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D-adaptive model for the elasticity problem
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The paper presents some aspects of the formulation and numerical implementation of combined mathe-
matical model “elastic body — Timoshenko plate”. The variational problem is formulated. The existence
of solution of combined model is considered. The numerical investigation of the problem is performed
by coupling Direct Boundary Element and Finite Element Methods. Numerical example is presented
supporting the analysis.

In spite of impressive imagination of professionals and progress in computer technology effective
solution of many problems, which is based on general 3-D models, remains still problematic. There-
fore, a good deal of current research is dedicated to the problem of construction of mathematical
models of different dimension for solution of mechanical problems.

The most common approaches for solution of such problems are: use of the asymptotic method
[1, 2], construction of special boundary conditions [4, 10], design of special transition elements [13].

In this paper like in [9-11], the mathematical models of an elastic body is formulated by com-
bining the equations of the theory of elasticity and Timoshenko’s plates theory. Such models are
called combined [7] or D-adaptive models [12]. They are convenient in numerical computer methods
such as finite element method [10] or coupling boundary and finite element methods [11], which is
used in paper.

1. STATEMENT OF THE PROBLEM
Assume that the elastic continuum occupies the domain Q@ = Q; UQ5, Q; N Q%5 = 0, (Fig. 1) where

01, Q% arbitrary, connected sets of Euclidean space R3.
We shall assume that the domain $2; is bounded by a Lipschitz boundary I';, and the domain

Q

Fig. 1. The domain of D-adaptive model for the theory of elasticity
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{23 is bounded by two parallel planes and a cylindrical side surface perpendicular to these planes.
The distance between the planes is h. (Here and in the rest of the paper the terms “plane” and
“surface” mean simple parts of planes and surfaces.)

Let us assume that the size h of the domain 3, is much smaller than other characteristic
dimensions of 23 in the sense of the paper [15]. The middle plane Q; is between the parallel planes
and it is equidistant from them. The cylindrical side surface intersects the plane 5 along the line
I'y, that is I'; is the boundary of the plane domain 5

Ly =T urPurd, riPnr@nrd =y,

where I‘S;), ng), I‘g"), — piecewise smooth curves. Let 21, 22, 23 be the Cartesian coordinates system
of the elastic body, 7i1, 72, 73— are an orthogonal right triple of unit-length vectors defined on I'; ,
where 713 is the outer normal to I'y . Let a1, a2, a3 be the Cartesian coordinate system on the middle
surface (the direction of a3 coincides with the normal to the middle plane). Let £;,; be a pair of
orthogonal unit vectors on I'; where #; is the outer normal to the boundary, #, — the tangent
vector corresponding to the positive direction along the curve I's.

Assume that the part of the boundary I"§3) is common to both domains  and Q3

3 1 h h
F(1)=I‘g)x [—5,5]

and the following hold
{1=—T_L3, tg = —1ny.

Let us describe the stress-strain state of the elastic body which occupies the domain ©; by the
differential equations of linear elasticity theory [15] (summing over repeating indices)

Joj
oz;
and the equations of Timoshenko’s plate theory [15]

+fi=0, ,7=1,2,3 Q. CR’, (1)
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Here, o;; are the components of the stress tensor; f; — the components of the vector of body forces;
Ty, — the forces, My; — the moments, Q; — the transverse forces arising in the plate; p;, m; —
the surface loads reduced to the middle plane of the plate.

It is known [15] that

pi =0k 405+ pi i=123,
(3)

h e
mg = '2_(01‘:3 . ak3) + Kk, k=12,

where cr;f;, 0;3 are the components of the vector of surface loading on the surfaces of the plate
o; = :I:% , respectively in the o; coordinates; p;, ux — the components of the plate body forces and
moments reduced to the middle surface which are evaluated by formulas

h/2 h/2

pi = / gidaz,  pp= / gr az das; (4)
—h/2 —h/2
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g; — the components of the body force vector in the coordinate system co; on the middle surface
of the plate.

In linear elasticity theory the components of the stress tensor are expressed in terms of the
components of the strain tensor ex; by the physical law

Oij = C‘ijkl Ckl, i, 5,k 0 =1,2,3, (5)

where Cjji; — elastic constants; the nonzeros among them for the case of isotropic homogeneous
body are

sty )
il | = A+v)1-2v)’
Ev
Ciikk = Aro)i=m) (6)
E

Cikik = Z)k =1,2,3; 1 # k.

2(1+v)
Here E — Young modulus, v — Poisson ratio of the elastic body.

The forces and moments acting in plate are also expressed in terms of deformation characteristics
€ij and k;; by means of the relations of the physical law of Timoshenko’s plate theory
-V

0|
Tk = B(exr + veu), Tu = BTGH, Qk = Gexs,

1-v (7

My = D(kkk + vEu), My =D Kkl k,l=1,2k #1.

Note that we do not sum over k, [ in (7). Here constants B, D, G (in the case of isotropic material)
are given by

Eh Eh3 S5Eh(1+v)
Bir 1o D‘Iﬂl-ﬂy G5y ot (8)
Let u; (i = 1,2,3) be the components of the displacement vector of the elastic body in z1, s, z3

coordinate system; v; — displacements of the points of the middle surface in the direction of axes o;

(1=1,2,3) and -y, (I = 1,2) — rotation angles of the normal to the middle surface in the direction

of axes ;. The following Cauchy relations hold

1 [0u; Ouj Y .
QJ_E(BE_*_B.’E,')’ 4, =1,2,3, (9)
_1 (% 1 @) = O
ekl b 2 30[1 aak I 6]03 - aak 'Yk)
=1 (21 22) 10
" p. aa[ 6ak '

To the equations (1), (2) we add boundary conditions and conditions of continuity of the medium
and equilibrium of the body and the plate. Boundary conditions on the boundary of Q; :

uni =0, =123 zel{, (11)
Onims =0, i=1,2,3, zel®, (12)
where

Uni = UkNik, Oni,;nd = Okl Nik N3l, k,l1=1,2,3,
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nij = cos (nj, ;) — direction cosines of the triple 7i; . Boundary conditions on the boundary of Qs :

v =0, v3=0, =0, k=12 eV, (13)

Tuu=0, Qu=0, Myy=0, i=1, k=12 =zeT®, (14)
Here

Vik = Uitkl, Yk = Ntkl, 1=1,2

Tk = Tijtitiy Mk = Mij trityj, 1, =12,

where ty; — the direction cosines of the vectors ¢ in the coordinate system a : tx; = cos (t, ;).
Conditions of continuity of the medium and equilibrium of the body and plate on

P§3> = r§3) X [—E X ﬁ]

2 2
are
Un, = —(v2 + a372), Uny = U3, Ung = —(v1 + a3m1), (15)
and
h h h
2 2 2
Onsng da3 = Ttltl ) Oning da3 = Tt2t1 ) Onang da3 = _Qh )
_h _h _h
2 2 2
2 A (16)
2 2
/ Onznz 3 da3 = Mtltl ) Onin3 03 da3 = Mt1t2 .

|
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Thus, the D-adaptive mathematical model of the elastic body and the Timoshenko’s plate in terms
of displacements and rotation angles that describes the stress-strain state of the system made up
of a massive and thin-layer element, is made up of the equilibrium equations (1), (2) written in
terms of unknowns u;,v;, 1 = 1,2,3 and v, k = 1,2 by means of formulas (5), (7), (9), (10). These
equations form a closed system by means of relations (15), (16) and boundary conditions (11)-(14).

2. VARIATIONAL STATEMENT OF THE PROBLEM
Let us write the BVP described in Section 1 using operator notation as

AZ=f, feH (17)
where

H = (L2 ()] x [L2 (22))°,

Z = (ulv U2, U3, V1, V2, V3, Y1, Y2, V3 )T’

+ + + h . h %

f =(h, fa, f3, o3 +p1, 033+ p2, 033+ p3, 5013"'#1, 5023“‘#2 .
The operator of the problem (17) is defined on

Da={w,vim: t=1L23 k=12

3
e (W@ we WP we [WP@)];
conditions (11), (15)}.
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Let us define a scalar product of the vector functions over the lineal D 4 as
(u,0) = /uiﬁi ay + /(uiﬁi + Yek) dQ2 .
Q1 Q2
The following lemma holds.
Lemma. The operator of the problem (17) is symmetrical in the space H.
Proof. Note that since C’((,°°) C D4 the lineal D4 is a dense set in the space H [8].

Consider the bilinear form (A Z, Z) where Z, Z are arbitrary elements of D 4. Applying the
Ostrogradsky formula and accounting for the boundary conditions (11)-(14) we will obtain after
simple but unwieldy transformations

(AZ, Z) = /Uij(u1,u2,u3)eij(ﬁl,ﬂz,ﬂa)d91
131

+ /[Tkl('UhUZ) ext (01, 92) + Qr(v3, 71, 72) €k3(03, 41, 52) + Myt (71,72) £r1 (51, 72)] A2

Q2
~ [ Gnma nd = [ (T 90, = M 30) T, i,j=1,23 kl=12
r® r®

Note that the sum of the last two integrals in the previous formula is equal to zero according to
(15), (16).

Let us express stresses, forces and moments in terms of strains in the previous formula using
(15), (17). We will obtain

(A Z, Z) == /Cijmn emn éij dQl
1931

o+ / [B (exk+ven)éxk + B2 erér + Geraérs + D(kre+ven)irk + D “T"ﬂsz%t] dQs,
92}

(18)
where i,j,m,n = 1,2,3; k,l = 1,2; k # l; &, €, €3, Rpx — deformations characteristics of
which are based on functions from Z.

Taking into account the symmetry of the matrix Cijms it is clear that the expression (18) is
symmetrical with respect to functions Z, 7. Hence,

(AZ, Z)=(2Z, A Z).

Theorem 1. The operator of problem (17) is positive.

Proof. In view of the lemma it is sufficient to show that (A Z, Z) > 0, and if (A Z, Z) = 0 then
Z=0.

Using (18) we write the expression for (A Z, Z). It is known in the theory of elasticity that the
integrand of the first integral is a positive definite quadratic form of the strain tensor components
(it can be verified by direct calculations in the case of an isotropic material). The integrand of
the second integral in the formula for (A Z, Z) is also a positive definite quadratic form of the
plate deformations characteristics (it can be verified by simple calculations). Thus we can write the
inequality

(AZ, Z)>0.



70 Y.H. Savula and L.I. Dyyak

Next, if (A Z, Z) = 0, then each addend must necessarily be zero, because (A Z, Z) is a sum of
positive definite quadratic forms of the deformations of the body and plate. Besides, they will equal
zero too. Then functions w;,v;,1=1,2,3; 7, k = 1,2 are constants. But taking into account the
boundary conditions (11) and (13) we obtain Z = 0.

Uniqueness of the weak solution of the problem (17) and possibility to give its variational
statement as the problem of minimization of quadratic functional follow from the proved theorem.
To write this functional let us introduce spaces

U= {uuzus: w€WP(@), ui=0 on IV}

V = {v,v2,v3,71,72: i, € ng)(ﬂz), vi=0, % =0 on Fé"};

Y = {U XV i up =—(va+azy), un, =3, un, = —(v1 + azy1), (19)

— —— p— :

According to the energy functional theorem the problem (17) is equivalent to functional mini-
mization problem [8]

F(Z) = /Uz‘j eij Ay + /(Tkl €kl + Qk €x3 + My Kir) dQo
(91 Q2

= Z/fiui dQ; — 2/(Pivz' + mryi) dQg, LEY, (20)
Ql Q2

where 4,5 = 1,2,3; k,I =1,2; p;,my — are given by formulas (3), where we set o;; = 0. Note
that conditions (12), (14) and (16) are natural for the given functional.

3. EXISTENCE OF THE SOLUTION

It is well known (8] that the generalized solution of (17) exists provided A is a positive definite
operator. Thus, the following theorem answers the question of existence of the generalized solution

of (17).
Theorem 2. The operator of problem (17) is positive definite.

Proof. In order to estimate from below the bilinear form (18) we will use positive definiteness of the
bilinear form of displacement functions corresponding to the first integral [8], positive definiteness
of the bilinear form of the deformations characteristics of the plate, Korn’s inequality for both
deformations characteristics ek, kki , k,! = 1,2, and inequalities

25ve > —(Av§ + /\iky,f), Vg0, k=15 (21)
and also the Friedrichs’ inequality [8]. We will obtain
(AZ, Z)>CP|Z|? (22)
where
Ci€R,C, >0,
1Z]1? = /uiui dQ, +/(vivi+7k7k)d92, i=1,23, k=1,2
oY Q2

The last inequality means that the operator of (17) is positive definite.

Thus, the problem (17) has a unique solution Z € Y.
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4. NUMERICAL IMPLEMENTATION

For numerical implementation of the D-adaptive model we will use a hybrid method based on
simultaneous use of the direct boundary element method (DBEM) for the problem of the theory
of elasticity and finite element method (FEM) for the problem of Timoshenko plate theory.

The employment of such method enables the use of approximations of the same order in the
whole domain.

A numerical solution of the problem of elasticity theory (1) in ; is constructed by means of the
DBEM using Galerkin method. Unknown displacements and surface forces as well as the domain
boundary are approximated by quadratic “bubble” functions [14]. The values of displacements and
forces on the boundary can be obtained from the system of linear algebraic equations that can be
written as

A Ay x| _|b
g

where x; is a vector of unknown boundary terms on the boundary Ql\I‘gs) and x, — unknown
boundary values on the interface boundary I‘(13).

The solution of the problem of Timoshenko plates theory is determined on the base of La-
grangian functional minimization using isoparametric quadratic approximations of displacements.

For determination of displacements and angles we obtain a system of linear algebraic equations
Ay Ax || W1 b
- 24
[ An A Ye 0 a4

where y; — unknown values of displacements inside the domain Q;\Fga), and y. — unknown

boundary values on the interface boundary Fﬁ"”.
Note that the matrix of this system as well as the matrix of (23) is rectangular. These equations
are added to by the relations on the interface boundary, which can be obtained from (15) and (16):

Xc=Sx*Yyc. (25)

The solution of the system of linear algebraic equations in case of large dimensions of matrices
can be a formidable task. First of all, this is due to the complexity of the matrix structure, which
is entailed by the presence of interface conditions (25) and principally different structures of the
boundary element and finite element matrices. Thus, the matrix arising from boundary element
approximations (23) is nonsymmetric and dense, while the matrix (24) — banded symmetric.

There are well-known some schemes for coupling BEM and FEM (3, 5]. Therefore to obtain the
solution we will employ the algorithm [10] which enables us to separate the process of solution of
(23) and (24). This algorithm is efficient when the number of points in interface boundary is not
large. To do so we use the following decomposition of the solutions

x=x"+Xl!c, 28
¥y + YA (26)

Here the entries with zero superscript correspond to the solutions of the problems with given
zero displacements on the interface boundary and a given loading, and the columns of matrices
X and YY — solutions of (23), (24) with given unit displacements in the j-th node on the
interface boundary and without external loading. The components of unknown vectors c,d can be
determined from (25). Note that in the case when there are three nodes of boundary element mesh
and one node of finite element mesh on the interface boundary, then: =1,...,6; 7 =1,2,3.
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5. EXAMPLE

Let us consider the plane strain problem of layer with piece-constant of thickness, cross-section of
which can be seen in Fig. 2. It is clamped on the left side and uniformly loaded by distributed
external pressure with intensity P. The geometrical and physical parameters are: a/l = b/l = 1/3,
Rl = 1/9;5c= 0.5h;: B[P =104, 1 =03.

The solution of the problem was obtained by proposed combined model based on the theory of
elasticity for the left side of construction and theory of Timoshenko’s plates for another one.

The quadratic approximations were used for the construction in FEM and DBEM for combined
model. The results based on theory of elasticity for 2-D model were obtained by FEM on a grid
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Fig. 2. Cross-section of body for the plane strain problem
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Fig. 3. The displacements of the middle of the construction obtained on the base of diffirent model and
algorithms
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Fig. 4. The stresses 0,/P on the upper surface of the construction

9x9 and 3x18 elements with 8 nodes and Timoshenko’s plates theory was obtained by FEM with
quadratic approximations of displacements and angles. Figures 3 and 4 represent deflections of
middle surface of construction and stresses on exterior surface of it, respectively. (For the results
it introduces the following notations: a curve with triangles represents results, which are obtained
by proposed schemes, a curve with circle section — the results, which are obtained by FEM for
Timoshenko’s plates theory; a curve with squares represents results, which are obtained by FEM
for the theory of elasticity.) The deflections calculated by means of combined and 2-D model yield
one curve in scales used in Fig. 3. Figure 4 shows coincidence of approximate solution for stresses
based on combined model with results from theory of elasticity in all points, except those in zone
of thickness’s drop.

Note, that only when parameter 0.5h < ¢ < 2h (length of zone of plate where the theory of
elasticity is used) the really stress-strain picture is obtained.

6. CONCLUSION

In conclusion we can say that the D-adaptive model together with coupled FEM ande BEM methods
is effective instrument for analyzing of boundary value problem of the theory of elasticity. Indeed,
they allow us to implement the intrinsic features of FEM and BEM in a very natural way.

We note also that it could be interesting to consider any other algorithms of coupling FEM and
BEM methods, in particular iterative ones.

One must be careful, however, because implementation of D-adaptive model imposes very rigid
conditions on the coupling boundary. It may cause local disturbing of stress—strain state.
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