Uniform-graded mesh block method for second kind Volterra integral equations Gamal M. Attia Physical Science Department, Faculty of Engineering Mansoura University, Mansoura, Egypt (Received September 30, 1996) In this paper a block method is developed to use on uniform-graded mesh for the solution of Volterra integral equations of the second kind. This method permits the use of a variable step size when solving Volterra integral equations. Means of reducing the error. Extensive results are presented. #### 1. Introduction There are many different methods for solving the second kind Volterra integral equation: $$y(t) = g(t) + \int_0^1 K(t, s, y(s)) \, \mathrm{d}s.$$ (1) For instance, a selection can be found in Delves and Mohamed [4] or Baker [2]. Jones [5] used variable step size method and developed a family of predictor–corrector methods for solving this equation. Attia and Nersessian [1] solved Volterra integral equation with singular kernel by product Simpson's on graded mesh, but their technique require a change of the quadrature formulas to use it The purpose of this paper is to develop block method to use on uniform-graded mesh for solving Volterra integral equation without any change of the quadrature formula. ### 2. PRELIMINARIES The Volterra integral equation of the second kind is assumed to satisfy the condition for a unique solution (see, for example Tricomi [9] or Smithies [8]). This equation can be written in the form $$y(t) = g(t) + \int_0^1 K(t, s, y(s)) \, \mathrm{d}s, \qquad t \in [0, T].$$ (2) The interval [0,T] is divided into N=2M subintervals. The nodes are chosen to satisfy with $$0 = t_{0} < t_{1} < t_{2} < \dots < t_{N-1} < t_{N} \le T$$ $$t_{2k} = \left(\frac{2k}{N}\right)^{\beta} = \left(\frac{k}{M}\right)^{\beta}, \quad k = 0, 1, \dots, M,$$ $$t_{2k+1} = \frac{1}{2}[t_{2k} + t_{2k+2}], \qquad k = 0, 1, \dots, M-1,$$ $$h_{k} = t_{k+1} - t_{k}, \qquad k = 0, 1, \dots, 2M-1,$$ $$s_{k} = t_{k}, \qquad k = 0, 1, \dots, 2M.$$ $$(3)$$ ## 3. BLOCK METHOD The concept of a block method seems to have been described by Young [10], a similar technique for use with differential equations was given by Miline [7]. A block method is essentially an extrapolation procedure and has the advantage of being self starting. As we shall see it produces a block of values at a time. One drawback of the method however is that it requires the kernel to be evaluated at points for which it may not be defined. We shall follow Linz [6] description of the method. For simplicity we confine ourselves to the simplest nontrivial case in which a block of two values is produced at each stage. The generalization will be obvious. The method depends on the use of two three-point quadrature formulas. The first is Simpson's rule, and the second is given by [3] $$\int_0^h \phi(x) \, \mathrm{d}x = \frac{h}{12} [5\phi_0 + 8\phi_1 - \phi_2] + \frac{h^4}{24} \, \phi^{(3)}(\zeta) \,. \tag{4}$$ Suppose now that y_0, y_1, \ldots, y_{2k} have been found (k may be zero), then since. $$y_{2k+1} = g_{2k+1} + \int_0^{t_{2k}} K(t_{2k+1}, s, y(s)) \, \mathrm{d}s + \int_{t_{2k}}^{t_{2k+1}} K(t_{2k+1}, s, y(s)) \, \mathrm{d}s,$$ (5) $$y_{2k+2} = g_{2k+2} + \int_0^{t_{2k}} K(t_{2k+2}, s, y(s)) \, \mathrm{d}s + \int_{t_{2k}}^{t_{2k+2}} K(t_{2k+2}, s, y(s)) \, \mathrm{d}s.$$ (6) We can use Simpson's rule and (4) to obtain the approximations $$y_{2k+1} = g_{2k+1} + \sum_{j=0}^{k-1} \frac{h_{2j}}{3} \left[K(t_{2k+1}, t_{2j}, y_{2j}) + 4K(t_{2k+1}, t_{2j+1}, y_{2j+1}) + K(t_{2k+1}, t_{2j+2}, y_{2j+2}) \right]$$ $$+ \frac{h_{2k}}{12} \left[5K(t_{2k+1}, t_{2k}, y_{2k}) + 8K(t_{2k+1}, t_{2k+1}, y_{2k+1}) - K(t_{2k+1}, t_{2k+2}, y_{2k+2}) \right], \tag{7}$$ $$y_{2k+2} = g_{2k+2} + \sum_{j=0}^{k} \frac{h_{2j}}{3} \left[K(t_{2k+2}, t_{2j}, y_{2j}) + 4K(t_{2k+2}, t_{2j+1}, y_{2j+1}) + K(t_{2k+2}, t_{2j+2}, y_{2j+2}) \right].$$ (8) Thus we have a pair of nonlinear or linear equations (dependent on the kernel of the integral equation to be nonlinear or linear) to solve for y_{2k+1} and y_{2k+2} . The linear equations are solved in recurrence by the direct substitution's method to find y_k and k = 0, 1, 2, ..., N. # 4. ERROR ANALYSIS Equation (1) can be written in the symbolic form $$(I - \hat{K})y(t) = g(t) \tag{9}$$ where the operator is defined as $$(\hat{K}y)(t) = \int_0^t K(t, s, y(s)) \, \mathrm{d}s, \qquad t \in [0, T].$$ (10) If $\tilde{y}(t)$ is the approximate value of y(t), then Eq. (9) is replaced by the approximation $$(I - \hat{K}_n)\tilde{y}(t) = g(t). \tag{11}$$ The operator $(\hat{K}_n y)(t)$ (n=2M) is defined as $$(\hat{K}_n y)(t) = \sum_{j=0}^{M-1} \frac{h_{2j}}{3} \left[K(t, t_{2j}, y_{2j}) + 4K(t, t_{2j+1}, y_{2j+1}) + K(t, t_{2j+2}, y_{2j+2}) \right]. \tag{12}$$ Subtract (11) from (9) then we have $$y(t) - \tilde{y}(t) = (\hat{K} - \hat{K}_n)y(t) + \hat{K}_n(y(t) - \tilde{y}(t))$$ (13) but $y(t) - \tilde{y}(t)$ is equal to the value of error E(t), then, $$(I - K_n)E(t) \approx -\sum_{j=0}^{M-1} \frac{h_j^5}{90} \frac{\partial^4 K(t, s, y(s))}{\partial s^4}$$ (14) # 5. THE ALGORITHM OF SOLUTION - Uses the procedures for: - Solution of two linear equations; - Solution of two nonlinear equations. - Uses the Functions for: $$K(s,t) := ;$$ $g(t) := ;$ $y(t) := .$ - Input β , number of subintervals $(N) = 2^p$, $p = 1, 2, \dots, 10$. - Compute the places of the nodes $$t_{2k} = \left(\frac{2k}{N}\right)^{\beta}, \qquad k = 0, 1, \dots, \frac{N}{2},$$ $$t_{2k+1} = \frac{t_{2k} + t_{2k+2}}{2}, \qquad k = 0, 1, \dots, \frac{N}{2} - 1,$$ $$h_k = t_{k+1} - t_k, \qquad k = 0, 1, \dots, N - 1,$$ $$s_k = t_k, \qquad k = 0, 1, \dots, 2M.$$ - Evaluate $y(t), t \in [0, 1]$. - Find the root mean square error - Compute the value of max. error and its position. ### 6. TEST EXAMPLES An algorithm using this method applied as described in Section 5. This algorithm was tested using a number of different test equations. These results are presented here in a condensed form, $x \in [0, 1]$. | No. | Equation | Exact Solution $y(t)$ | |------|--|---| | (1) | $y(t) = \frac{1}{1+t^2} \int_0^t \frac{s}{\sqrt{1+t^2}} y(s) ds$ | $y(t) = \frac{1}{\sqrt{(1+t^2)^3}}$ | | (2) | $y(t) = e^t + \int_0^t 2\cos(t-s) y(s) ds$ | $y(t) = (t+1)^2 e^t$ | | (3) | $y(t) = 2t + 3 - \int_0^t [3 + 2(t - s)] y(s) ds$ | $y(t) = 4e^{-2t} - e - t$ | | (4) | $y(t) = \sinh t - \int_0^t \cosh(t - s) y(s) ds$ | $y(t) = \frac{2}{\sqrt{5}} e^{-t/2} \sinh \frac{\sqrt{5}}{2} t$ | | (5) | $y(t) = \sin t + \int_0^t e^{t-s} y(s) \mathrm{d}s$ | $y(t) = \frac{1}{5} [e^{3t} - \cos t + 2\sin t]$ | | (6) | $y(t) = t + 1 - \cos t - \int_0^t \cos(t - s) y(s) ds$ | y(t)=t | | (7) | $y(t) = e^{t(t+2)} + \int_0^t 2e^{t-s} y(s) ds$ | $y(t) = (1+2t)e^{t(t+2)}$ | | (8) | $y(t) = 1 + t^2 + \int_0^t \frac{1+t^2}{1+s^2} y(s) ds$ | $y(t) = (1+t^2)e^t$ | | (9) | $y(t) = 1 + \int_0^t y(s) \mathrm{d}s$ | $y(t) = e^t$ | | (10) | $y(t) = (t-1) + (1+t^2)e^{-t^2} + \int_0^t t^2 e^{-st} y(s) ds$ | y(t) = t | | (11) | $y(t) = \frac{t^2}{2} e^{-t} + \int_0^t \frac{1}{2} (t - s)^2 e^{s - t} y(s) ds$ | $y(t) = \frac{1}{3} \left[1 - e^{-1.5t} \left(\cos \frac{\sqrt{3}}{2} t + \sqrt{3} \sin \frac{\sqrt{3}}{2} t \right) \right]$ | | (12) | $y(t) = t - \int_0^t (t - s) y(s) ds$ | $y(t) = \sin t$ | | (13) | $y(t) = t + \int_0^t \sin(t - s) y(s) ds$ | y(t) = t | | (14) | $y(t) = t - \int_0^t \sinh(t - s) y(s) ds$ | $y(t) = \frac{t - t^3}{6}$ | | (15) | $y(t) = \cos t + \int_0^t y(s) \mathrm{d}s$ | $y(t) = \frac{e^t + \sin t + \cos t}{2}$ | | (16) | $y(t) = \sin t + \int_0^t (t - s) y(s) ds$ | $y(t) = \frac{\sin t + \sinh t}{2}$ | | (17) | $y(t) = 1 + t(\cos t^2 - 1) + \int_0^t t^2 \sin(ts) y(s) ds$ | y(t)=1 | | (18) | $y(t) = \frac{t(1 - e^t)}{2} + \int_0^t t^2 e^{st} y(s) ds$ | y(t) = t | ### 7. RESULTS The results of solving these equations using the algorithm described in this paper are summarized in Table 1. These results were obtained by using P.C. and (N=16). Table (2) shows the relation between N and the maximum error (E_M) when $\beta=1.2$ for example (1). The results show that the error decreases as N increases. Table 1 | Example | 17. | Uniform-Graded Mesh | | | Uniform Mesh $(\beta = 1)$ | | | | |---------|------|------------------------|----------|------------------------|----------------------------|----------|-------------------------|-------| | | β | E.r.m.s. | X_{EM} | E_{M} | E_{M} | X_{EM} | E.r.m.s. | E_R | | 1 | 1.20 | 1.099×10^{-6} | 0.1360 | 2.42×10^{-6} | 5.45×10^{-6} | 0.0625 | 1.6970×10^{-6} | 0.64 | | 2 | 1.15 | 1.027×10^{-5} | 1.0000 | 2.33×10^{-5} | 2.30×10^{-5} | 1.0000 | 1.1900×10^{-5} | 0.86 | | 3 | 1.15 | 2.520×10^{-5} | 0.1473 | 4.62×10^{-5} | 9.27×10^{-5} | 0.0625 | 3.3410×10^{-5} | 0.75 | | 4 | 1.05 | 2.130×10^{-6} | 0.1730 | 1.237×10^{-6} | 2.88×10^{-6} | 0.0625 | 1.2950×10^{-6} | 0.95 | | 5 | 1.00 | 2.853×10^{-5} | 0.9375 | 7.54×10^{-5} | 7.54×10^{-5} | 0.9375 | 2.853×10^{-5} | 1 | | 6 | 1.00 | 1.069×10^{-6} | 0.0625 | 1.83×10^{-6} | 1.83×10^{-6} | 0.0625 | 1.069×10^{-6} | 1 | | 7 | 0.95 | 5.644×10^{-4} | 0.9404 | 1.56×10^{-3} | 1.70×10^{-3} | 0.9375 | 5.836×10^{-4} | 0.97 | | 8 | 0.95 | 1.717×10^{-6} | 0.9404 | 4.13×10^{-6} | 4.58×10^{-6} | 0.9375 | 1.775×10^{-6} | 0.97 | | 9 | 0.95 | 1.098×10^{-6} | 0.9404 | 2.19×10^{-6} | 2.44×10^{-6} | 0.9375 | 1.109×10^{-6} | 0.99 | | 10 | 0.90 | 1.920×10^{-7} | 0.9434 | 5.23×10^{-7} | 6.18×10^{-7} | 0.9375 | 2.084×10^{-7} | 0.92 | | 11 | 0.90 | 2.386×10^{-7} | 0.5955 | 2.95×10^{-7} | 5.44×10^{-7} | 0.9375 | 2.985×10^{-7} | 0.80 | | 12 | 0.85 | 3.901×10^{-7} | 1.0000 | 5.23×10^{-7} | 1.14×10^{-6} | 0.9375 | 5.545×10^{-7} | 0.70 | | 13 | 0.85 | 3.504×10^{-7} | 0.9464 | 7.06×10^{-7} | 1.21×10^{-6} | 0.9375 | 5.082×10^{-7} | 0.77 | | 14 | 0.80 | 3.504×10^{-7} | 0.0947 | 6.37×10^{-7} | 1.17×10^{-6} | 0.9375 | 4.993×10^{-7} | 0.70 | | 15 | 0.75 | 2.044×10^{-7} | 0.1051 | 5.29×10^{-7} | 1.03×10^{-6} | 0.9375 | 3.981×10^{-7} | 0.52 | | 16 | 0.70 | 3.234×10^{-8} | 0.9554 | 7.81×10^{-8} | 2.34×10^{-6} | 0.9375 | 7.304×10^{-8} | 0.44 | | 17 | 0.70 | 4.715×10^{-8} | 0.9554 | 1.30×10^{-7} | 3.41×10^{-7} | 0.9375 | 9.999×10^{-8} | 0.47 | | 18 | 0.65 | 1.977×10^{-6} | 1.0000 | 6.23×10^{-6} | 3.11×10^{-5} | 0.9375 | 7.774×10^{-6} | 0.25 | Here: E.r.m.s. is the root mean square error, E_M is a max. error, X_{EM} is the position of max. error and $E_R = \frac{\text{E.r.m.s. of uniform graded mesh}}{\text{E.r.m.s. of uniform mesh}}$. Table 2 | N | 2 | 4 | 8 | 16 | 32 | |-------|-----------------------|------------------------|------------------------|------------------------|------------------------| | E_M | 2.2×10^{-3} | 4.65×10^{-4} | 2.70×10^{-5} | 2.42×10^{-6} | 1.56×10^{-7} | | N | 64 | 128 | 256 | 512 | 1024 | | E_M | 9.75×10^{-9} | 6.08×10^{-10} | 3.73×10^{-11} | 7.28×10^{-12} | 7.28×10^{-12} | ### 8. THE EFFECT OF GRADED MESH In Fig. 1, the relation between $-\log(\text{E.r.m.s.})$ and β is plotted at N=16. We notice that: - The Max. value of $-\log(E.r.m.s.)$ it means the Min. value of E.r.m.s. - For example (1) the Min. E.r.m.s. occur at $\beta = 1.2$, - Example (6) has Min. E.r.m.s. at $\beta = 1$ (Uniform Mesh) and - In example (17) the Min. E.r.m.s. at $\beta = 0.7$. Fig. 1. The relation between E.r.m.s. and β at N=16 ## REFERENCES - [1] G.M. Attia, A.B. Nersessian. Numerical solution of Volterra integral equations with singular kernels. Second Int. Conf. on Engineering Mathematics and Physics (ICEMP-1994), Vol. 3: 249-258. Cairo University, Faculty of Engineering, 1994. - [2] C.T.H. Baker. The Numerical Treatment of Integral Equations. Oxford University Press, 1977. - [3] P.J. Davis, R. Rabinovitz. Methods of Numerical Integration. Academic Press, 1984. - [4] L.M. Delves, J.L. Mohamed. Computational Methods for Integral Equations. Cambridge University Press, first published 1985. - [5] H.M. Jones, S. Mckee. Variable step size predictor-corrector scheme for second kind Volterra integral equations. *Mathematics of Computation*, 44(170), 391-404, April 1985. - [6] P. Linz. The numerical solution of Volterra integral equations by finite difference methods. M.R.C. Tech Rep., 825, 1968 - [7] Miline. Numerical solution of differential equations. Wiley, 1953. - [8] F. Smithies. Integral Equations. Cambridge Tracts in Mathematics and Mathematical Physics, No. 49. Cambridge University Press, W. E. New York, 1958. - [9] F.G. Tricomi. Integral Equations. Interscience, New York, 1957. - [10] A. Young. The application of product integration to the numerical solution of integral equations. Proc. R. Soc. A., 224: 561-573, 1954.