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The algorithm for parametric sensitivity assessment for both materially and geometrically nonlinear static
problems is presented. Similarly to its geometrically linear version presented elsewhere, the sensitivity
analysis is shown to reduce to a linear problem with the same operator matrix that has been used in just
completed equilibrium iteration, which makes the computations very efficient.

Both total and updated Lagrangian approaches are analysed, including design differentiation of the
configuration update transformation. Sensitivity with respect to constitutive parameters is discussed in
detail. Possible extensions towards cross-sectional geometry or general shape parameters are pointed out.

1. INTRODUCTION

In the recent few years, sensitivity analysis of solid mechanics systems has become a subject of
increasing interest of researchers and practitioners. Efforts of computational engineers used to be
so far focused mainly on development of numerical methods and tools that would allow to obtain
equilibrium solutions for various nonlinear mechanical problems with the best possible acuracy and
at a reasonable computational cost. Recently, the progress in computer technology, development
of computer oriented optimization techniques as well as several other factors have resulted in a
growing need of having numerical equilibrium solutions accompanied by extended error analysis
and perturbation studies. Numerical techniques of sensitivity analysis play the crucial role in solving
computational engineering problems of this type.

There have been several papers published in recent years that deal with the parametric sensitivity
analysis of elasto-plastic and elasto-viscoplastic structures [1-7,9-12]. The most important features
of the approach developed there can be summarized as follows:

e Even if the equilibrium problem is highly nonlinear, the sensitivity analysis at each time integra-
tion step is linear and no iterative routines are needed provided the consistent stiffness matrix
is available,

e Possible design non-differentiability of inelastic response at some points along the deformation
path is generally not a problem from the point of view of the algorithm stability or accuracy.
However, discontinuity of the sensitivity results may make their reliability limited in the case of
finite perturbation studies.

The aim of the paper is to extend the discussion initiated in the previous two papers by the
authors, [3, 4], to the cases of large deformations including issues of configuration update and
appropriate tensor transformations. Only sensitivity with respect to constitutive parameters will
be addressed in detail. However, possibilities of straightforward extensions to the case of cross-
section sizing as well as structure shape parameters will also be pointed out. The main conclusion
is that, although the computations become much more tedious for this class of problems, the general
characteristics of the sensitivity analysis itemized above remains valid.
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2. EQUILIBRIUM PROBLEM

The geometrically nonlinear displacement problem of inelastic solid consists in space and time
integration of the continuing equilibrium equation

i+ fi=0, i,j=1,2,3, (1)

together with appropriate initial and boundary conditions and with the stress rate replaced by
displacement rates (velocities) by means of additional equations discussed below. The symbol 7;;
should be understood as components of the first Piola-Kirchhoff stress tensor related to a chosen
reference configuration C" while f; denotes external volume forces.

To express the stress in terms of the displacement field the following additional equations are
necessary:

e geometric equations that relate strain €;; to deformation gradient F;; and displacement u;

eij = ey + 5(FeiFij — 8ij) (2)
Fij = 6ij +uij (3)

where ]; describes strain at the reference configuration (its value is of minor importance here
since strain enters the formulation in the form of time derivative only), and u; is defined as
displacement field with respect to the reference (and not initial) configuration,

o constitutive relations between second Piola-Kirchhoff stress rate ¢;; and strain rate ¢;; , assumed
in a general form valid for both history-dependent and history-independent materials

Gij = 0ij(Okt, Py, EkL) (4)

where P~ denotes a set of scalar as well as tensorial internal variables typical of particular form
of history-dependent behaviour,

e constitutive relations describing evolution of the parameters p,
Ps = Ps(0kt, Py Ekt) » (5)

e geometric equations that relate the first to second Piola-Kirchhoff stress measures
Tij = L'ikOk; - (6)

It is assumed that both the constitutive equations (4), (5) depend on €;; only linearly.
Employing the displacement-based finite element method [13] in which the displacement field
u;( "k, t) is approximated by a linear combination of nodal displacements g, (t) and shape functions

Yia( k),
wi("zk, t) = Wi "2r) galt) (c runs over the set of nodal parameters) (7)

the resulting semi-discrete system of equations becomes
/Qr Bz‘ja d'ij 4= Qa (8)
in which @, is the vector of nodal loads

Qo= [ fitiad® + [ iviad(oR) )
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(with f; and #; being known volume and surface loads, respectively) and 0;; is expressed in terms
of the nodal displacement rate vector ¢, via the unchanged constitutive equation (4) and a new
discretized geometric equation

eij = € + Bija(9p) 9a » (10)

Bija = Bija+ s Bijag (11)

Bija = 3 (Yia,j + ja,i) » (12)

Bijop = L 4kp,iVkas (13)
while

Bija = 32: = Bija + 2Bijap a5 - (14)

Remark: The above space-discretized formulation applies only to a limited class of finite element
analyses, namely, to the analysis with the use of continuum elements. A similar formulation valid
for structural elements (shells, beams) may be obtained by replacing the stresses and strains in
the above equations with generalized cross-sectional forces and strains typical of the structure
considered, and 3-D space integration with integration in 2-D or 1-D characteristic subspaces of
such structural model. In such a formulation, the constitutive equation in the discretized model
have to be also replaced with a generalized constitutive equation in which cross-section sizing
parameters (like thickness or inertia moments) appear as additional constitutive parameters. Since
the cross-section forces and strains usually cannot be written in a compact tensor notation, the
equilibrium problem formulation appears more complex and elaborate; it remains in full analogy
to the above one, though. Thus, in order to make our discussion clear and readable, we will not
explicitly address such cases in this paper — an extension of the formulation is possible and requires
some more tedious geometric derivations only. O

To numerically integrate in time the above equations together with the constitutive equations (4),
(5), an integration scheme has to be employed. In it, time derivatives are replaced by finite time
increments and a step-by-step procedure is employed to yield the ‘end-of-the-step’ (say, at time
t + At) solution using the ‘beginning-of-the-step’ (at time t) data derived from the previous step
calculations. Equation (8) takes after such an integration the following form

/Q Bija (‘03 + Do) A = +24Q, (15)

where ‘o;; is considered known from the previous time step while Ag;; is expressed as a function
of the unknown displacement vector Ag, by the incremental form of the constitutive equation and
the geometric equation, the latter written in a form useful when using an iterative scheme as

5A8ij = B,’ja JAqa ; (16)

There are two crucial issues of the algorithm in the case of inelastic and geometrically nonlinear
problems:

e The way in which the incremental stress is computed from the incremental strain, i.e. the time
integration scheme for the constitutive law. This issue will not be discussed in much detail in
this paper. We only mention that currently the most commonly used implicit time integration
scheme for elasto-plastic as well as elasto-viscoplastic problems is the so-called “return mapping”
algorithm known in the case of the Huber-Mises yield function as the “radial return” method. It
was put forward by Simo and Taylor [8] for integration of small-strain elasto-plastic equations.
It can be formally extended to large-strain analysis as well, although more advanced schemes
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referring to deformation gradient decomposition seem nowadays to be more often employed for
this class of problems.

Given the integration scheme, the rate-type constitutive equations can be replaced by their
incremental counterparts as

Acij = Aocij(‘ok, Py, Deri) (17)
Aps = Aps(‘oki, Py k) - (18)

e The way in which the reference configuration C" is chosen and possibly updated at subsequent
steps of the analysis. There are two approaches to this issue commonly employed in computa-
tional practice: (i) total Lagrangian, in which the reference configuration is kept constant during
the whole analysis, and (ii) updated Lagrangian, in which the initial configuration at each time
step (i.e. that at the time instant ) becomes the reference configuration for this step, cf. Fig. 1.
The total Lagrangian approach is conceptually simple and convenient from the point of view
of computational costs. On the other hand, in the updated Lagrangian approach we deal with
much more realistic tensorial process measures which is why this approach is regarded to be
more ‘natural’ and reliable.

T2
C* (beginning-of-the-step configuration)
z3 C*+A* (current configuration)
Total Lagrangian: C'=C° u)=0 Updated Lagrangian: C* =C*, uj="4;
up =i, Ui =1 ui =0, ui=Ay

Fig. 1

The nonlinear equilibrium equation (15) expressed in terms of unknown nodal displacement
increments can be iteratively solved with the use of the Newton-Raphson method. In it, subsequent

corrections quw) to the solution Au, are computed from the equation

’+A‘K£}’,_1) 6ng) = g t+AtR‘(1w—1), b= 1,9,00%, (19)
where

tratpW=1) - /rBz(fa_l) t+At0,§;J—1) o, (20)

B,(;-"a_l) = Bija("““‘QE;”_l)) ) (21)

o) o g+ Agy (oY), (22)

talw=1) — 4 4 Aq&w—l) ‘ (23)
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and
dR, = " =
Kaﬁ - dA(;g = /r (2Bijaﬂ oij + Bija Cijkl Bklﬁ) dQr, (24)
dAo;;
Cijri = EA:-:_Z’ (25)

are the consistent (with the time integration scheme) tangent stiffness matrices at the global (struc-
tural) and local (material) level, respectively. As we shall see soon, even if the use of other, not
necessarily tangent matrices may lead to correct equilibrium solution (with only some loss in the
convergence rate), the use of the consistent stiffness matrices has crucial importance in view of the
very nature of sensitivity analysis and not only its computational cost.

Once Eq. (15) has been solved with respect to Ag, , nodal displacements as well as stress and

internal parameters at material points (i.e., rather, at Gauss integration points) have to be updated
so that they can be used in the computations at the next time step:

%0 = ‘ga + Ago, (26)
'+At0‘ij = t0’,']' + Aoyj , (27)
t+Atp7 - tp'y + Apry . (28)

The Cauchy stress measure in the current configuration C*+4* can be obtained from the following
formula

1
G =3 Fi Fjion (29)

where J stands for the deformation gradient determinant, J = det Fj; .

Finally, if the updated Lagrangian approach is employed, the reference configuration coordinates
have to be updated and stress tensors (as well as possibly other tensorial quantities included in the
set of internal variables p,) have to be redefined in the new configuration before they can be used
in the constitutive equation for the next time step:

0 = 4o+ Ada, (30)
¢4 =0, (31)
0ij = Sij » (32)
T; = "z + Au; . (33)

Here, we have used the fact that the second Piola-Kirchhoff stress tensor on the new reference
configuration (i.e. the one at ¢t + At) is equal to the Cauchy stress tensor.

Remark: The procedure of configuration update described above may look very simplistic to a care-
ful reader. Indeed, additional tedious derivations are necessary to redefine in the new configuration
all the fourh-rank tensors of the material coefficients in the constitutive equations, for instance.
This issue will not be addressed in this paper; it is assumed that the constitutive equation in each
new configuration is known. In fact, the changes in constitutive coefficients due to the configuration
update are frequently neglected in the computational practice. O
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3. SENSITIVITY PROBLEM

3.1. Basic idea of analysis

Consider a performance function ¢ dependent on some state variables and the constitutive param-
eters h in the form!

¢ = @(Uij,p'yaqa; h) (34)
with g, denoting total nodal displacement with respect to the initial configuration,
Ga = Qg‘ +4a - (35)

The function @ is treated here as given which means that its value can be directly computed once
values of the arguments are known. Clearly, the values of 0;;, p, and g, should be considered to
depend on h as well

® = ®(0ij(h), py(h), da(h); h). (36)
Our goal in the design sensitivity analysis is to compute the total derivative of ® with respect to h,
i.e.

d® _ do doy _d® dp, 4P dg, , 90

dh ~ doij dh  dp, dh  dg, dh ' Oh°

There are many ways to determine the design derivatives on the right hand side of the above
equation. Surely, all the ways consist in design-differentiation of the equilibrium problem and its
solution with respect to design derivative of the displacement field which can be then substituted
into geometric and constitutive equations to yield d®/dh. In one of the possible approaches the
continuum problem (1) is first design-differentiated and then discretized in time and space (not
necessarily in the same way as the equilibrium problem), solved with respect to du;/dh, and
then integrated and finally substituted into (37). In another approach, it is the FEM discretized
formulation that is design-differentiated, solved with respect to dAgq,/dh at each time step, and
then substituted into discretized geometric and constitutive equations and finally into (37). Both
the approaches are presented schematically in Fig. 2 and denoted by (A) and (B), respectively.
Obviously, other approaches lying somewhere between the above two ones can be considered, too.

In this paper, only the approach (B) is considered. It means that we shall be seeking the design
sensitivity of the numerical solution rather than of the continuum one. Thus, we will determine the
value of d®/dh at the end of each time step assuming that the parameters that ® depends on are
expressed as

(37)

oij(h) = ‘oij(h) + Acij (‘ori(h), ‘Py(h), Acki(‘ga(h), Aga(h)); h) (38)
ps(h) = ‘ps(h) + Aps (‘oxi(h), ‘py(h), Aeki(‘qa(h), Aga(h)); h) (39)
da(h) = qa(h) + ‘ga(h) + Aga(h) (40)

3.2. Remarks on notation

In order to make our notation simpler, we shall be further using design variations rather than design
derivatives. The design variation is defined as

8() = % 8h (41)

'For the sake of better transparency of the derivations to follow, we shall restrict ourselves to the sensitivity
analysis with just one performance function and one design parameter. Our discussion may easily be extended to
more general and realistic problems with larger numbers of both the quantities.
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discretization
rate-type procedures . .
equilibrium (in space and time) dlS(':r.etl.zed
continuum-based equilibrium
problem problem
(B)
design design
differentiation differentiation
(A) discretization
rate-type procedures . .
sensitivity (in space and time) discretized
i sensitivit
continuum-based 11vity
problem problem
Fig. 2

and, as it is linear in h, both notions can be used interchangeably.
Accounting for the nature of the rate-dependent constitutive equation and the incremental ap-
proach employed for the equilibrium analysis a few different design variations will be distinguished:

e implicit design variation — it is the part of the total design variation that is related to variation

of the incremental equilibrium solution Agqy,,

§) = 3aa B (42)

(obviously, 6Aq, = 6Aqa),

o effectively explicit design variation — it is the remaining part of the total design variation related
to design variations of all other variables that the considered quantity depends on

8() = 5() () = 5 oh, (43)
dh |Age#Aga(h)
e the latter variation should not be confused with the following truly explicit design variation

defined as

() = % Sh (44)

for quantities that are explicit functions of the design parameters.
To make the notation more clear still, if a quantity A is defined as a function
A= A(vl(h')a ")2("')’ seey Aqa; h’)

where v, v9,... are some quantities that do not depend on Ag,, then

= 0A - 0A , 0A -
JA_?AWJAqi+Bv—16vl+%;6vz++6A .

6A dA
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If v1,v9,... depended on Agq,, we would have

3 0A dun 0A dv, 0A \ - 0A 0A .
MA=|———-F+———+...+ 55— e e i .

( A Vo Akt Aqa) ot 5 Bur+ 5 Bt ..+ 04

A oA

With this notation we can rewrite Eq. (37) as
- 0 - 0P - 0o -
00 = — doij + — 0 — 04,

dog oij + %, Py + o 0go + 0 (45)

where, cf. Eqgs. (38)—(40),

5 A 0A0;; 0Avi; A dDai; =

_ At ij A¢ Y ij -
_ A OAps - 0Aps » 0Ap; -
6 o t, t t,
D5 0%s + oy, okl + o, 0'py + 9Den 0Aey + 0Ap; (47)
= aAEH 3A6kl =
5A€ij = —étq—a tqa + 6Aqa 0A a s (48)
3o = Oqb+0'ga+0Ada . (49)

3.3. Design-independent configuration

At this point we have to make a comment on the important issue of reference configuration in the
sensitivity analysis. First, we observe that quantities like stresses, strains, deformation gradients
etc., depend on the design parameter h not only via constitutive or geometric equations. The de-
pendence is much more complex, since the definitions of the above quantities involve derivatives
with respect to coordinates 'z in the reference configuration C* which is generally design-dependent
as well. More precisely, in the updated Lagrangian description C" is the current deformed config-
uration and thus it is always design-dependent, while in the total Lagrangian (as well as at the
first step in the updated Lagrangian) description C* is the initial configuration which is usually
design-independent (although it may depend on design in case of shape sensitivity problems). De-
sign differentiation of quantities like stresses or strains may therefore be difficult unless they are
expressed in a new, design-independent configuration.

Let us introduce a fictitious reference (or parent) configuration CP and assume it to be design-
independent, cf. Fig. 3. The most natural way to define such a configuration in finite element
practice is to identify it with the parent configurations of particular isoparametric elements used.

C° (= C" at total L i
CP (design-independent configuration) ( avto agrangian)

4 C* (= C" at updated Lagrangian)

Fig. 3
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In all further derivations field variables whose design derivatives or variations are considered will
be assumed to be functions of spatial coordinates Pz in CP rather than in C* (or any other con-
figuration). Formally, this is not a problem at all since coordinates in any deformed or undeformed
configuration are related to Py by a one-to-one transformation. The shorthand notation (-),x will
be used to denote the spatial derivative (-)/d Py in contrast to (-) x which denotes the derivative

a(-)/0 . Obv1ously, the design variation § 'z; = drz; is assumed known.
Defining F,-j as the deformation gradient from CP to C*

*

and denoting

* *
J = detFy, (51)
*a =J n;’ﬁ‘;f (n} stands for unit vector normal to the boundary surface in CP), (52)

we can write down the following formulae to be used in further discussion of the sensitivity problems
(note that shape functions 1;, are expressed in terms of Pz; and thus design independent):

()i =)y F; ; (53)
Sﬁ';zl = _F;k (SFkl Fl';l = —F;kl (S r(L‘k);l Fl_zl = —F;kl (S 'a:k),,- i (54)
[OFIE X [OF ﬁﬁl * (')"31*';71 = B0 — (O o) (55)
St+AtFl_j il St+At$i’j — (5 t+Ath),j —Zik (5 rxk),j : (56)
8J = JFF 5Fy, (57)
S_ija = aBijaz = % (‘57’0101,] + 6"/"]0: z) = -% [’lpm k (3 xk),J + Yjak (3 wk),z] ) (58)
5Bijos = OBijop = 10 (¥ka,i Ykay) = %[ kot Ykaj (07T1) i + Ykayi Ykal (3'551),]'] ;- (59)
3Bija = 2Bijap3Aqs+8Bija + 20Bijap('95+A05) + 2Bijapd e , (60)
Séija 3Bija
EAEij = Bija SAqa + (Sgija + 2é§ijaﬂ tq;; + 2§ijaﬂ étqg + 3§ijagAqﬂ) Aq, . (61)
\_-.._\la ~ T b
6A€‘ij éAEiJ’
Note that vector ‘g is equal to zero when the updated Lagrangian approach is employed.

Further, we have

/ () der - / () Jaor, (62)

r Qrp
: Sesteloce bt : & bnies
5 [/ (-)dQ’] S / [30) F + ()85] der = / 5()+ () 22| aor, (63)
r Qp r J
[ odee) = [ 0Jado), (64
anr onre

J [ /(9 Q,(-)d(é’ﬂ')] = /a (80 Jo + () 8Jp) a(o07) = /8 N [5(.)+(-) ja} doQ),  (65)
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with
57 =8J = JEF,F;} = J(3m),, (66)
* *
— % A il nP F-lpe p-1 e i
0 9 = 0 5 = 35Fiijkl éik" : *Hcl e *:nlz = Ja((srxi),j (61—71,:”;) . (67)
n} F, " nm Fan

3.4. Solution method

Let us rewrite Egs. (45)—(49) in the following form

50 = 5 + 60 (68)
where
e = 387(1; doij + g% Opy + g—;: (5qg+5 ‘qa) + 0% , (69)
jo = .aaai] S % g_z By + gji FAg = df; O (70)
doi; = 8oy + %A%(—Z; &'op + 6;:5 9'py + gi:::l ey (71)
dps = d'ps + gif: Ao + %At:; 3‘;0., - g%::l- dAey , (72)
doij = ZﬁZZ 6Aeps = Cijridley ' (73)
ps = gﬁf :l SAen (74)

with dAey, and 6Aey; defined in Eq. (61). The variation & contains terms that can easily be
determined once the equilibrium solution for this time step is known and sensitivities of stresses,
internal parameters and nodal displacements have been computed and stored at the previous time
step. The terms contributing to d® contain the vector dAq, which is the basic unknown in the
sensitivity problem.

In order to determine it, the incremental finite element equilibrium equation (15) has to be
differentiated with respect to design. By making use of Eq. (9), let us rewrite it as

| Biiaojd® = [ fiiad+ [ bithiad(on) (75)
Qr Qr Ny
or, shorter, as

Ry =Qa . (76)

All the quantities in the above equation refer to the end of the time step, i.e. to the time in-
stant ¢ + At. Taking design variation of this equation and applying auxiliary formulae derived in
Section 3.3 we finally obtain

6R, = 8Q4 — OR, (77)
where

SRO, = /Q (SB,'ja Okj + Bija Sakj) dQ" = Kgp SAqﬂ , (78)
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éRa = /g; (aBz]a Okj o sza aak] + Bl]a Okj a;) dqr ’ (79)

y s 521 985 ;0

0Qa = / (6fi + fi —*—) Yiq A" +/ ( Ja) Yie d(09") , (80)
Qr J oy, Ja

with B;j, and 6B;jq, given in Eq. (60) while do;;, d03;, 8J and 8J, given in Egs. (71), (73), (66)
and (67), respectively.

Note that similarly as in the geometrically linear problems, (3], the sensitivity problem (77)-(80)
consists in the solution of a set of linear equations with the coefficient matrix equal to the consistent
stiffness matrix of the structure analysed. If this matrix is used in the Newton-Raphson iterations
for the equilibrium analysis, its last decomposed form will be available at the stage of the sensitivity
analysis which makes the latter a very cheap add-on to a typical FEM equilibrium analysis code.

Once éAqa is determined, the performance variation can be computed from Eq. (45). Also, by
substituting 6/Aqq, in the expressions for Jau and Jp., , cf. Egs. (73), (74), we can update sensitivities
of the stress and internal parameters at the integration points so that they can be used for the
computations at the next time step that begins at t + At.

The design variation of the current Cauchy stress can be obtained by taking the design variation
of Eq. (29) which in view of Eq. (57) yields

. 1 e & _ 1 -

dsij = 7 (“an}L 0Fmn Fix Fji + 0Fy Fji + F 5sz) ok + 5 Fii Fji 00k (81)
with 6 F;; given in Eq. (56).

The last procedure that has to be performed at the end of each time step is the redefinition of the
coordinates and updated stress sensitivites in the new physical reference configuration C* = C**4*
in the case of the updated Lagrangian approach. By taking design variations of Egs. (32), (33) we
obtain

oq, = oq;, + 6Aqq, , (82)
§qzo =0, (83)
o == B, (84)
8z; = 8'r; + 0Au; . (85)

Remark: The computational algorithm of sensitivity analysis described above is referred to in the
literature as the direct differentiation method (DDM). There exists an alternative approach called
the adjoint system method (ASM). Its main idea can be explained by taking reference to Egs. (68),
(70), (77) and (78):

§Ada
fairs o dd —
50 = 00 + 71— e K75 0(Qs— Rﬂ) (86)
\_,__/
Ag

Vector )\, defined above is usually called the ‘adjoint vector’. ASM consists in solving a system of
equations with the coefficient matrix K,5 and the right-hand side d®/dAgq, and then substituting
it to the above equation. ASM is similar to DDM in that in both the methods vectors 8(Qa — Ra)
and d®/dAq, have to be assembled and a system of equations with the consistent stiffness matrix
has to be solved. The differences can be summarized as follows:
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e in ASM, neither the nodal displacement sensitivity nor the sensitivities of stresses or internal
parameters are ever explicitly computed (unless particular components of these quantities are
chosen as the response ®)

e in ASM, the number of necessary back-substitutions is proportional to the number of perfor-
mance functionals ® while in DDM — to the number of design variables h, which makes ASM
competitive in problems with large number of design variables and small number of response
functionals, and DDM in the opposite case.

In the case of history-dependent analysis when the sensitivities of usually a large number of
variables have to be monitored and updated through the whole history of deformations, the use of
ASM would mean in practice that each stress component and internal parameter at each integration
point, as well as each nodal displacement, have to be defined as additional performance functionals.
This makes ASM practically useless for such problems since, as it has just been mentioned, its
efficiency is poor if the number of response functionals exceeds the number of design variables.

4. COMPUTATIONAL EXAMPLE

The theoretical derivations will now be illustrated with a simple computational example. Its goal is
to display the whole track of computations necessary to obtain the sensitivity of a possibly simplest
structure with both material and geometric nonlinearities.

4.1. Constitutive equation

The well known constitutive model of Huber-Mises elasto-plasticity with isotropic hardening will
be adopted. Details of its rate-type formulation as well as ‘return mapping’ time integration scheme
can be found in [8] while the complete differentiation of the time-discretized constitutive equations
with respect to material parameters was derived in [3]. Here, the discretized equations will be only
briefly recalled. The set of internal constitutive parameters consists in this case of just one variable
— the equivalent plastic strain &°. The material constants are: Young modulus F, Poisson ratio v,
yield limit o, and hardening parameter ¢. Further material constants in the form of shear modulus
G and bulk mudulus K, are expressed as

E E
G=———— K=—"——.
21 +v)’ 3(1 —2v)
The incremental stress is expressed as
Acij = Cjq(Aex — Aeyy) (87)
where
tike = K 8ijoi + 2G (Iijkl - %51'1'51:1) i Lijii = 5(0idj0 + 6adjk) , (88)
Aes; = \[2aern;, (89)
and n;; is the norm of the trial stress deviator
s;; t t
nij = “S—;crl”- . Si; = '8ij + ZGAe,-j y (90)

The value of Aé® depends on the yield criterion defined by the function

f(taij, tép,AEij) =g — (Uy ol Ctép) , ¥ = \/gnsi;rl“ . (91)
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If f <0 then Aé? = 0 while otherwise

. =g T 1
re=X 4= (92)
3G 1+ 5%
which satisfies the flow rule
Holy L (oy + {1 h0igR) = ). (93)

It is easy to prove that the incremental constitutive equations defined above for the stress (87) and
equivalent plastic strain (92) after substitution of all remaining equations written above may be
expressed in the general form (17)-(18).

The consistent stiffness matrix for the above incremental formulation has the form, (3, 8]

Cijkt = K 6ij0r1 + 2G(1 —9) (Iijlcl = ';lgéij‘skl) = 2G(y — 9) nij ny (94)
with
eP
g=di0g (95)
a r

Assuming that all material constants in the model may depend on the design parameter h
(and this dependence is explicitly known) we can differentiate the above equations with respect
to design and obtain the following relations for the total stress and internal parameter design
variations, cf. (46)—(47),

aAO’, aAa,-,-

50‘,‘1' = étaij + 3‘0"')' 5t0‘k1 + —6_%; der + Cz'jkl SA(:‘H + 3A0’,‘j . (96)
ij
= A 0Aer 0AeP oAer -
e* = J'e® ; teP 0A AeP 97
0e o' +8‘aijaakl+3‘épae +3AEH €kl + OAEP (97)
where
0A0;;
i Yry t(,: = 0 (Lju — 56560) — (v = ) mijmua (98)
aAdi'
——a—t—éP—J — \/g"y(n”, (99)

Ay = OK 8ij Aegs, + /2 7 (doy + & 8C) i
+[(1-9) (Aey -} 8ij ek ) — (1= 7) Aeg; — (v — 9) mij Aew|0(2G),  (100)
6Aép 'Y 3

P P 101
doij 3g V2" (101)
oAer ¢
deMivizc DG 2
oter 3G’ i
A = _% [aay +&9¢ + 3 A 0(20)] (103)
dAer 2

= /Zyni; (104)
8AE,'J' \/; 4
N 1 _ 1 _
0K = 3—(1—_—2—V—)(6E +6Kdv), 8(2G) = 7= (0 — 2Gov). (105)

The equations above do not include the configuration update transformations, i.e. the total stress at
t + At as well as its design variation computed from these equations are expressed in the reference
configuration at ¢.

In the computational example below the following values of material constants are assumed:
E = 1000, v = 0.25 (i.e. 2G = 800, K = 666.67), oy = 1, ( = 150. Only one design parameter
h = E is considered.
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4.2. Geometry and load

A uniform cube with unit dimensions loaded in three principal directions by three independent
stretching forces is considered (Fig. 4a). This means that no shear stresses or strains occur in
the model. Unknown parameters q, are the three relative displacements of the cube walls due to
elongation in each principal direction.

A monotonic loading history is defined in Fig. 4b. Load values at the time instant { = 1 are
f1=8andf2=f3=—2.

t3
force t

tl/ . T T T T

Fig. 4

Two loading steps, each of the length At = 0.5, are considered starting from the time instant ¢ =
0. Updated Lagrangian approach is employed. Values of all crucial scalar variables and components
of tensors that appear in the theoretical formulation of the equilibrium and sensitivity problem are
displayed for each time step (in sensitivity computations, values of design derivatives rather than
their variations are given). Details of equilibrium iterations are skipped and only the final solution
is presented for each time step.

We assume that the design-independent configuration CP is the initial, undeformed configuration
at t =0.

4.3. Results

In order to make it possible to display the values of tensor components a simplified version of the
commonly used finite-element vector/matrix notation is employed below. We take advantage of the
fact that non-diagonal entries in the Cartesian representation for stress, strain and deformation
gradient tensors are zero in this example. The detailed description of the notational conventions
goes as follows:

e index notation employed in the previous part of the paper is replaced by absolute (bold-face)
notation for each tensor quantity.

e stress, strain and deformation gradient tensors are represented by 3x1 vectors of their diagonal
component values,

e fourth-rank tensors in constitutive equations are replaced by 3x3 matrices; in particular, tensors

100 111
Iijki and 0;;0k are represented by [0 1 0] and [1 1 1], respectively,
001 1314
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e nodal displacement vector g, is represented by a 3x1 vector of relative displacements of the
cube walls; accordingly, R, and @, are 3x1 vectors while stiffness matrix K,p is a 3x3 matrix,

e geometric operators Eija , B,-ja as well as the product Eijaﬂ Agp are represented by 3x3 matrices

(containing only components for i = j, all the remaining ones are zero) while Eijaﬂ itself becomes
in such a notation an object of the third rank and will not be displayed explicitly.

First step, t =0, At =0.5

Incremental equilibrium problem

Initial values:

‘q = {0,0, 0},
‘e = {0, 0, 0},
= 0.
Results:
Q = {4.000000, —1.000000, —1.000000} , cf. Eq. (9),
Aq = {0.02993522, —0.01483832, —0.01483832},
F = {1.0299352, 0.9851617, 0.9851617},
J = 0.9995970,
B =1,
K 0.02993522 0 0
BAq = 0 —0.01483832 0 ,
0 0 —0.01483832
Ae = {0.03038328, —0.01472824, —0.01472824} ,
ot = {24.05947, —12.02974, —12.02974} ,
& = 36.08921,
Ae? = 0.02599201,
& = 0.02599201,
oy + (& = 4.898801,
1-9 = 0.1357414,
n = {0.816497, —0.408248, —0.408248},
o = {3.883739, —1.015062, —1.015062},
) 1.0299352 0 0
B = 0 0.9851617 0 !
0 0 0.9851617
at = 1.000000,
R = {4.000000, —1.000000, —1.000000} , cf. Eq. (20),
725.9259 637.0370 637.0370
C = | 637.0370 735.7781 627.1849 |, cf. Eq. (25),

637.0370 627.1849 735.7781
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K

S

773.9217 646.3714 646.3714
646.3714 713.0896 608.7103 |,
646.3714 608.7103 713.0896

{4.121402, —0.9855589, —0.9855589} ,

Sensitivity analysis (h = E)

Initial values:

dd—:‘- = {0,0, 0},
%’ = {0, 0, 0},
tsp
ddZ =0, -
%%{ = 0.666667, ?%?l =08, %"hl

P, = Yoo = Y333 = 1,

Right-hand side vector components:

cf. Eq. (25),

cf. Eq. (29).

‘é‘Pa_C =

ah”o’

remaining ¥ ; = 0.

0Q B
—5il— - {0) 0) 0} )
a—aAhE = 102 x {0.9807460, 0.4364349, 0.4364349} , of. Eq. (100),
0Ao dlo
—g;; E = {0, 0, 0}, cf. Eq. (98),
0Ac d%

sanclif- ol = f. Eq. (99

5% dh {0, 0, 0}, cf. Eq. (99),
- Akt o 0 | [o0o

t
7 = 0 h,dR 0 |=|000], of. Eq. (58),
| 0 0 V33 T 000
iB [ vh SR Aa 0 0 000
t
- A4 = 0 V3o SR Agy 0 = POIC050|
cf. Eq. (59),

die = {0, 0, 0}, of. Eq. (61),

dh |aq#aq(h)
do _dle  0Ac : 0Ac dlo N 0Aco der +C dAe

dh Aq#Aq(h) ~ dh Ooh dlo dh dter dh dh Aq#Aq(h)

= 10~ x {0.9807460, 0.4364349, 0.4364349} , of. Eqgs. (96), (61),
~ 0 0O
((11_]: =100 0], of. Eq. (60),
0 0O

1dJ
7 dh -0
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it = 1073 x {1.0101048, 0.4299590, 0.4299590}, cf. Eq. (79).
dh [aqzaq(h)
Results:
A
dAq _ g1 dR = 107%x{—4.159140, 1.708572, 1.708572},
dh dh |aqzaq(h)
(incremental sensitivity solution),
dA
d—he = 107% x {—4.283644, 1.683219, 1.683219}, cf. Eq. (61),
‘(11—: = 107° x {1.568352, 0.1760428, 0.1760428}, cf. Eq. (96),
eP
%‘;- = 9.282065 x 1078, of. Eq. (97),
F
i—h = 1075 x {—4.159140, 1.708572, 1.708572}, cf. Eq. (56),
g% = 107 x {—1.429554, —0.2270676, —0.2270676} , cf. Eq. (81).

Second step, t = 0.5, At =1.0

Incremental equilibrium problem

Initial values:

tq = {0.02993522, —0.01483832, —0.01483832},
o = {4.121402, —0.9855589, —0.9855589} ,
t* = 0.02599201.

Results:

Q = {8.000000, —2.000000, —2.000000} , cf. Eq. (9),

Aq = {0.03846379, —0.01847462, —0.01847462} ,

F = {1.0373458, 0.9812471, 0.9812471},

d = 0.9988042,

B = {0.9709349, 1.0150618, 1.0150618},

a 0.03626038 0 0

BAq = 0 —0.01903533 0 y
0 0 —0.01903533

Ae = {0.03804319, —0.01857705, —0.01857705} ,

i = {33.60210, —16.80105, —16.80105} ,

o = 50.40315,

AeP = 0.03370693,

e’ = 0.056969894 ,

oy + (e = 9.954841,

1-9 = 0.1975043,

n = {0.816497, —0.408248, —0.408248} ,
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o = {7.946052, —2.008788, —2.008788},
) 1.0071952 0 0
B = 0 0.9960265 0 ,
0 0 0.9960265
0F = 0.9995970,
R = {8.000000, —2.000000, —2.000000} , cf. Eq. (20),
[ 725.9259 637.0370 637.0370 |
& = | 637.0370 760.4832 602.4798 |, cf. Eq. (25),

| 637.0370 602.4798 760.4832 |
[ 743.6009 638.8136 638.8136 |

K = | 638.8136 752.0786 597.4604 |, cf. Eq. (24),
| 638.8136 597.4604 752.0786 |
S = {8.560876, —1.936469, —1.936469}, cf. Eq. (29).

Sensitivity analysis (h = E)

Initial values:

t
dT’? = 107% x {—4.159140, 1.708572, 1.708572},
dlo -5 :
< = 107 {-1.429554, —0.227068, —0227068} ,
d'e _8
5 = 9-282065 x 107,
0K 9(2G) doy ., 00
—87 = 0666667, —m—'— = 08, oh -+ ‘€ oh = 0,
P11 = 0.970935, P22 = 1333 = 1.015062, remaining ;g ; = 0.
Right-hand side vector components:
0Q
—a—h— = {Oa Oa 0} )
Z—Z = 10~% x {0.9518323, 0.4131794, 0.4131794}, cf. Eq. (100),
t
%ATE ‘il—;:' = 1075 x {0.7125847, —0.3562924, —0.3562924} , cf. Eq. (98),
t5p
%%‘: 5‘(1—;- = 107° x {0.8250725, —0.4125362, —0.4125362} , cf. Eq. (99),
IB “1#%1,1%;? 0 t 0
an = 0 —¢%2,2ga7?2 0 )
0 0 ~93ss S |
3.920881 0 0 ]
= 107% x 0 —1.760428 0 : cf. Eq. (58),
0 0 —1.760428 |
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iB —h G Aa 0 0
q o
0 0 ‘¢§:3,3 T;IL& Ags
0.1464286 0 0
= 1076 x 0 0.0330131 0 , cf. Eq. (59),
0 0 0.0330131
dA
s = 1077 x {1.5644416, 0.3191333, 0.3191333}, cf. Eq. (61),
dh |aqzaq(h)
do o2 e 8Aa’+8Aa dto'+BAa dler CdAe
AR Az Aqtny N TR e Tk 8% R dh |Aqzaq(h)
= 1073 x {1.1071402, 0.5463778, 0.5463778}, cf. Egs. (96), (61),
o 4.213738 0 0
- = 1076 x 0 —1.694402 0 : cf. Eq. (60),
0 0 —1.694402
l* = = —0.5696419 x 1075,
J dh
dR
— = 1072 x {1.1435688, 0.5485291, 0.5485291}, cf. Eq. (79).
dh |aq#aq(h)
Results:
d
= K! = = 107%x{—4.496729, 1.722101, 1.722101},
dh dh Aq;ﬁAq(h)
(incremental sensitivity solution),
dA
—5’-15 = 107% x {—4.372639, 1.747171, 1.747171}, cf. Eq. (61),
d
E% = 1075 x {4.726735, —0.983014, —0.983014} , cf. Eq. (96),
P
%‘% = 3.806500 x 1078, of. Eq. (97).
%];—: = 1075 x {—4.210704, 1.780079, 1.780079}, cf. Eq. (56),
d
5% = 1075 x {—6.071765, —0.880797, —0.880797}, cf. Eq. (81).

5. CONCLUSIONS

The algorithm for parametric sensitivity assessment for both materially and geometrically nonlinear
problems of statics appears to be similar to the algorithm developed for linearized deformation case
in [3]. It retains the fundamental advantages of the linear formulation of the sensitivity problem and
the necessity to perform only some additional back-substitutions with the same consistent stiffness
matrix previously factorized during the equilibrium iteration. The only new features that have to

be addressed in the case of nonlinear geometry can be listed as follows:

e A number of additional geometric terms enter the explicit design derivative of the residual force

vector R, .
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e An additional term due to the initial stress stiffness appears in the stiffness matrix.

e Similarly to stresses (and possibly other tensors needed in the equilibrium analysis), their sensi-
tivities must be accordingly updated whenever the reference configuration is changed during the
computations. The respective transformations have to be differentiated with respect to design
with the design-dependence of all the geometric terms involved taken into account.

All the above features make the geometrically nonlinear sensitivity analysis more tedious and time-
consuming; however, the main steps of the analysis remain the same.

The algorithm presented here retains obviously some drawbacks as compared against its geomet-
rically linear version. We mean by it in the first place the problems of non-differentiability of the
constitutive equations at the points of instantaneous stiffness change. This problem was discussed
in the earlier paper [3] and is not addressed here in detail. We only recall the conclusion that such
sensitivity discontinuities do not invalidate the general idea of the analysis; we only have to accept
that there exist isolated time instants at which sensitivity cannot be computed uniquely.

The sensitivity formulation presented above, which includes design-dependence of the reference
configurations, lends itself to relatively easy extensions towards shape sensitivity analysis. In the
latter case, the initial configuration of the deformed body is assumed to explicitly depend on
design. This assumption remains in close analogy to the assumption of design-dependent reference
configurations in the updated Lagrangian approach and its implementation is thus straightforward.
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