile of the plate was optimized in order to confirm the validity of the shape
modification method. The numerical result was satisfactory. Then, the present method was applied
to the problem in which the profile and the material of the objects are unknown. In this case,
the numerical results, especially, the material selection, are dependent on the magnitude of the
reference value of the displacement constraint. If the condition is relatively slack, the material is
selected according to the density rather than the stiffness. On the other hands, the material is
determined by the stiffness if the condition is relatively rigid.

Finally, we should point out that the present method has some disadvantages to be overcome.
One of the great difficulties is the computational cost. In the present method, the boundary element
analysis must be performed repeatedly for estimating the fitness function values of the individuals,
which often increases the computational cost dreadfully. Therefore, we have been developing the
new algorithm for reducing the cost.
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