Computer Assisted Mechanics and Engineering Sciences, 5: 3-8, 1998.
Copyright © 1998 by Polska Akademia Nauk

Uniform-graded mesh block method
for second kind Volterra integral equations

Gamal M. Attia

Physical Science Department, Faculty of Engineering
Mansoura University, Mansoura, Egypt

(Received September 30, 1996)

In this paper a block method is developed to use on uniform-graded mesh for the solution of Volterra
integral equations of the second kind. This method permits the use of a variable step size when solving
Volterra integral equations. Means of reducing the error. Extensive results are presented.

1. INTRODUCTION

There are many different methods for solving the second kind Volterra integral equation:

1
y(t) = g(t) + /0 K(t,5,(s)) ds. 1)

For instance, a selection can be found in Delves and Mohamed [4] or Baker [2]. Jones [5] used
variable step size method and developed a family of predictor—corrector methods for solving this
equation.

Attia and Nersessian [1] solved Volterra integral equation with singular kernel by product Simp-
son’s on graded mesh, but their technique require a change of the quadrature formulas to use
it.

The purpose of this paper is to develop block method to use on uniform-graded mesh for solving
Volterra integral equation without any change of the quadrature formula.

2. PRELIMINARIES

The Volterra integral equation of the second kind is assumed to satisfy the condition for a unique
solution (see, for example Tricomi [9] or Smithies [8]). This equation can be written in the form

: .
v®) =90+ [ K(tsye)ds, teT). @)
The interval [0,7] is divided into N = 2M subintervals. The nodes are chosen to satisfy with

O=tg<t1 <tg < - <ty_1 <In<T

B B
tok =(%) =(%), k=0,1,..., M,

1
tok+1 = §[t2k+t2k+2], =01, 5 s M=y
g =itpgr ey k=0,1,...,2M-1,
sy =tg, k=0T +072M,
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3. BLOCK METHOD

The concept of a block method seems to have been described by Young [10], a similar technique for
use with differential equations was given by Miline [7]. A block method is essentially an extrapolation
procedure and has the advantage of being self starting. As we shall see it produces a block of values
at a time. One drawback of the method however is that it requires the kernel to be evaluated at
points for which it may not be defined. We shall follow Linz [6] description of the method. For
simplicity we confine ourselves to the simplest nontrivial case in which a block of two values is
produced at each stage. The generalization will be obvious.

The method depends on the use of two three-point quadrature formulas. The first is Simpson’s
rule, and the second is given by [3]

h h
[ @) do = 551560+ 861 -l + 2 69(<). @
Suppose now that 3o, y1, ..., y2x have been found (k may be zero), then since.
tok tok+1
Yokl = G241+ | K (tk+1,8,y(s)) ds +/t K (tak+1,8,9(s)) ds, (5)
2k
tak tok42
Yakt2 = G242+ | K (tok+2,8,y(s)) ds + i K (tok+2,8,y(s)) ds . (6)
2k

We can use Simpson’s rule and (4) to obtain the approximations

k-1
Yok+1 = gok+1 + Z hay (K (tak+1,t2j, Y2;j) + 4K (tok1, toj41, Y2j41) + K (Bokt1, t2j42, Y2j+2)]
7=0
2%k
12 (5K (tak+1, tok, Yor) + 8K (tok+1, tok+1, Yok+1) — K (b2k+1, tok+2, Yok+2)] s (7)

ho;
=L [K (bakt2, 125, y25) + 4K (tak42, tojr1, Y2j+1) + K (bakr2s t2j+2, Y2i42)] -

(8)

Thus we have a pair of nonlinear or linear equations (dependent on the kernel of the integral
equation to be nonlinear or linear) to solve for yox+1 and yox4o . The linear equations are solved in
recurrence by the direct substitution’s method to find yx and £k =0,1,2,...,N.

Y2k+2 = 9242 + Z
7=0

4. ERROR ANALYSIS

Equation (1) can be written in the symbolic form
(-kn®=00) )
where the operator is defined as
_ /Ot K(ts,y(s)ds, te[0,T]. (10)
If () is the approximate value of y(t), then Eq. (9) is replaced by the approximation

(I = Kn)j(t) = g(2). (11)
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The operator (Kpy)(t) (n = 2M) is defined as

M-1
.
(Kay)(t) = > —? [K (t, 2, y25) + 4K (¢, t2j41, Y2541) + K (t, 2512, Y25+2)] - (12)
i=0

Subtract (11) from (9) then we have

y(t) — §(t) = (K — Kn)y(t) + Kn(y(t) - 5(2)) (13)

but y(t) — §(t) is equal to the value of error E(t), then,

M-l B3 gAK (¢, s, y(s))
I-K)BO)~= 2 507 8 - )
( )E(t) ;go 90 05 i

5. THE ALGORITHM OF SOLUTION

e Uses the procedures for:

— Solution of two linear equations;

— Solution of two nonlinear equations.
e Uses the Functions for:
Kis, 1) =5

t) =
(&) ==

<
o~

<

e Input 3, number of subintervals (N) =27, p=1,2,...,10.

e Compute the places of the nodes

2k\?
tok =<—]\7) . k=0,1,...,—12!,
t t N
t2k+l=ﬂizik+_2, k=0,1,...,'§'—'1,
hy = tk+1 —tk, k=0,1,...,N-1,
Sk =g, k=10,Y,14.,2M.

e Evaluate y(t), t € [0, 1].
e Find the root mean square error

e Compute the value of max. error and its position.

6. TEST EXAMPLES

An algorithm using this method applied as described in Section 5. This algorithm was tested using a
number of different test equations. These results are presented here in a condensed form, z € [0,1].



No. Equation Exact Solution y(t)
1 - 1
1) | y@) = o /0 my(s) ds y(t) = J+ 223
(2) | yt) = + /t 2cos(t — s) y(s)ds y(t) = (¢t +1)%*
0
3) |yt)=2t+3- /2[3 +2(t - s)]y(s)ds y(t) = 4e™ —e—t
0
(4) | y(t) = sinht — /Ot cosh(t — s) y(s) ds yt) = % e~t/? sinh ?t
(5) | y(t) =sint + /t ei=*y(s)ds y(t) = %[eat —cost + 2sint]
0
(6) | y(t) =t+1—cost— /t cos(t — s) y(s)ds y(t) =t
0
(7) | y(t) = et 4 /t 2e'~%y(s)ds y(t) = (1 + 2t)ett+?)
0 @
t 2
8) | y(t) =1+ +/0 ;—-:-:'2 y(s)ds y(t) = (1 + t?)et
© | vO =1+ [ v(s)ds y(o) =
(10) ly@®)=@¢-1)+ 1+ tz)e_t2 + /t t2e*ty(s)ds | y(t) =t
0
(11) | y(t) = ge't + /Ot %(t —s)%e*ty(s)ds yit) = %— [1 — e 15t (cos \/Tgt + V/3sin 23
12) | vty =t- / (e Sataiia gilisni
0
(13) | y(t) =t + /t sin(t — s) y(s) ds ylt) =1t
t
14) | yt) =t - /0 sinh(t — 8) y(s) ds o t'ﬁts
(15) | y(t) = cost + / * () ds y(t) = Eteime + cogt
0 2
(16) | y(t) = sint + /0 (t — 8) y(s) ds i = Mﬁfﬂf
(17) | y(t) = 1+ t(cost® —1) + /t t%sin(ts) y(s) ds y(t)=1
0
o t(l - et) ¢ 2_st s .
a8) |yt = T5+ [ ertye)a v =t
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7. RESULTS

The results of solving these equations using the algorithm described in this paper are summarized
in Table 1. These results were obtained by using P.C. and (N = 16).Table (2) shows the relation
between N and the maximum error (Ejs) when § = 1.2 for example (1). The results show that the

error decreases as N increases.

Table 1
Example Uniform-Graded Mesh Uniform Mesh (8 = 1)

B E.r.m.s. XeMm Em Eym XeM E.r.m.s. Egr
1 1.20 1.099x107% 0.1360 2.42x107°% | 5.45x107% 0.0625 1.6970x10~°% 0.64
2 1.15 1.027x107% 1.0000 2.33x107® | 2.30x10~° 1.0000 1.1900x10~% 0.86
3 1.15 2.520x10~% 0.1473 4.62x1075 | 9.27x1075 0.0625 3.3410x10~5% 0.75
4 1.05 2.130x107% 0.1730 1.237x107¢ | 2.88x107% 0.0625 1.2950x10~% 0.95
5 1.00 2.853x10~° 0.9375 7.54x107° | 7.54x10™° 0.9375 2.853x10~° 1
6 1.00 1.069x107® 0.0625 1.83x107° | 1.83x10=% 0.0625 1.069x106 1
7 0.95 5.644x10~* 0.9404 1.56x107% | 1.70x10~* 0.9375 5.836x10~* 0.97
8 0.95 1.717x107® 0.9404 4.13x107% | 4.58x10¢ 0.9375 1.775x10~¢ 0.97
9 0.95 1.098x1076 0.9404 2.19x107¢ | 2.44x107® 0.9375 1.109x10~% 0.99
10 0.90 1.920x10™7 0.9434 5.23x107 | 6.18x10~7 0.9375 2.084x10~7  0.92
11 0.90 2.386x10~7 0.5955 2.95x10~7 | 5.44x10~7 0.9375 2.985x10~7 0.80
12 0.85 3.901x10~7 1.0000 5.23x10~7 | 1.14x107% 0.9375 5.545x10~7 0.70
13 0.85 3.504x10~7 0.9464 7.06x10~7 | 1.21x10~% 0.9375 5.082x10~7 0.77
14 0.80 3.504x10~7 0.0947 6.37x1077 | 1.17x107% 0.9375 4.993x10~7 0.70
15 0.75 2.044x10"7 0.1051 5.29x10~7 | 1.03x107% 0.9375 3.981x10~7 0.52
16 0.70 3.234x10"% 0.9554 7.81x107% | 2.34x107% 0.9375 7.304x10~% 0.44
17 0.70 4.715x10~% 0.9554 1.30x10~7 | 3.41x10~7 0.9375 9.999x10~% 0.47
18 0.65 1.977x10~¢ 1.0000 6.23x107% | 3.11x107% 0.9375 7.774x10~¢ 0.25

Here: E.r.m.s. is the root mean square error, Fjs is a max. error, Xgu is the position of max. error and
Er = E.r.m.s. of uniform graded mesh

E.r.m.s. of uniform mesh

Table 2
N 2 4 8 16 32
Eym | 22%x1073 | 4.65x107% | 2.70x107° | 2.42x107% | 1.56x10~7
N 64 128 256 512 1024
En | 9.75%107° | 6.08x1071° | 3.73x10~1! | 7.28x10~12 | 7.28x10~12

8. THE EFFECT OF GRADED MESH

In Fig. 1, the relation between — log(E.r.m.s.) and S is plotted at N = 16. We notice that:

e The Max. value of —log(E.r.m.s.) it means the Min. value of E.r.m.s.

e For example (1) the Min. E.r.m.s. occur at § = 1.2,

e Example (6) has Min. E.r.m.s. at § =1 (Uniform Mesh) and

e In example (17) the Min. E.r.m.s. at 8 = 0.7.
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Fig. 1. The relation between E.r.m.s. and 8 at N = 16
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