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In this paper we discuss the use of the singularity subtraction technique incorporated with the Tau Method
for the numerical solution of singular partial differential equations which are relevant to the linear elastic
fracture mechanics. To treat the singularity, we apply the singularity subtraction technique to the singular
boundary value problems. The problems arising in this application are not in the standard form required
by the Tau software. By introducing the pseudo-differential equations, Ar =0, k=1(1)m, to determine
the stress intensity and higher order factors A results in the standard boundary value problems. We
consider two model crack problems including Motz’ anti-plane crack problem and a plane strain problem
defined by the biharmonic equation. We obtain results of considerable accuracy which compare favorably
with those published in the recent literature.

1. INTRODUCTION

In 1981, Ortiz and Samara [13] proposed an operational technique for the numerical solution of
ordinary differential equation with some supplementary (initial, boundary or mixed) conditions
based on the Tau Method [5]. This technique has been extended by Ortiz and Samara [14] for
the approximate solution of partial differential equations with bivariate polynomial or rational
polynomial coefficients. The application of this technique to nonlinear partial differential equations
and partial differential eigenvalue problems has been discussed by Ortiz and Pun (12], Liu, Ortiz
and Pun [10] and Liu and Ortiz [9]. The basic idea of their method is the determination of the
coefficients of the Tau approximants which represents the polynomial approximation to the solution
of the problem.

It is well known that elliptic boundary value problems with boundary singularities are norto-
riously difficult to treat numerically, as standard numerical methods lose accuracy in the vicinity
of the singular point. In order to solve such problems precisely, numerical analysts naturally seek
a combination of different methods. Some efficient methods for singular boundary value problems
are the conformal transformation methods of Whiteman and Papamichael [21] and Rosser and
Papamichael [16], the combined method of singularity subtraction and boundary integral equation
methods of Symm [19] and Xanthis et al. [23], the conforming local mesh refinement finite element
technique of Schiff et al. [17], the penalty-combined approaches to the Ritz-Galerkin and finite
element methods of Li [6], and the combined method of singularity subtraction and finite difference
methods of Liu et al. [7]. In this paper we discuss the use of the singularity subtraction technique in-
corporated with the operational approach to the Tau Method for the numerical solution of singular
boundary value problems which are relevant to the linear elastic fracture mechanics. Our technique
for determining the stress intensity and higher order factors is described and successfully applied
to two model crack problems (mode I and III). In this method the stress intensity and higher
order factors appear as some of the unknown parameters in the resulting system of linear algebraic
equations, which is a most welcome feature since it avoids the uncertainties associated with the
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commonly employed J-integral [15] and displacement- or stress-extrapolation techniques [3]. We
show that our numerical results compare favourably with the most accurate ones reported in the
recent literature.

2. LANCZO0S’ TAU METHOD

The Tau Method was first conceived by C. Lanczos in 1938 to construct polynomial approximations
to the solution y(z) of a given problem involving an ordinary differential equation of the form

Dy(z) = f(z), a<z<b (1)
with
(lryy) = 0r, =11y, ()
where
v Bi 4
D= ;gpijaﬂ@ €D,

the class of linear ordinary differential operators of order v with polynomial coefficients. Let I,,r =
1(1)v be point evaluation functionals acting on v-differentiable functions defined on an interval
[a,b], and let (I,,y) = or,7 = 1(1)v, stand for the supplementary (initial, boundary or mixed)
conditions of the given problem.

The basic idea of the Tau Method for problem (1)-(2) is essentially as follows. Assume that
the approximate solution of problem (1)—(2) to be an n-th degree polynomial, y,(z) := 3% a;z?,
then substitute it into the differential equation (1) and the conditions (2) giving an overdetermined
system of linear algebraic equations for the n + 1 unknown coefficients a;. A perturbation term
Hp(z) € Pp(n) is added to the right-hand-side of equation (1). The integer B(n) < n + h, where h
is the height of D and is defined by h := max(6; — 1).

With problem (1)-(2) we associate the perturbed problem (the Tau problem)

Dyn(z) = f(z) + Hn(z), a<z<b (3)
with
(lmyn) =0r, T = 1(1)’/’ (4)

where Hp(z) is usually chosen to be a linear combination of the shifted Chebyshev or Legendre
polynomials with v + s free parameters 7; which are to be determined in such a way that Tau
approximant y,(z), is the exact polynomial solution of problem (3)—(4).

3. ORTIZ AND SAMARA’S OPERATIONAL APPROACH TO THE TAU METHOD

This approach is based on the systematic use of two simple and sparse matrices

B = ((,u'lj)) and 7n:= (("711)) for 4,7=1,2,3,...

where p;; = 0iq1,5, Mij = Jdij+1 with d;; as the Kronecker delta. The key point is that it makes
it possible to transform problem (1)-(2) into an algebraic one. For simplicity, we let

an(:z:)=a0+a1m+a2x2+---+anm"=&n-m,

with @, = (ag,a1,4as,...,0,,0,0,...) and = (1,z,22,...,z",...)T. Then

zan(z) = apz + a1z + agzd + - + apz™t! = Gppax
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and
d 2 n—1 ~
—an(z) = a1 + 2a2z + 3a3z” + - -+ + Nz = @pne.

dz

The product 'y will transform the coefficients of a,(z) in the same way as operating z’ dl::f on it.
Thus, any linear ordinary differential operator D € D, as before defined by (1), can be expressed
as a linear combination of '’ with coefficients p;;. We recall the following result from Ortiz and

Samara [13]:

Theorem 1. Let a,(z) = @, -« € C“)[a,b] and D as before defined by (1). Then

v PBi i
Dan(z) = (Z > pija’ %) an(2) = Gnllz, (5)

i=0 j=0
where
v B o
=) > pim'’
i=0 j=0

is a matrix uniquely associated with D in the z-basis.

Liu and Ortiz [8] remarked that the matrix v() corresponding to iz’ % is one with a simple
structure:

oW : 0

() = b (6)
[s) i K@)
where 00 is an i x j zero matrix and K@) js a diagonal matrix with diagonal elements

G) _ E+k=1)!
Ky’ =~ =1 P>

Therefore, IT is constructed in the computer as a result of the superposition of a suitable number
of matrices of type (6). Suppose we choose v = (vg(z),v1(z),v2(x),...)T = V& as the polynomial
basis (Chebyshev or Legendre polynomial basis), where V' is the matrix of coefficients of polynomial
basis.

Let

ke N ={1,23,...}.

a-v

y(z) = apuo(z) + a1v1(z) + agva(z) + - -
and let

f (@) = fovo(2) + frvi(@) + fava(z) + - + fm¥m(z) = f - v,
where & = (ao,a1,02,...) and f = (fo, f1, f2,. .., fm,0,0,...). Then from (1) and (5), we have

all = f, (7)
where IT = VIIV L. Again from (2), we have

aB =4, (8)
where & = (01,09,...,0,), and the ij-element of matrix B = ((b;;)) is given by

bij = (ljav’i--l)’ fO]’.' 7= 1,2,3, ceey ] = 1(1)1/
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Combining the two systems (7) and (8), we have
aG = 3, (9)

where G = (B | II) and 3 = (5 | f).

We assume that the Tau degree n > v + h, and write G,,, for the restriction of G to its first
n+1 rows and n + 1 columns, and &j, for the restriction of & to its first n + 1 components. We call
yn(T) = @y, - v, the Tau approximant of degree n of problem (1)—(2) in the sense of the operational
approach to the Tau Method if &y, is the solution of the system of linear equations

&nGnn = 8n .
The same technique has been extended by Ortiz and Samara [14] to linear partial differential
equations defined on a rectangular domain. We give now a brief account of the two dimensional
formulation of the Tau Method, more details can be found in [14].

The effect of

or+s

2 oz 0y

on a bivariate polynomial

ZZa iyl = 2T Ay, (10)

i=] 4=

where
A= ((a;5)), ==(l,2,2%..)7, y=(01,9,9%..)7

is the same as that of applying to the coefficient matrix A the transformation of the form
(n"u™T A(n*u").
Let £ be the class of linear partial differential operators ID with bivariate polynomial coefficients

+s

Vg
55525 S

where Z stands for a finite sum. Then, the effect of an operator ID € £ on the bivariate polynomial

k
a(z,y) is given by

Da(z,y) (Ex Z Z szjrs TA(") IJ'J)> (11)

Let u = Uz, v = Vy be two polynomial basis defined by lower triangular matrices U and V
respectively. Then

a(z,y) = 2T Ay = uT Bv = b(u,v),

where B = (UT)"! AV ! is the expansion of (10) in the basis {u,v}. From (11), we have
Da(z,y) = Db(u,v) = uTd(B)v,

where

d(B) = ZpijrsairTB,Bjs )

ijrs

a;; = Un"piU™! and Bj; = Vn'u/ VL
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The supplementary conditions can be treated in the same way and if we assume that the given
differential equation is defined over a rectangular domain with sides parallel to the coordinate axes,
then the conditions will depend on only one variable:

[ : or+s
ija(z,y) = _; QirsT W] a(z,y) |y=!/j_ fJ(m)

. aS+T
Diya(z,y) = Zhjsry’W a(2,Y) |p=q,= 9i()

| jsT

and the effect of these supplementary conditions on a(z,y) is given by
Dgja(z,y) = u” R;(B)

and
Diya(z,y) = Li(B)v

where

Ri(B) = Y qirs(Un"w'U )T BVR'y;

irs
Li(B) =Y hju(Un"z)" BVn*W/ V1.
jrs
4. THE SINGULARITY SUBTRACTION TECHNIQUE FOR THE MODEL PROBLEMS
4.1. The Motz problem
We first consider the Motz problem requires the solution of the Laplace equation
V24 =0 (12)

in a square region BCEF containing a slit (crack) OA as shown in Fig. 1, in which for convenience
in subsequent comparisons of numerical results we take the dimensions of BC=CE=EF=14 units,
OA=0G=AB=FG=T units and the boundary conditions are ¢ = 1000 on AB, ¢ = 0 on FG, and

C B
P(r, 0)
e i
D
(0]
E F

Fig. 1. Square region BCEF with a slit OA
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g% = 0 on the rest of the boundary including the slit, where 567—1 is the derivative in the direction of
the outward normal to the boundary.
By taking account of the anti-symmetry of the function ¢ — 500 about the line AOD, the Motz

problem is reduced to the problem:

V. = .1 in Q:=(-7<z<7 0<y<7),
¢ = 1000 on:z=7"0<y<T,
¢ = 500 on —-7<z<L0, y=0, (13)
%g = 0 on other boundary segments of 9f2;.
The analytic series solution is well known (see Motz [11]) to be
0
¢(r,0) = 500 + Z )\krk_% cos (k - %) 0, (r,0) € Q1 + 0N (14)

k=1

where (r,0) are local polar coordinates centred at O, and Aj, Ag, A3, ... are unknown parameters to
be determined. We put

4 1 1
g == Z M2 cos(k — =),

k=1 2
and define
¢:=¢—¢* (15)

as an m times continuously differentiable function on the domain ;. The function ¢ satisfies the
Laplace equation since both the solution ¢ and the functions rk=3 cos(k — %)0 are harmonic. Then,
the problem (13) becomes

V2$ = .. {0 in Ql,
e il 1
¢+Z)\kr'7cos(k———)0 = 1000 on z=7 0<y<T,

k=1 2 i
¢ = 500 on -7<z<0, y=0,

a—z) =0 on 0<z<7, y=0,
35 =L (16)
ay+2>\17‘ 2 sin
= 3
—ZAk(k———)rk_fsm(k———)e =0 on -7<z<T7 y=1,
k=2
o 1. _1
—3—.r—+§)\17: 2cos§ 1 3
—Z)\k(k——>rk_%cos<k——)9 =5 10 on z=-7 0<y<T.
k=2 2 2

After subtracting off the singularity, some trigonometrical terms with unknown coefficients
A1, A2,...,Am are introduced into the transformed problem (16). In order to solve the problem
by the Tau Method, we have to approximate the trigonometrical terms by polynomials. Since the
trigonometrical terms are all evaluated at a particular line, so the z-coordinates are fixed and the
terms can be written as a function of y only. This is done by setting up an initial value problem
(IVP) with the trigonometrical term as the analytical solution, and then solve the IVP with the Tau
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Method to obtain a polynomial approximation to the solution of the IVP. From the above trans-
formation of the Motz problem, we have led to the following non-standard problem, in which the
boundary conditions contain the unknown parameters Ag,k = 1(1)m. By introducing the pseudo-
differential equations,

N, =0, k=1(1)m, (17)

to let the number of differential equations match with the number of unknown functions. Ascher
and Russell [1] have discussed and successfully applied this technique to the numerical solution of
ordinary differential eigenvalue problems. By examining the analytical solution

— = 1
$(r,0) =500+ > Aer®=% cos (k - —) 6
2
k=m+1

in the neighbourhood of the singular point O, we introduce m conditions to compensate the system
for which the differential equations (17) being supplemented. The unknown parameters \; will be
determined automatically by solving the well-posed problem with the Tau Method described in
Section 3.

4.2. Biharmonic-type problem

The second example considered is a model problem of a rectangular plate in a plane strain situation.
The dimensions of the plate are 2b units long and 2a units width. The plate contains a crack of
length @ units which is subjected to an uniform normal stress o, perpendicular to the crack direction,
acts over the two edges of the plate, as shown in Fig. 2.

In terms of the Airy stress function 1 (z,y), the model problem is described as (see Williams [22]
and Gross et al. [4])

Viy = 0 in Q:=(-a<z<a -b<y<b),
P =0, _8_1#_ = 0 on —a<z<0, y=0,
9y
o
P =0, il 0 on z=-—a, 0<y<b, (18)
z? a? oY
P a(2+ax+2>, By 0 on —a<z<a, y=b,
¢=2aa2, —g;f— = 20a on z=a, 0<y<hb.

Because of symmetry of the Airy stress function 1 (z,y) with respect to the crack line OA as shown
in Fig. 2, only the upper half of the domain 22 need be considered.
The infinite series solution of stress function was given by Williams [22] as follows:

W(r,0) = 5~ {15yt (253 s (k4 L) 0= cos (k= 2) 0
(r,0) ’;{( )" dok—1 [2k+1C°S< 2) COS( 2)]
+ (=1)*dggr**1 [cos(k + 1)8 — cos(k — 1)8] } : (19)

where (r,0) are local polar coordinates about the singular point O and the {d;} are unknown
coefficients to be determined. It has been shown in [4] that the opening mode stress intensity factor
K| is related to the first coefficient d; of the Williams stress function (19) by the formula

K; = —(21)%d,. (20)
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-

W o o

Again, we put
m
* _ _1\k-1 k+i [2k—3 ( l) = (_.%)]
P _k§=l{( 1)* " dog_17 2[2k+lcos k+2 0 —cos |k 5 0

+ (——1)’°d2krk+l[cos(k +1)0 — cos(k — 1)0]} , (21)

and define 9 := 1) — 9* as an m + 1 times continuously differentiable function on the domain
OABCDO in Fig. 2. Then, the problem (18) becomes

V.= 0 in Q3:=(-a<z<a 0<y<bh),
P+ * =0, %}@L+3(9«/;1* = [) on —a<z<0, y=0,
P +9* =0, %gJ’aaﬁ* = 0 on z=-a, 0<y<b, (22)
-¢-+¢*:a<%i+ax+a2—2), %5——+661/;* =0 on —a<z<a, y=b,
¥ +* = 20a?, %+a§[: = 200 on z=a, 0<y<hb,
where
%ﬁ* = g‘l {(—1)’°—1d2k_1r’°-% [(k — g) cos (k - %) 0~ (k + %) cos (k - g) 0
+ 2sinfsin (k - g) o] + (=1)F*12kdyr* sin(k — 1)9sin0}
and
a;z* = i {(—l)k"ldzk_lrk_% [- (k - —g—) sin (k — %) 0— (k + %) sin € cos <k - g—) 0

k=1
+ (k—g) cos fsin (k—-;—) 9] + (=1)*dgr*[— (k+1) sin k6 + k sin(k—2)6 — sin kH]} .
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From the above formulation of singularity subtraction, unknown parameters {d;} are introduced
in the boundary conditions. Therefore, in order that the transformed problem (22) is solvable, extra
pseudo-differential equations, d; = 0,7 = 1(1)2m with 2m conditions have to be added into problem
(22). The additional conditions may be obtained by examining the function ¢* defined by (21) in
the vicinity of the crack tip O. The resulting boundary value problem is solved by the Tau Method.
The Tau approximations to 9 and d;,i = 1(1)2m, are obtained directly from the computer output.

5. NUMERICAL RESULTS FOR THE MODEL PROBLEMS

The singularity subtraction technique incorporated with the Tau Method described in Section 3,
were used to compute the stress intensity factors of the two model crack problems given in Section 4.
All computations were performed on a SUN SPARC 10 machine at City University of Hong Kong
using Tau software program written in MATLAB and double precision arithmetic with 16 significant
digits. The Motz problem has been considered by Rosser and Papamichael [16], Xanthis et al. [23],
Li [6] and Liu et al. (7], using the different combination of numerical methods. In Table 1 we report
our numerical results of using m = 1(2)5 terms subtraction with Tau degree, n = 14 to approximate
the stress intensity and higher order factors. We also report those results given by the authors of
the reference papers.

Table 1. Estimation of the SIFs of Motz’ problem

Techniques used A1 A2 A3 A4 A5
Singularity Subtraction

Technique plus the Tau Method

m=1 151.41

m=3 151.62523 4.73315 13334

m=35 151.6251554 | 4.732974 132964 —.0088943 .0002264
Rosser and Papamichel’s 151.6251553 | 4.732975 .132966 —.0088940 —
result [16]

Xanthis, Bernal and Atkinson’s 151.63 4.73 133 —.009 .0002
results [23]

s 4079.'9'89 87_}(13.5563 177.3145 —8.2‘15435 1.38‘054
Li's zeeuls, [6} ~151.560 | ~4733 | ~.134 | ~-.0094 | =~ .00026
Liu, Lee and Pan’s result (7] 151.634 4.729 134 —.009 .0002

Table 2. SIF results for opening mode crack problem
Techniques used d; dy K Ky
Singularity Subtraction —1.2654 —0.0980 3.1719 2.8295
Technique plus the Tau Method
with n = 13
Bernal and Whiteman [2], -1.279 — 1.279v2m ~ 3.206 | 1.279/5 ~ 2.860
Motz’ Technique with 10 near
points
Whiteman [20], Collocation —1.2651 — 1.2651v27 ~ 3.1711 | 1.2651/5 ~ 2.8288
plus Linear Programming
Sinclair and Mullan [18], Finite —%‘53 ~ —1.28 e 2.86v/0.4m =~ 3.21 2.86
Element Method
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All the computations of problem (18) have been carried out with a=0.4, b=0.7 and o = 1. This
model problem has been treated using Motz’ technique [11] by Bernal and Whiteman [2], and using
the combined method of collocatlon and linear programming by Whiteman [20]. The approximate

values of dj,ds, Ki(= (27r)2d1) Ki(= a——ja) computed by the method described in Sections 3

and 4 with Tau degree, n = 13, are displayed in Table 2 in conjunction with the corresponding
values reported in [2], [18] and [20].

REFERENCES

[1] U. Ascher, R.D. Russell. Reformulation of boundary value problems into standard form. SIAM Review, 23:
238-254, 1981.

[2] M.J.M. Bernal, J.R. Whiteman. Numerical treatment of biharmonic boundary value problems with re-entrant
boundaries. Comp. J., 13: 87-91, 1970.

(3] S.K. Chan, L.S. Tuba, W.K. Wilson. On the finite element method in linear fracture mechanics. Engng. Fracture
Mech., 2: 1-17, 1970.

[4] B. Gross, J.E. Srawley, W.F. Brown Jr. Stress-intensity factors for a single-edge-notch tension specimen by’
boundary collocation of a stress function. Technical Note D-2395, N.A.S.A., Washington, D.C., 1964.

[5] C. Lanczos. Trigonometric interpolation of empirical and analytical functions. J. Math. Phys., 17: 123-199,
1938.

[6] Z.C. Li. Penalty-combined approaches to the Ritz-Galerkin and finite element methods for singularity problems
of elliptic equations. Numerical Methods for Partial Differential Equations, 8: 33-57, 1992.

[7] K. M. Liu, K.M. Lee, C.K. Pan. Numerical techniques for determining stress intensity and higher order factors
using the finite difference methods. In: S.N. Atluri, G. Yagawa, T.A. Cruse, eds., C’omputational Mechanics,
Springer, 2: 2123-2128, 1995.

[8] K.M. Liu, E.L. Ortiz. Approximation of eigenvalues defined by ordinary differential equatlons with the Tau
Method. In: B. Kagstrom, A. Ruhe, eds., Matriz Pencils, 90-102. Springer-Verlag, Berlin, 1983.

[9] K.M. Liu, E.L. Ortiz. Numerical solution of eigenvalue problems for partial differential equations with the
Tau-Lines Method. Comput. Math. Applic., 12B: 1153-1168, 1986.

[10] K.M. Liu, E.L. Ortiz, K.S. Pun. Numerical solution of Steklov’s partial differential equation eigenvalue problem
with the Tau Method. In: J.J.H. Miller, ed., Computational and Asymptotic Methods for Boundary and Interior
Layers (III), 244-249. Boole Press, Dublin, 1984.

[11] H. Motz. The treatment of singularities of partial differential equations by relaxation methods. Quart. Appl.
Maths., 4: 371-377, 1946.

[12] E.L. Ortiz, K.S. Pun. A bi-dimensional Tau-elements method for the numerical solution of nonlinear partial
differential equations with an application to Burgers’ equation. Comput. Math. Applic., 12B: 1225-1240, 1986.

[13] E.L. Ortiz, H. Samara. An operational approach to the Tau method for the numerical solution of nonlinear
differential equations. Computing, 27: 15-25, 1981.

[14] E.L. Ortiz, H. Samara. Numerical solution of partial differential equations with variable coefficients with an
operational approach to the Tau method. Comput. Math. Applic., 10: 5-13, 1984.

[15] J.R. Rice. A path independent integral and the approximate analysis of strain concentration by notches and
cracks. J. Appl. Mech., 35: 379-386, 1968.

[16] J.B. Rosser, N. Papamichael. A power series solution of a harmonic mixed boundary value problem. MRC
Technical Summary Report, No. 1405, 1975.

[17] B. Schiff, D. Fishelov, J.R. Whiteman. Determination of a stress intensity factor using local mesh refinement. In:
J.R. Whiteman, ed., The Mathematics of Finite Elements and Applications III, 55-64. Academic Press, London,
1979.

[18] G.B. Sinclair, D. Mullan. A simple yet accurate finite element procedure for computing stress intensity factors.
Int. J. Num. Meth. Engrg., 18: 1587-1600, 1982.

[19] G.T. Symm. Treatment of singularities in the solution of Laplace’s equation by an integral equation method.
National Physical Laboratory Report NAC 31, 1973.

[20] J.R. Whiteman. Numerical treatment of a problem from linear fracture mechanics. In: D.R.J. Owen, A.R.
Luxmoore, eds., Numerical Methods in Fracture Mechanics, 128-136, 1978.

[21] J.R. Whiteman, N. Papamichael. Treatment of harmonic mixed boundary problems by conformal transformation
methods. ZAMP, 23: 655-664, 1972.

[22] M.L. Williams. Stress singularities resulting from various boundary conditions in angular corners of plates in
extension. J. Appl. Mech., 24: 526-528, 1952.

[23] L.S. Xanthis, M.J.M. Bernal, C. Atkinson. The treatment of singularities in the calculation of stress intensity
factors using the boundary integral equation method. Comput. Meth. Appl. Mech. Engrg., 26: 285-304, 1981.



