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By applying Padé approximants and continued fractions technique developed in [1, 2, 3, 24] we investigate
a composite material of the effective modulus Ae(h) consisting of two components of real moduli A
and )\, respectively, where h = A2/)A;. By starting from K power expansions of Ae(h) at fixed points
h = hi,ha,...,hk the infinite set of the general inequalities specifying explicitly the upper and lower
bounds on Ae(h)/A:1 are derived. Our estimations generalize the previous bounds reported in (13, 17, 22].
The inequalities achieved are applied for the evaluation of the upper and lower bounds on Ae(h)/A1 from
the given experimental measurements.

1. INTRODUCTION

In view of the difficulty in calculating the effective parameters Ae(h),h = Az/A1(such as dielectric
constant, magnetic permeability, thermal or electrical conductivity) for two-phase medium consist-
ing of components of moduli of A\; and X2, there has been much interest in obtaining bounds on
these parameters. Wiener [24] derived optimal bounds on Ae(h) with fixed volume fractions and real
components parameters. These bounds are known as the arithmetic and harmonic mean bounds.
For isotropic materials, Hashin and Shtrikman [13] improved Wiener’s bounds using variational
principles. Bergman [4, 5, 6,] introduced a method for obtaining bounds on Xe(h) which does not
rely on variational principles. Instead it makes use of the properties of the effective parameters as
analytic functions of the components moduli. The method of Bergman was studied in detail and
applied to several problems by Milton [16, 17]. A rigorous mathematical formulation of Bergman’s
approach was given by Golden and Papanicolaou [11]. Recently several interesting continued frac-
tion techniques for evaluation of the bounds on A¢(h) have been presented by Bergman (7] for
three- and Clark and Milton [8], — for two-dimensional systems. Both Milton [17] and Bergman (7]
have incorporated into the bounds a power expansion of A¢(h) at h = 1 and the discrete values
Xe(h1); Ae(h), - -+ Ae(hrc) only.

The purpose of this paper is to derive, from the power expansions of Ae(h) at K points h =
hi,hg,...,hx, an infinite set of general inequalities expressing the best bounds on A¢(h). Those
inequalities generalize Milton’s and Bergman'’s results [7, 17]. As an application, on the basis of the
available experimental measurements, the bounds on Ae(h) for a hexagonal array of cylinders are
evaluated. :




| 230 S. Tokarzewski, A. Galka and I. Andrianov

2. PRELIMINARIES: NOTATIONS AND BASIC DEFINITIONS

Let us denote by A, the effective conductivity of a composite consisting of two isotropic components
of conductivities A1, A with volume fractions ¢, and ; = 1 — 9, respectively. The bulk moduli A,
are defined from the linear relationship between the volume-averaged temperature gradient < VT >
and the volume-averaged heat flux < J >:

<J>=A<VT>. (1)

The average value < . > is calculated over a representative volume or a basic cell. In general A
is a second-order symmetric tensor, even when \; and \; are both scalars, and depends on the
microstructure of composite. Focusing upon one of the principal values of Ae, say Ae, we can write
the following K Stieltjes integrals

- hi g sty _
Fj(h—hj)=1+(h 1)/ ’1+(7: o h=ﬁe(o,oo), FE1 94 B 2)

representing the effective conductivity Ae(h)/A1, cf. [1, Lemma 17.1] and [11, 12],

é'EA(IL)--F(h) Fj(h-hj), (=12,...,K). (3)
For further development we assume that

ho <hy <hy<...<hg_-1<hg <hg41, ho=0, hgq =o00. (4)
The spectra v;(u) (j = 1,2,...,k) are real, bounded and non-decreasing functions determined for
0 < u < 0o. The power expansions of Fj(h—h;) at h = h; (j = 1,2,..., K) take the following form

F}'(h—hj) = ian(h—hj)" =1+4+(h-1) ifjn(h—hj)n, Je=l2. 000, (5)

n=0 n=0

where coefficients Fj, and fj, are interrelated by:

i)Ifh;j—1#0(=1,2,...,K), then
3

Fipn — fitn—
fj(—1)=1, fjn=Lh'fZL1-—1), n=0;1, .. (6)
j—
(i) fhj—1=0 (j=1,2,...,K), then
fj(—l) = 1’ fj(n—l) - Ftin, n= 0, 1, H Y3 : (7)

Here fj, are moments of the spectra dv;j, cf. (2) and (5)

1/h;
f,-,,=(—1)"/0 Turdvile), §=1,2....K; n=0,12,.... (8)

Let us consider the power expansions fj(h — h;) (j = 1,2,...,K) of the Stieltjes function f(h)
given by (5)

£ = fih—hy) = SO p e, he 0,00) 9)

n=0
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Subdiagonal and diagonal K-point Padé approximants A,I:I]’,ﬁzhlz"(h) to Stieltjes function f(h)

represented by (9), constructed from N, Ns,..., Nk coefficients of the Stieltjes series f(h —
hi), fa(h = ha),..., fk(h — hg) respectively, are given by

ab +alh+ - +al,hM

ANUN2 Ny 3 10
hyha,..hy ( ) 1+b{h+...+b{w+lhl\fl+l ( )
where
(N-1 A
M="— and I=0, if N=Y Njisodd,
(N -2) E o
M = 5 and I=1, if N=ZNjiseven.
i=1
Let us consider K power expansions of A,Izll‘ h’j’ N(h) at h = h; (j j= ,2,...,K)
ikl (1 E:GAh hj)', I=0,1, j=12... K. (12)
n=0
The rational function A,’:"’,ﬁ" “NK () is the K-point Padé approximant to K power series (9),
provided that, cf. [1, Chap. 17],
Glat=finy n=01,...,Nj=1, j=1,2,..,K, I=0,1. (13)

On the basis of [1, Chap. 17B] K-point Padé approximants defined by (10)-(13) have the following
continued fraction representation,

Nl,N2,~-~,Nlc(h) =

hy,ha,....h
g1i(h—hy)  g12(h—hy) giN, (h = hy)
1 - 1 + T+ 1 +
g2,1(h —hy)  ga22(h — ha) 92,N,(h — h2) (14)
1 - 1 + T+ 1 +
gr,i(h—hg_1) gka(h—hg) 9K, Ni(h = hg)
1 + 1 + 4+ 1 '

The above specific notation for Padé approximants is clarified in detail in [1-3]. Parameters gy ;
appearing in (14) are uniquely determined by Ny, Na, ..., Nk coefficients of the Stieltjes series (9)
(j =1,2,...,K). Moreover the parameters g, ; are positive, cf. [1, Chap.17],

gnj >0, n=12,...,N;; j=12,...,K. (15)

3. CONTINUED FRACTIONS BOUNDS ON Ac(h)/A;

Now we are prepared to introduce a continued fraction operator SB(.)

gni(h = hn)  gna2(h - hn) Inp(h — hn) (16)
1 + 1 + T+ 14+ ()b = hy)

From (14) and (16), it follows

S2(.) =

S{V‘ é\") o Sll\(/l\' (0) = Aijyll,’lﬁf’ o K (h). (17)
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ley !N . »
Of an additional interest is the continued fraction A,”1 %, 5% K" (h) defined by

No —-—N1,N3,..., Nk
ST 892 Bl (Ve w1 == By e ) =
gri(h—hy)  gra(h—hy) gi,n, (h = hy)
1 + 1 + T+ 1 +
g2,1(h —hy)  gaa(h — ha) g2,N, (h — ha) (18)
1 + 1 + 7+ 1 +
gra(h—hk-1) gk2(h—hg) gk.Ny (b= hk)
1 + 1 + T+ 1+ Vg nesi(h = hi)

where parameter Vi n, satisfies the relations

sMighe SNK(Vk N;\+l)‘h___0 =-1, Vgne+1 >0. (19)

It has been shown in [, Chap. 17] that the Stieltjes function f(h) given by (9) takes values within
the following limits

SsNigh:  SNK(0) and SMS)?...SNK(VkNe+1), 0<h<oco. (20)
For a fixed h and known hj, N; (j = 1,2,..., K), it is of interest, which formulae given by (20), and

(20), represent the upper and lower estimations for f(h). To answer this question, let us introduce
new notations for the Stieltjes series f;(h — h;), cf. (9),

filth = hj) = £V (h = hy). (21)
. ) . (K,Ng+1)
Consider now the function f (h — hi) defined by
fl(l,l)(h_hl) =S{V'S-§V2. (f(k I\;\+1)( hk))- (22)
From relations (15), (19) and the analytical property A¢(0)/A; > 0, it follows that
0 < fiE M (h = he) < Vigngsn. , (23)

The inequality (23) allows us to formulate

Lemma 1. The estimations (20); and (20), of the function f(y) (9) obey at fixed h € (hy, hy41),
0 < r < K the following inequalities:

(12 hiR) < (—1)Re gl ... SEF (Vi s 41

(24)
(-1)RAK) 2 (-1)R811 852 ... SEF(0),
where
R:'ZNJ7 N():Oa h0=07 hK+1=OO. (25)

j=0

Proof: The relations (24)-(25) are a direct consequence of the relation (15), the recurrence formulae
for the continued fractions (17)-(18) and the inequality (23).
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4. INEQUALITIES FOR EFFECTIVE MODULI A¢(h)/)\;
Now we are prepared to formulate the general inequalities for the effective transport coefficients
Ae(h)/ A1 of two-phase media.

Theorem 1. The effective moduli \o(h)/\, of two-phase media satisfy at fixed h € (hy, hy41), 0 <
r < K the following general inequalities:

(i) Ifhy <h < hpyy and 0<h <1, then

(02 > )R [ (- DS SY (Vi) y

(—1)“*;(1") <(-DR[1+(h-1)8M s 5y (0)]. P
(ii) Ifh, < h < hy41 and 1 < h < 00, then

(072 < CR [+ (- S SE Vi) y

(—1)'*5-";1'—1) ()R [1 4 (h—= 1)3{”’159’%..35&‘(0)] : <t

where as previously, R and hk 4, are given by (25).
Proof: From Lemma 1 and the definitions (3) and (9), follow directly the inequalities (26)-(27).

With respect to the available parameters h, Nj and h; (j = 1,2,..., K), the general inequalities
(26)-(27) identify explicitly the estimations

1+ (h=1)SM SN2 ... SNK (Vi ng+1) and 1+ (h—1)SNsN2 | gNk(0) (28)
as the upper and lower bounds on A¢(h)/A1, respectively. The derived formulae (26)-(27) are the

main theoretical result of the present paper.

5. PARTICULAR CASES OF THE GENERAL INEQUALITIES

Now we are in position to investigate the particular cases of the general inequalities (26)-(27). At
the input data given by

Nj=1, if hj#1,(G=1,...,n—1),
N, 21 if h,=1, (29)
N;=1, if hj#1,(j=n+1,...,K)

the relations (26)-(27) take the form:

(i) f0<h<1land h, < h < h;y1, then

(-1)’?5&(—1’3 > (-1 [1+(h=1)8]... S ... Sk (Vi)
(30)
(—1)“‘;(]”) < (-DR[14 (h=1)S}... 5. Sk(0)],
(i) If 1 < h and hy < h < hy41, then
(—1)““'(}” < (=1)E [1 +:(h-1)8)...80m, ..S}((VK,NKH)] :
M (31)
Ae(h)

> ()R 1+ (h-1)S}... ¥ ... 5k(0)],
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By inserting the input parameters
N1 Z 1 for h1 =] » (32)

into (26)—(27), one obtains

1+ (h-1)SM(0) z’\‘;‘(l”) >14 (h=1)SM(Vkng+1), 0<h<1, | (33)
(1 2B < 14 (b )Y Vi)

5 lh 1<h, (34)
(0% 28> M [ - st ).

The right-hand sides of (30)-(31) and (33)-(34) coincide with the well known estimations of
Ae(h)/Aoriginally derived by Milton in [17]. For

Ni=1 for h =1 and Ny, =2 for h; =1, (35)
the inequalities (26)-(27) reduce to the Wiener [24]

1+ (= 18}0) > 28 > 14 (b )8} Viewan), 0<h<oo (36)
1
and Hashin-Shtrikman bounds [13]
2 )\e(h) 2
1+ (h=1)S}0) 2 25 2 1+ (h = DSH(Vicwenr), 0<h<1,
1
Aelh) b

1+ (h—1)83(0) < <14 (h=1)83(Vkne+1), 1<h<o.

Ar &
The general inequalities (26)-(27) and the particular ones (30)-(31), (33)-(34) specify, with re-
spect to the available h, h; and Nj, the upper and lower estimations for Ae(h)/A;. Such a general
specification of the bounds on A¢(h)/A; has not been available earlier.

6. RECURRENCE FORMULAE FOR EVALUATION OF BOUNDS ON \.(h)

Let us consider the Stieltjes series given by, cf. (9) and (22),

FED = ham) = 3 £ = b, (38)

n=0

and a class of Stieltjes expansions

[0 @]
Fo(h = hyn) = Y fED(h = )" (39)
n=0
defined by:

(i) Fori=1, j=1,2,...,N; and m=1,2,...,K

(1,5)
(L) _p) = f1°(0) ,
i =3 + (b = h)) f5 T (R = hyy) (40)

WMD) ) = 3D (R =-hy), m=23,... K
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(i) Fori=2, j=1,2,...,N; and m=2,3...,K

£57(0)
+ (h = ho) f2ID(h = hyy)

(iii) Fori =K, j=1,2,...,Nx and m=K

£5%(0)

(K:3) (b — h,,
L i 1+ (h = hg) fa 7 (h = hm)’

where K Stieltjes series (38) are the input data for (40). It is obvious that linear fractional trans-
formations (40) applied to the K series given by (38) lead to a continued fraction (14). Let us
start from relations (40);. By substituting the right-hand sides of (39) into (40);, for i = 1, fixed
m(m=1,2,...,K)and j =1,2,..., Ny, we obtain the following recurrence formulae:

1,5)
c(lbj+1) f10 (Lj+1) — _ 1 (1,J+1)f(1,1)
m ? mn y P b
f(l,J) fgéi) = m(n—j)
1,j+1 1,j ~ ; 1,j :
AR L AR B I (AR L L A A T3 (41)
(1,j+1) (1 ]+1) (1,5+1)
f( J+1) m()J =1 (1,7+1) — fm(" 1) if m>1

m0 h'm - hl ’ mn hm _ hl

for evaluation of parameters g, ; = fl((l)'j ) (j =1,2,...,N;) of the continued fraction (14) and the
coefficients f,(,?;,l)of a Stieltjes series fy(yf‘l)(h = Rgn) (1= 2,3, 005, K)

FRO(h = hy) = zf(1N1+1 (h = hy)" = Z F@O(h — (42)

n=0
According to (40), the series (42) is a starting point for eva.luatlon of the parameters g2 (3=

1,2,...,N3) of continued fraction (14) and coefficients f,(n of the Stieltjes series f (h B )
where m = 3,4,..., K

FOV(h = hpy Zf(2 Na+1)( Zf(a D(h = hyy (43)

n=0

After K steps we arrive at parameters g,; (n = 1,2,...,K; j = 1,2,...,Nj; 7 = L,2,...,K)
defining the continued fraction (14). It is worth noting that the recurrence relations (40) lead to
K-point Padé approximants consisting in a special way of K one-point Padé ones, cf. [1, Chap. 17].
Consequently of interest are the relations given by (41) only. ;

7. SCHEME OF NUMERICAL EVALUATION OF Gy

Basic recurrence relations for computing the parameters g, ; of the continued fraction (14) from
the truncated series (38) are given by

j=0’1’27""Np_1a 9p,j+1 = @0,
n=1,2..,N,—1—3

' et (44)

j+2 i ] j+1

a(_JiF ) = 1 aS{'n) = —a(jH) (z a§]+2)a£,]f, )) )
0

s=-1
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and
([ §=1,2,..;Nm—1, §*D =i
a(])
0
(n=1,2,...,Ny, =1,
. o) _L ic(j+1)a(1)
. Wiz’ | (45)
[ (G+1
; =1
n=1,2...,Ny—-1, afith=2 ,
< h’Tn '_hp
i) g6+
aglJ'H) g B n—1
T ¢ hm—-hp

Formulae (44) and (45) are a straightforward representation of the recurrence procedure (40). The
evaluation of coefficients g, ; of a continued fraction (14) via (44) and (45) goes as follows. First

we substitute ol = 1(;’1) (s =1,2,...,N) into (44) for computing g; 5 (s = 1,2,...,Ny), next

al") = f0Y into (45) for getting %" = a{™*) (m=2,3,...,K; s =1,2,..., Ny). New input
data o) = féf’l) lead via (44) and (45) to the set of parameters g2 s (s = 1,2,...,N3) and set
of coefficients fio") = agN'"H) (m = 3,4,...,K; s = 1,2,...,N,,), respectively. By repeating
successively the evaluation procedure described above we arrive at g3 5 (s =1,2,...,N3),045 (s =
1,2,...,Ny), and finally at gx s(s = 1,2,..., Ng). Now we are prepared to compute the coefficient
Vi N, satisfying (19). After some rearrangements of (19) we obtain

mi= 1.2, .5 5, Ny,
j:1,27...,Nm, (46)
Vm,j—gm,j

Vinj+1 =
™ Vm,jhm '

where coefficients g,, j and N,, are known, while V;; = 1. To complete relations indispensable for
evaluation of the bounds on A¢(h)/A;, we demonstrate the last recurrence formulae

m=K,K-1,...,1,

j=0,1,...,Np — 1, (47)
Q) = e
for computing the continued fractions at fixed h
QUI(h) = |18 ... SR¥| or |S118Y . SRE (Viewien)), (48)
from the input data
QN g = { 0 for (48). (49)
Vi N (h—hg)  for (48),.

8. NUMERICAL TEST

For the illustration of the Theorem 1 let us examine the following Stieltjes function

F(h) =1+1n[0.5(h+1)], h>0 (50)
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representing qualitatively the effective modulus Ae(h)/A; of the inhomogeneous media, cf. (2)-(3).
The power expansions of F'(h) at K fixed points h = h,, (m = 1,2,..., K) are given by

Fu(h = hm) = 52 Frn(h = him)",  Fmno = 1 + In(0.5(hp, + 1)),

(0.5)" q o
n[0.5(hm + 1)’ n=12....

On account of (6), (7), (9), (22), (38) and (51), we obtain

(1 1 Z 1 1) h i hm)n (52)

an = (_1)n+1

(i) If hyp # 1, then

£ = L [ 14 10[0.5(hn + )] |

hm —1
53
f(1.1) a 1 [ (0.5)" f(1,1) ] R ) (53)
mn hm —1 | n[0.5(hm + 1)]? m(n—1) |°* 145
(ii) If hyy = 1, then
n+1
(1,1) _ _ (0.5 £
fmn "W n=0,1,.... (54)

By applying the recurrence formulae (44)-(49) to the input data (52)-(54) we have evaluated the
upper and lower bounds on the Stieltjes function F'(h) = 1+ 1n[0.5(h+1)]. The results are depicted
in Figs. 1, 2 and Table 1.

9. APPLICATION

Prediction of the effective parameters from the given experimental data is one of the main tasks of
the mechanics of inhomogeneous media. Theorem 1 derived in Section 4 jointly with multi-point

20 _

8L | imtosthe))

161 ——— 1+(h-1)51 25,151 (0) N3=1 ;

T & ) S 14(h=-1)S 251 151 1 (V3,2) hf1_(_1_5 o

12
10

Bounds on Stieltjes function

o NV A OO @O

h
1072101 . 100 10' -102. 103 104 105 108 107

Fig. 1. Graphical illustration of the Theorem 1 for the parameters: R=0, if 0 <h <1; R=2, if
1<h<10% R=3,if10° <h <10% R=4, if 10° < h < oo,
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20 _
18 [
I ——— 1+4In(0.5(h+1]]
16L ——— 1+(h-1)51 25 25 2(0) N3=2
14 | 1+(h-1)$1 251 251 2 (V3,3) h3=108 ~—

12]
10]

Bounds on Stieltjes function

o N O

h
10-2 10" 100 10" 102 108 104 105 106 107

Fig. 2. Graphical illustration of the Theorem 1 for the parameters: R =0, if 0 <h<1; R=2, if
1<h<10%; R=4,¥10° <h < 10% -R=6 if DA<k

Table 1. The best upper and lower bounds on In(0.5(h + 1))
evaluated at hy = 0.5 and hy =1 for a given Ny, N».

1+ (h—1) 1+ (h—-1)

h | stsisiqo) | m0S(h+1) | s2slsl(vis)

0.25 | 0.53330481 | 0.52999637 0.49470804

Ny =1,Ny=1 0.75 0.86623969 | 0.86646861 0.86801807
10.0 2.34019024 | 2.70474809 4.64456884

0.25 | 0.53018988 | 0.52999637 0.52754019

Ny =2,Ny =1 0.75 | 0.86648037 | 0.86646861 0.86640772
10.0 | 3.06706375 | 2.70474809 2.39208456

0.25 | 0.53001523 | 0.52999637 0.52960660

Ni=2,N,=2| 0.75 | 0.86646892 | 0.86646861 0.86646587
10.0 | 2.63065777 | 2.70474809 2.96268723

Padé approximants technique developed in [1-3] are particularly suitable for solving that problem.
Let us start from the experimental measurements reported in [18]. Perrins et al. measured the
effective modulus A.(h) of the hexagonal array of brass cylinders of the conductivity Ay immersed
in water of the conductivity A\;, where Ao /A = h > 108 ~ o0o. Their experimental results are recalled
in Table 2. By constructing the continued fractions 1+ (h—1)S} 754 (0) and 14 (h—1)S§ 5155 (Va,2)
for the experimental data (Table 1), we have arrived at the bounds on Ae(h)/A1, h € (0,00) shown
in Figs. 3 and 4. Note that the obtained bounds are narrow, despite they were calculated from only
five power series coefficients Fyp, Fig, F11, Fi2, F30. The effective modulus Ae(h)/ A1 of a hexagonal
array of cylinders have been evaluated theoretically as well, cf. [18]. For ¢y = 0.65, 0.76 and 0.80,
the theoretical results of Perrins et al. are presented in Table 3. By employing the multi-point Padé
approximants we have computed, in terms of upper and lower bounds, the continuous distribution
of Ae(h)/A1. The results are depicted in Figs. 3 and 4. For discrete theoretical data (Table 3)
the multi-point Padé approximants bounds coincide. They lay within the bounds evaluated from
experimental data (Table 2).
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Fig. 3. Continuous distribution of the upper and lower bounds on the effective conductivity Ae(h)/A1 of
hexagonal array of cylinders evaluated from the discrete experimental measurements (Table 2, Perrins at al.
1979) and the discrete theoretical data (Table 3, Perrins at al. 1979), 0 < h < 1.
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Fig. 4. Continuous distribution of the upper and lower bounds on the effective conductivity Ae(h)/A1 of
hexagonal array of cylinders evaluated from the discrete experimental measurements (Table 2, Perrins at al.
1979) and the discrete theoretical data (Table 3, Perrins at al. 1979), 1 < h < co.

Table 2. Experimental measurements of the coefficients of the power expansion of A¢/\;

for the hexagonal array of cylinders (Perrins et al.1979)

h() =0 h1 =] h2 =00
Yo = 0.65 Fo; ='0.203 F11 = 0.650 F21 =4.93
Fj, =-0.114
po =0.75 | Fyp; =0.132 | F;; =0.760 Fy =17.58
Fip = —0.091
w2 = 0.80 | Fo; = 0.097 | F1; = 0.800 Fy; =10.34
Fiy = -0.08
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Table 3. Values of Ae(h)/A1 for a hexagonal array of cylinders evaluated theoretically by Perrins et al.1979 '

02 h | 1.00 20 50 00

0.650 | 1.000 | 3.988 | 4.473 | 4.876
0.760 | 1.000 | 5.583 | 6.707 | 7.760
0.800 | 1.000 | 6.590 | 8.260 | 9.958

10. SUMMARY AND CONCLUSIONS

By applying the multi-point Padé approximants technique developed in [1, Chap. 17] the infinite
set of new general inequalities, determining the upper and lower bounds on the real- valued effective
transport coefficients of two-phase media has been established, cf. Theorem 1.

For the given parameters h, hj Nj (j = 1,2,..., K), the inequalities (26)-(27) identify the bounds
on A¢(h)/A1 as the upper and lower estimations of Ae(h)/A;. Such an identification, being important
for the investigation of Ae(h)/A1, has not been reported earlier. For particular cases the general
bounds (26)-(27) reduce to well known estimations of Milton [17], Hashin-Shtrikman [13] and
Wiener [24]. The recurrence formulae used for determining the upper and lower estimations of
Xe(h)/A1 from K truncated Stieltjes expansions of A¢(h)/A; has been derived and tested successfully
for correctness, cf. Sections 7, 8 and Figs. 1, 2.

Multi-point Padé approximants method developed in [1, Chap. 17] appear to be particularly
useful for the prediction of the effective properties of inhomogeneous media from the available
experimental measurements and discrete theoretical data, cf. Sections 9 and Figs. 3, 4.
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