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An efficient, accurate, and simple numerical method is necessary for analysis and design of an incom-
pressible potential flow around multi-element airfoils. In this paper, which is the subject of the second
part of the study, the mathematical model is built utilizing the local coordinate system, while in the first
part of the study [2] only the global coordinate system is used. Mathematical model, by the vortex panel
method with the use of the stream function, is written for the analysis of potential flow over multi-element
airfoils. The computational model is built for both uniform and linear vortex distributions with utilizing
the constant stream function boundary condition. From the fact that any study which does not consider
deeply and precisely, all the parameters relevant to the computational model, might make it fragmentary.
Hence, the following parameters are tested to investigate their effect on the accuracy of the method.
They are: both types of the vortex distribution, two types of panelling, different ways of applying the
Kutta condition, and two ways of positioning the control points. For the purpose of easier comparison, the
study cases performed using the present model are restricted only to single-element airfoils; NACA 0012
airfoil at an angle of attack a = 8.3°, and a cusped trailing edge 15 percent thick Van de Vooren airfoil
at a = 5°.

1. INTRODUCTION

An efficient, accurate, and simple numerical method is necessary for the process of calculating
the velocity distribution over multi-component airfoils at a given angle of attack. Then this direct
method can easily be converted to an inverse method that can be used as a method of produc-
ing an airfoil shape which matches the desired velocity distribution. Kennedy and Marsden [4]
method utilizes uniform vortex distribution with constant stream function boundary condition and
off-trailing-edge control point. Soinne and Laine [7] method uses linear vortex distribution with
constant stream function boundary condition and off-trailing-edge control point. Moreover, the
control points are placed exactly on the airfoil surface.

This study paid attention to the influence of different parameters on the numerical solution of
the panel method based on the stream function. These parameters are: the type of the function
that represents the singularity distribution over the panels, two types of panelling, four ways of
applying the Kutta condition, and two ways of positioning the control points. Part I of the study [2]
is restricted to the use of the global coordinate system for building the computational model. Part II
of the study, which is the subject of this paper, utilizes the local coordinate system in building the
computational model for the analysis of potential flow over multi-element airfoils. Both the uniform
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and linear vortex distributions are used. When the linear vortex distribution is utilized, both the
boundary points and the control points are placed exactly on the airfoil surface.

2. THEME OF WORK

The surface panel method philosophy for solving arbitrary potential flow problems consists of
mating the classical potential theory with contemporary numerical techniques, cf. [1, 6]. Classical
potential theory is utilized to reduce an arbitrary flow problem to a surface integral equation
relating boundary conditions to an unknown singularity distribution. The contemporary numerical
techniques are then used to calculate an approximate solution to the integral equation [5].

The theme of work is as follows: identification of the surface on which singularity is required to
be distributed, panelling the surface, the choice of singularity, selection of the function for approx-
imating the singularity distribution on the panelled surface, positioning the control points, writing
the mathematical expression relevant to the problem, satisfying the boundary condition at every
control point, satisfying the Kutta condition, generation of the simultaneous equations, solving
the simultaneous equations to evaluate the singularity strengths; once the singularity strengths are
known, the tangential velocity and the pressure coefficient distributions over the airfoil surface and
the attendant lift coefficient, can be calculated.

3. MATHEMATICAL MODEL

The calculation of the velocity induced by the vortex distribution on the panels is facilitated by
introducing a local coordinate system. The origin of the local frame of reference for j-th panel is
placed at its centroid as it is shown in Fig. 1. The local £-axis runs along the panel, and the local
n-axis points outward from the airfoil into the flow field. For j-th panel the transformation between
the global and local frames is

&+3S | _| bobo|[m-X; (1)
i T b by yi — Y

where (&;,7;) are coordinates of the i-th control point in the local frame and (z;,y;) are the corre-
sponding coordinates in the global frame. Also
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Fig. 1. Geometry required for the evaluation of the integrals
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and
8i = [(Xj1 = X3 + (Y1 - 7)) (3)

Note that (X},Y, j) and (Xj41,Yj41) are the coordinates of the boundary points of the j-th panel
in the global frame and S is the corresponding panel length. Role of panelling consists in selecting
a number of points (boundary points) on the surface of the airfoil. The airfoil surface is modelled by
connecting each two neighbouring boundary points by a straight line (panel). Figure 2 illustrates
such a procedure for a single-element airfoil. The airfoil contour is divided into N number of panels,

y
Boundary points

Nth panel

1st panel

2nd panel

Fig. 2. Panelling the surface of a single-element airfoil with global coordinate system at the L.E. of the
airfoil and the local coordinate system at the centroid of the panel

starting with the 1st panel on the lower surface at the trailing edge and ending with the N-th panel
on the upper surface at the trailing edge. The z-coordinates of the boundary points of the N (even
number) panels can be defined from either one of the following equations

D, | X 1
ol 5(1 + cos ©) or e 5(1 — Cos 9N/2—k) (4)
where
rk w(N/2 — k)
e’°=N_/2’ Onpk=—"7—"> k=01...,N/2.

Then the y-coordinates of these boundary points are calculated from the airfoil geometry. Joining
each two successive points generates the panels, that furnish a continuous broken line over the
airfoil surface. At the centre of these panels control points are chosen, while with the use of the
linear vortex distribution the control points can be positioned at the boundary points; exactly at
the airfoil surface. At these control points the boundary condition is satisfied. With the use of the
linear vortex distribution, the vortex strength per unit length, <y, varies linearly from one boundary
point to the next as shown in Fig. 3. Hence, the vortex strength at any point along the panel can
be written as

7o) = 5 +y01) + BT ()

J

while using the uniform vortex distribution, the uniform function that is used to approximate the
vortex distribution on each panel is written as:

¥(s5) =15 - (6)

Consider multi-element airfoil placed in a uniform flow of speed Vi, . The stream function \Ilz(c) at

any control point on every airfoil element is influenced by. the vortex panels of all the elements and
the undisturbed free stream, is written in a general form of vortex distribution as:

1
2

1 M N 2 2
U9 = Vel conc— 5 sina) + 1 $°5° [ 460 m[ )+ (69 - o] s,
b=1j=1"b

c=1,....M, i=i®=1,... N,,
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Fig. 3. Linear distribution of the vortices over j-th panel

where M is the number of the elements. The integral accounts for the variation of vortex strength
over the j-th panel of the b-th element. The boundary condition on the surface requires that the
stream function at points on the airfoil surface be a constant, it is written as

\Ilgc)z\llc, C=1,...,M. (8)

After rewriting this boundary condition for each control point, the following dimensionless equation,
derived from Eq. (7), will be obtained as

S°SE (L0 - LEO) 7O 4 (L0 4 [O0) yO ] 4w, = ¥ cosa— Psina, (O
b=1j=1

c=1,...,.M, i=i{9=1... N,.
The form of Eq. (9) is written for the case of using the linear vortex distribution. While for the case
of using the uniform vortex distribution, Eq. (9) should be rewritten in a form with L; j, and the

second term between the parentheses equal to zero. The coefficients L(c)(b) and LE J)L( ) of Eq. (9)
take the forms of:

c 1 1
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For the case of positioning the control points exactly at the airfoil surface, with utilizing the linear
vortex distribution; note that for i(®) = j®): when r; = 0.0

L(C)(b) S(b) [1 In S(b)] (12)
and

LQ® _ _% 5O, (13)

,JL
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and when ry = 0.0

b b b)
£{)® = 5 [1-nsY] (14)
and
£®) _ 2 g®)
ZL S} : (15)

The Kutta condition states that airflow should leave the trailing edge of the airfoil smoothly.

Therefore, Eq. (9), that result from the direct application of the boundary condition, is remedied

by the application of the Kutta condition to insure the flow leaves the trailing edge of each element

of the airfoil smoothly. This condition is tested by four different ways.

The first way

For the case of using the uniform vortex distribution the Kutta condition is applied by requiring

equal tangential velocities at the two control points adjacent to the trailing edge. It is written as
YO =—y©O,  c=1,...,M, (16)

where the notations 1 and N correspond to the 1-st and N-th control points respectively.

The second way

Also for the case of using the uniform vortex distribution the Kutta condition can be applied at a
point just off the trailing edge. Assuming that the streamline corresponding to each element also
passes through the assigned off-control-point, therefore the Kutta condition can be applied, by
writing Eq. (9) at each off-trailing-edge control point, ¢(¢), as

ZZ[ b) /(b]+\I,I _y(C)COSa-xg)Slna’ c:l,...,M- (17)
b=l 4=1
The third way

For the case of using the linear vortex distribution the Kutta-condition is applied by using two
equations. The first equation is written by requiring equal tangential velocities at the two control
points adjacent to the trailing edge as

YR+ =- (7 +79),  e=1...Mm el

The second equation results from the application of the boundary condition at a point positioned
downstream of the trailing edge. By writing Eq. (9) at each off-trailing-edge control point, ¢(¢), it
results in

M N
> Zb [(Lgfj)(b) L(c)(b)) 'y'g-b) + (Lg?(b) + L(c)(b)) ') ] + 0! = y( ) cos a — a:gc) sina, (19)

t.JjL 4L
b=1 j=1
c=1,..., M.

The fourth way

Also for the case of using the linear vortex distribution the Kutta condition can be applied by using
two equations. The first equation results from the application of the Kutta condition exactly at the
trailing edge. It is written as

7,%)+1 = _7lg6) ’ C= 1a Sk ’Mv (20)
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The second equation, Eq. (19), results from the application of the boundary condition at point
positioned at a distance of a small percentage of the chord length, downstream of the trailing edge
on the trailing edge bisector. The tangential velocity at each control point on either elements, for
the case of using the linear vortex distribution, is calculated according to the following relation:

L
2

Notice that for the case of using the uniform vortex distribution the tangential velocity is directly
equal the vortex strength at the assigned control point. Once the tangential velocity at the control
point of each panel is calculated, then by using Bernoulli’s equation the pressure coefficient is
evaluated according to

VO =2 (1049, e=l..,M, i=i®=j=;0=1.N,. (21)

v\
cl=1- [t c=1,....M, i=i9=1,..N,. (22)
Pi Voo ] b 2 ) b b C

The lift coefficient is calculated by using the Kutta-Joukowski theorem. Taking the panels suffi-
ciently short, it can be assumed that the tangential velocity is uniform over each panel, the total
lift coefficient is evaluated from the relation

M Ny V(b) S(b)
Grs2) N 7 0] (23)

b=1j=1

where C®) is the chord length of element number b of the airfoil section.

4. DISCUSSION AND CONCLUSIONS

The first selected case of study is NACA 0012 airfoil at an angle of attack o = 8.3°, corresponding to
unit lift coefficient. Zedan [9] used the method of conformal mapping to estimate the lift coefficient
for the same airfoil. He obtained a lift coefficient as ¢; = 0.999. Zedan also introduced results
obtained by the Hess and Smith method for the same case airfoil. He mentioned the value of
¢, = 0.963 using 100 panels. Figures 4 to 7 present the pressure distribution over NACA 0012
airfoil at @ = 8.3°, with the use of the uniform vortex distribution. Figure 4 presents the C,
distribution utilizing the global [2] and local coordinate systems. For the both frames, the C,
distribution and lift coefficient are the same under the same conditions. While in the case of using
the local coordinate system, for the case of the uniform vortex distribution, it allows a reduction
in the computation time. Figure 5 presents the C, distribution using the first way of applying the
Kutta condition with both types of panelling. It is clear that with this way of applying the Kutta
condition the exact value of lift coefficient is not achieved.

Figure 6 presents the C, distribution using the first type of panelling. A comparison is made
between the influence of the first and second ways of applying the Kutta condition. It is evident that
the second way of applying the Kutta condition is better than the first way of applying the Kutta
condition. It gives a lift coefficient with a value of ¢; = 1.0000. Moreover, it minimizes the number
of the panels that is needed for achieving the peak value of C, at the leading edge of the airfoil.
Figure 7 presents a comparison for the C, distribution using the two types of panelling with the
second way of applying the Kutta condition. The first type of panelling achieves the lift coefficient
with a value of ¢; = 1.0000, while the second type of panelling gives it as ¢; = 1.0220. The results of
Figs. 6 and 7, under the utilized conditions, insure that correct choice of both the type of panelling
and the way of applying the Kutta condition is so important for building the computational model
for achieving an accurate results. Figure 8 presents a comparison for C;, distribution using linear
vortex distribution with utilizing the fourth way of applying the Kutta condition (¢; = 1.0000) and
using the uniform vortex distribution with utilizing the second way of applying the Kutta condition
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(e = 1.0220). With both of them the second type of panelling is used. With this type of panelling,
the linear vortex distribution utilizing the fourth way of applying the Kutta condition achieves
better accuracy for the lift coefficient than using the uniform vortex distribution with the second
way of applying the Kutta condition.

Cp Cp
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Fig. 8. Pressure distribution over NACA 0012 airfoil Fig. 9. Pressure distribution over NACA 0012 airfoil
at a = 8.3° at a = 8.3°

Figure 9 presents comparison for the C, distribution, using linear vortex distribution with the
fourth way of applying the Kutta condition and using the uniform vortex distribution with the
second way of applying the Kutta condition. With both of them the first type of panelling is used.
It is noticed that using the linear vortex distribution increases the number of panels that is needed
for achieving the peak value of C}, at the leading edge of the airfoil.

Figure 10 presents the C, distribution, over NACA 0012 airfoil at o = 8.3°, using the linear
vortex distribution and the first type of panelling. Figure 10 represents the case of positioning the
control points exactly at the airfoil surface. With positioning the control points exactly at the airfoil
surface, a stagnation point at the trailing edge of airfoil and the peak value of C), at the leading
edge of the airfoil are obtained using less number of panels compared with the case of positioning
the control points at the centroids of the panels (for the first case of study).

The second case of study is the cusped trailing edge 15 percent thick Van de Vooren airfoil
at an angle of attack a = 5° is available in [3]. Figures 11 and 12 are presenting selected results,
corresponding to the second case of study, are taken from [3, Fig. 11.39], and [8, Fig. 6a], respectively.
They are considered here for comparing the efficiency and the accuracy of the method used in this
paper. Figure 11 presents a comparison between the analytical and numerical pressure distributions.
The numerical solution of Fig. 11a used linear vortex distribution with Neumann B.C., while the
numerical solution of Fig. 11b used constant strength source/doublet method with the Dirichlet
B.C.. Figure 12 presents a comparison between the analytical and numerical C, distributions. The
numerical solution of Fig. 12 used constant strength source/doublet method with the Dirichlet B.C.

Figures 13 to 15 present a comparison between the analytical and numerical C, distributions
for the second case of study. Figure 13 presents two numerical solutions using the uniform vortex
distribution with the second way of applying the Kutta condition and using the linear vortex
distribution with the fourth way of applying the Kutta condition. The control points are positioned
at the centroids of the panels. For this airfoil of cusped trailing edge, both of the numerical solutions
achieve the C), distribution that matches the analytical solution at the same number of panels
(N = 40) with lift coefficient ¢; = 0.6298 the same as the exact value of the lift coefficient.
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Fig. 11. Pressure distribution on a cusped trailing edge 15 percent thick Van de Vooren airfoil using:
(a) linear vortex method with Neumann B.C., and (b) constant-strength source/doublet method with the
Dirichlet B.C. [3]

Figure 14 presents the numerical solution of C, distribution using the linear vortex distribution
with the fourth way of applying the Kutta condition. The control points are positioned exactly at
the airfoil surface. For the second case of study when the control points are positioned exactly at
the airfoil surface, the calculated C, distribution that agrees with the analytical C, distribution
is achieved at N = 120 giving a lift coefficient ¢; = 0.6298. While using the same conditions, that
are mentioned in Fig. 14, with the third way of applying the Kutta condition instead of using the
fourth way of applying the Kutta condition, as it is shown in Fig. 15, the calculated C, distribution
matches the analytical C, distribution at N' = 90 giving a lift coefficient ¢; = 0.6298.
From the above discussion the following conclusions can be drawn:

e It is recommended to use the first type of panelling.

e Using the uniform vortex distribution with the second way of applying the Kutta condition, the
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lift coefficient is achieved with higher accuracy at less number of panels than using the linear
vortex distribution with the fourth way of applying the Kutta condition, however, utilizing the
fourth way of applying the Kutta condition always ensures an equality of C}, values at the upper
and lower surfaces exactly at the trailing edge of the airfoil.

e For the first case of study of the finite trailing edge, by positioning the control points exactly
at the airfoil surface, with utilizing the linear vortex distribution, a stagnation point at the
trailing edge of the airfoil is achieved and the number of panels corresponding to high accuracy
is minimized.

For the second case of study which is an airfoil of a cusped trailing edge, with positioning the
control points exactly at the airfoil surface, with utilizing the linear vortex distribution, no
progress is achieved in minimizing the number of panels, however, the contrary situation occurs,



On numerical solution of panel methods 19

in which the number of panels is so increased that the numerical and analytical C, distributions
are consistent.

e In conclusion, the computational model will be efficient and the problems can be avoided, if the
type of the vortex distribution, the type of panelling, the way of applying the Kutta condition,
and the way of positioning the control points are suitably chosen.
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