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We discuss a global, iteration-free numerical scheme (based on the Piecewise Linear algorithm), with
special respect to the computation of elasto-plastic frames. The plastic deformations are concentrated in
plastic hinges which may appear at both ends of the bars, while the inner parts of the bars can have only
elastic deformations but without limation on their magnitude.

Our method is tested on a classical example and the results show very good match with those known
from the literature. We discuss advantages and disadvantages and point out other, related applications.

1. INTRODUCTION

In this paper we investigate the global behaviour of elasto-plastic frames, applying an iteration-free
path-following scheme which is based on the PL (Piecewise Linear) algorithm [1]. Our method for
elastic frames was introduced in two earlier papers [7, 8], here we merely outline the main concept
and then turn our attention to the extension of the method for the analysis of elasto-plastic frames.

As opposed to “local” (or, “approximate”) methods with built-in limitations, global numerical
techniques set the bold goal of following branches for arbitrary intervals, with arbitrary precision, or,
to find all solutions of an equation system in a given domain. In structural mechanics these equation
systems are often large and highly nonlinear. The reduction of the problem to an algebraic equation
system is non-trivial, either. This paper is restricted to the analysis of bar structures, where the
individual bars can be modeled by Boundary-Value Problems (BVPs) corresponding to (nonlinear)
Ordinary Differential Equations (ODEs). The bar structure is referred to as a frame. The material
behaviour along the bars is assumed to be elastic. At nodes (intersection of several bars, free
ends, location of concentrated loads) plastic behaviour will be also admitted. Traditional global
methods rely on iterative-incremental algorithms, hence problems with convergence often arise.
Our method, which we call the Path Following Simplex Method (PFSM) — not to be confused
with the famous algorithm in linear programming — is free of iteration and relies on an “organized”
shooting technique. The BVPs are converted into a parameter-dependent Initial-Value Problems
(IVPs), or, as input-output devices: the input data are the initial conditions, the output data are
the values of the same variables at the far end of the bar. Using any convergent integrator for
the IVP, the output is determined with arbitrary precision as a function of the input. Of course,
certain intial conditions are constant, fixed by the boundary conditions at the origin. We will call
the non-constant initial conditions variables. The variables can be regarded as unknown quantities,
needed to integrate the IVP. If we regard a sequence of IVPs, then the input for the subsequent
IVP is inherited partially from the output of the previous one, if necessary, new variables have to
be added. The matching conditions at intermediate points and the boundary conditions at the far
end can be formulated as functions of the output scalars, thus, as functions of our variables. This
means, that by using the numerical integrator, our multi-point BVP can be reduced to a system of
nonlinear algebraic equations.

1This work is dedicated to Professor Franz Ziegler on the occasion of his 60th birthday
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The PFSM solves this one-parameter equation system in the following manner: the space spanned
by the variables is subdivided into (small) simplices along the equilibrium path, the function values
are computed at the vertices and the equilibrium path is linearly interpolated inside the simplices.
This means that the PFSM uses interpolation instead of extrapolation and provides the (approx-
imate) equilibria in a direct recursion. It always delivers one subsequent point, but definitely not
more than one. Since the continuity (C°) of the equilibrium paths is preserved in the piecewise
linear approximation, when approaching a bifurcation point on the primary path, the algorithm
selects one of the secondary “exit” possibilities practically at random and continues along the se-
lected path. We remark that there is a Global Simplex method which is suitable for a more general
task: finding all globally possible equilibria in a given domain, as described by [5, 7).

In order to run the PFSM on a BVP (regarded as a sequence of elementary BVPs) we have to
specify

e the variables, i.e. those initial conditions and parameters for all elementary BVPs which are
not fixed by the boundary conditions at the initial points and not inherited from the previous
segment, in addition, those endpoint locations which are not fixed in advance,

e the functions, i.e. the matching conditions at intermediate points and the boundary conditions
at the far end and

e the values of the variables at one equilibrium configuration.

In the next section we will describe how this information can be obtained for elasto-plastic
frames. Since we expect one-parameter families of solutions, the number V of variables has to
exceed the number F' of functions by one.

2. EXTENSION TO ELASTO-PLASTIC ANALYSIS

Structural response is characterized not only by geometrical but many times also by physical
nonlinearity. An important class of such problems is the elasto-plastic analysis of frames. The plastic
behaviour can be modeled conveniently in this case by the so called plastic hinge assumption. This
means that plastic flow can be considered as restricted to certain cross sections which are called
critical sections. In the case of frames loaded only at their nodes when the deformation of the
individual members is not large and thus the bending moment reaches its maxima at the extremities
of the members, it is sufficient to consider critical sections only at those places, which is the case
in the present study. The plastic hinge assumption means that the yield condition depends only
on one component of the internal forces which is the bending moment and that the corresponding
generalized plastic deformation is the relative rotation in the yielded cross section. In this case, the
yield condition and the associated flow rules for the whole structure are the following (for details
see [3]):

¢=Nm-—my,  I:{ipi=0}, dr=NiA, ¢7A=0,
Ap2 0, niAp=0y g0, ¢ PpRe,
where:

¢ — vector of plastic potentials of size 2 x nc (nc is the number of critical sections).

N — yield matrix of size (2 x nc) x nc. It is a block-diagonal matrix with identical blocks [_ﬂ

m — vector of bending moments in the critical sections of size nc.
m, — vector of positive and negative plastic limit moments in the critical sections of size 2 * nc.
I — index set of active yield locations, I is the indexed set of the non active yield locations.

When used as a subscript, they refer to the appropriate subvectors and submatrices.
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¥ — vector of relative rotations in the critical sections of size nc.
A — vector of plastic multipliers in the critical sections of size 2 x nc.

The dot refers to the derivative of the variables with respect to time. In quasi-static, perfect
plasticity time can be replaced by any strictly monotonous variable, e.g. by the arclength of the
equilibrium path. Superscript 7' means transposition.

It can be seen from these relations that there are sign constraints on the governing variables
and on their rates. As the simplex method proceeds by small steps on the curve of the equilibrium
path, these requirements can be checked at each simplex step and by this way their violation can
be detected immediately and kept within the precision of the method. This also means that the
validity of set I, which is the index set of the active yield locations, can be examined at every
simplex step and the set can be updated if necessary i.e. the opening and the closing of the plastic
hinges can be monitored in a convenient way.

The nature of the physical nonlinearity in this problem is different from that of the geometrical
one. While the geometrical nonlinearity can be considered as a smooth one, the physical nonlinearity
presents a non-smooth characteristic. This comes from the fact that the activation and deactivation
of the yield locations changes the number or the nature of the governing variables in the simplex
method. This fact means that instead of having a single system of one parameter nonlinear equations
there is a series of such equations. The starting solution of each system is the last valid solution of
the previous one. The application of the method is shown on an example (Fig. 1) which has been
already studied by other authors [9, 2,4, 10].
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Fig. 1. The investigated frame, geometrical data and Fig. 2. Integration paths, nodes, members
physical constants and variables

Where two critical sections refer to the same cross section (e.g.: the end of member 1 and the
beginning of member 2 in Fig. 2), the plastic limit moment of one of them was taken greater to avoid
meaningless multiplication of variables, which would cause the breakdown of the algorithm. The 7
variables (V = 7) for the elastic solution are shown in Fig. 2. The first three are the internal forces
at the bottom of member 6, the second three are the internal forces of member 3 at the beginning.
They are defined in the global coordinate system of the structure. The seventh variable is the load
parameter. The number of the corresponding functions is 6 (F = 6). The first 3 functions express
the requirement that the displacements of node 6 calculated by the two different paths (1, 2) should
be the same. The second 3 functions express the fact that the displacements of node 8 are zero.

The opening of a plastic hinge generally represents one more variable i.e. the relative rotation
in the hinge and one more equation i.e. the bending moment in the hinge should coincide with
the plastic limit moment of the cross section taken by the appropriate sign. If the hinge is formed
in a section where the internal force variables are defined, there is no increase in the number
of variables and equations because the internal force variable which corresponds to the bending
moment is changed to the variable which represents the rotation in the plastic hinge. The closing
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of a plastic hinge is treated similarly. The difference is that in this case the number of variables
and equations can be decreased.

At a given value of the variables, the displacements and the internal forces of the structure are
determined in the following way. The beginning and the end of a member is defined by the sense
of the path which contains the member (Fig. 2).

The calculation is done member by member. First members along path 1 (members: 6, 5, 1, 2, 7),
then members along path 2 (members: 3, 4, 8) are calculated. Node 7 is fixed, so its displacements
are zero. By adding the relative rotation in the critical section at the beginning of member 6 (if
any), the displacements of the beginning of the elastic part of the member are known. To determine
the orientation of the local coordinate system at the beginning cross section of the elastic part one
has also to take into consideration the properties of the initial geometry. It means that for members
5, 6 one has to add (—n/2) and for members 7, 8 (+m/2) rotational eccentricity to the absolute
rotation of the beginning elastic cross section to get the angle of the local coordinate system with
respect to the global. (This means that e.g. the direction of the first axis of the local coordinate
system at the beginning point of member 6 is obtained by turning the global z axis with the
absolute rotation of node 7 and then by turning it further by the eventual plastic hinge rotation
at the beginning of member 6 and finally by turning it still by —n/2 radian.) Knowing the first
three internal force variables one can determine the internal forces in the local coordinate system by
appropriate transformation. The displacements of the end of the elastic part then can be determined
by solving a first order nonlinear initial value problem (cf. [7]). Finally, adding the relative rotation
in the end critical section and the appropriate rotational eccentricity (+m/2) to the rotation of the
end section of the elastic part, one can obtain the displacements of the end node of the member.
(This means that e.g. the tangent at the elastic end of member 6 should be turned further by the
eventual plastic hinge rotation there and then by m/2 radian to obtain the absolute rotation of
node 4 i.e. the angle by which an axis fixed to the node turns.) The calculation of the next member
(member 5) is analogous. The displacements of its beginning node are known. The internal forces of
the member at that node can be calculated from the equilibrium of this node. Then the calculation
can proceed as for the previous member. The other members can be calculated in the same way.

The solution algorithm was programmed in Fortran on an HP 9000/730 workstation. For the
determination of the shape of the members which represent an initial value problem, a library
Runge-Kutta subroutine was used. The first smooth interval of the equilibrium path starts from
the origin. Every other smooth interval starts from the last solution of the previous one. The new
simplex is positioned in such a way that the center of gravity of its n-th face corresponds to the
starting point. The sides of the simplex were taken as 1/200 of the estimated maximal value of
the corresponding variables. Using these values, the numerical experience showed that violation of
the yield condition was limited to 1/10000 of the value of the plastic limit moment. It was more
difficult to handle numerically the closing of the plastic hinges. In order to avoid a fluctuation of
consecutive closing and opening of a hinge, two constraints were used. A hinge was closed if either
of the following conditions were satisfied: the relative rotation in the hinge decreased by 1 percent
of its maximal value or decreased by 0.00015. These two constraints were necessary as there are
considerable differences in magnitude between the hinge rotations. Figures 3-5 show the results of
the analysis.

Figure 3 shows the displacements, the bending moment diagrams of states (A-I) where opening
or closing of the plastic hinges happen together with the value of the load parameter (m). The last
three states illustrate only the final collapse mechanism of the structure. The hinges are numbered in
the order of their formation. If a hinge is closed its number is placed in parentheses. The reopening
of a hinge is marked by an exclamation mark. Figure 4 shows the evaluation of the relative rotations
in the plastic hinges. The same notation is used in this figure as in Fig. 3 for the numbering of the
plastic hinges and the labelling of the states where hinge opening and closing occur. Table 1 shows
some main characteristics of those states, namely: the number of variables for the next smooth
equilibrium path interval, the number of simplex steps made on this interval, the load parameter
and the horizontal displacement at node 1 at the beginning of the interval and finally the status of
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Fig. 3. Displacements, bending moments, location of plastic hinges
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Table 1. Characteristics of critical states

state | vars. | steps m m* Ulg w1112 1345|678
A 8 | 2210 | 6.061 | 6.045 | 0.317 | 0.316 | +
B 9 65 | 7.769 | 7.707 | 0.612 | 0.609 | + | +
C 9| 1725 | 7.778 | 7.746 | 0.615 | 0.612 | + | + | +
D 10 143 | 7.331 | 7.319 | 1.033 | 1.025 | + | + | + | +
E 11 | 1204 | 7.310 | 7.286 | 1.055 [ 1.047 | + | + | + | + | +
F 10 426 | 7.063 | 7.030 | 1.220 [ 1219 |+ |+ |+ | — | = | +
G 10 779 | 6.977 | 6.947 | 1.262 | 1.259 | + |+ |+ | = | = | + | +
H 11 874 | 6.778 | 6.758 | 1.353 | 1.362 | + |+ |+ |+ | — | + | +
I 10 | 9630 | 6.590 | 6.585 | 1.452 | 1448 | — [+ |+ | — | = |+ | = | +
Start from a known (usually the stressfree) state.
Selection of the state variables.
Y
Definition of the vertices of the initial simplex in
the space of the state variables. <
Y
Evaluation of the functions at the vertices of the
simplex.
y A
Determination of the equilibrium part inside the
= simplex by linear approximation of the functions.
Selection of ne
closinogpe:fing ;Irasﬂc true state vclriables.W >
/ hinge happen?

Mirroring of the simplex with respect to the exit face.
“<<| Calculation of the function values at the new vertex.

Fig. 6. The main steps of the algorithm

the plastic hinges on this interval (+: open, —: closed). The number of simplex steps until state A
was 2944. After state I, the equilibrium path was followed until the number of simplex steps reached
20000. Columns marked with * show results of [4]. Figure 5 shows the horizontal displacement of
node 1. A rough flowchart of the procedure applied is shown in Fig. 6.

3. CONCLUSION

In this paper we demonstrated how our earlier developed algorithm, the PFSM, can be applied
to the global analysis of elasto-plastic frames. The elastic case was already treated by [7]. Plastic
behaviour was modeled by plastic hinges. The appearance of such a plastic hinge meant from the
point of view of the PFSM the introduction of a new variable, or, the physical reinterpretation
of an old one. As we followed the equilibrium path, at the formation of each new hinge (also, at
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the closing of each hinge) a new model was introduced, inheriting its starting configuration from
the last configuration of the previous model. In general, the dimension V' of these models did not
coincide, so the preservation of the continuity of the equilibrium path required special attention.
The example illustrated in this paper is a classic one, often used to check new numerical techniques.
Our computations show a remarkably good match with all earlier data, moreover, we could follow
the equilibrium path further than any of the cited authors.

It is worth mentioning that, although physically rather different, another application of the
PFSM shows similar mathematical aspects. [6] investigates the buckling of a slender, elastic rod
between parallel constraining walls, under various boundary conditions. Initially the problem is
identical with the classical Euler buckling problem, however, as the rod touches one of the con-
straining walls, a singularity enters. Along the equilibrium path contact is established and lost
several times, in complete analogy to the appearance and disappearance of plastic hinges in our
present problem. As here, [6] models this behaviour by using the PFSM with different numbers V'
of variables and meeting matching conditions at the switching points between the models.

Both examples demonstrate that the PFSM is capable of handling highly nonlinear, piece-wise
smooth mechanical problems.
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