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Numerical simulations of the mechanical behaviour of structures composed of cohesive-frictional materials
such as soils, concrete and rocks, still suffer from a lack of robustness. Too often an inability to continue the
computation beyond a certain level of loading is encountered. Also, predictions of the structural behaviour
can be quite inaccurate, with errors amounting up to 100%. Some typical causes for these observations
are discussed and some remedies are suggested.

1. INTRODUCTION

Since the early use of computers for structural analysis in the 1950s, a continuous improvement
has been observed in the ability of software to simulate the behaviour of structures and structural
components. Concentrating on the finite element method, the initial focus on linear elastic material
behaviour was extended to geometrically and physically nonlinear behaviour in the late 1960s and
early 1970s. Indeed, successful computations have already been reported some twenty-five years ago,
especially for metals, where geometric nonlinearity and relatively simple plasticity models suffice
to describe many of the essential features.

Computations appeared far more complicated when endeavours were made to obtain accurate
numerical solutions for failure of structures and structural components. This already holds true
when metals are considered. For structures composed of cohesive-frictional materials (soils, concrete,
rocks, ceramics, powders), the difficulties encountered seemed almost insurmountable because of
typical features like friction, non-associated plasticity, cracking and softening.

Herein, we shall make a modest attempt to categorise these difficulties. Of course, such a categori-
sation is by nature deficient. In the present case, it simply reflects some of the author’s experiences
with difficulties he has encountered in the numerical modelling of these materials and structures.

2. AN OVERVIEW

A crucial step for any prediction of structural behaviour is the choice of the constitutive model
for the material behaviour. Here, two potential pitfalls exist. Firstly, there is the requirement of
proper constitutive modelling, in the sense that for elementary tests the material response should
be simulated closely. Secondly, the constitutive equations together with the kinematic equations,
the equations of motion and the appropriate boundary conditions should result in a rate boundary
value problem that is well-posed. Let us suppose that we have a constitutive model that satis-
fies both above listed requirements. Then, the issue arises of a proper discretisation of the rate
boundary value problem. This can again be a source of errors and difficulties, not in the least
because many discretisations that perform well for linear systems, can behave poorly for nonlin-
ear applications. Locking of elements for constrained media and spurious mechanisms induced by
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material nonlinearities are prime examples. Finally, even if the constitutive model and the adopted
numerical methodology are sound, the analyst can arrive at answers that are far from the physical
reality. In particular the boundary conditions that have to be modelled are often quite problematic
for complex structures. Improper assumptions can cause deviations in the structural response that
easily amount to more than 100%.

We have structured this contribution as follows. Firstly, we shall discuss an example of how
constitutive modelling can affect the outcome of an analysis. Concrete cracking will be considered
and elementary examples will be treated subject to nonproportional loading paths of biaxial ten-
sion and shear. Then, a succinct review will be presented of the ill-posedness that results when
a straightforward smeared crack model for concrete or rock is adopted in the constitutive mod-
elling. In the next section, a simple linear-elastic, perfectly plastic soil model will be adopted to
show the possible shortcomings and instabilities of commonly used finite elements. Finally, we shall
treat the collapse analysis of a real reinforced concrete three-way bridge slab. This analysis clearly
demonstrates the need for a good engineering estimate of the appropriate boundary conditions.

3. DEFICIENCIES IN THE CONSTITUTIVE MODELS: SMEARED CRACKING

The success of accurate predictions of the direction of crack propagation in smeared-crack finite
element representations depends to a large extent on the tangential shear stiffness of the consti-
tutive relation. A large number of constitutive models have been proposed in the past, which lead
to different predictions for the incremental shear stiffness. Sometimes these differences are large,
sometimes they are hardly discernible, which is related to the similarity of some of the fracture
formulations.

A possible way to categorise crack models is to divide them into models that are based on a total
formulation, i.e. there exists an injective relation between the total stresses and the total strains,
and models that employ a linear relation between stress rate and strain rate via a loading history
dependent tangential modulus. Examples of the former category are the elasticity-based fixed crack
model, the rotating crack model [12], a deformation plasticity theory with a Rankine type yield
locus [14] and elasticity-based damage models, either isotropic [19] or anisotropic [18]. In the second
class of models we have the multidirectional crack model [8-10, 21] and the Rankine plasticity
model based on a flow theory of plasticity [14]. Although major conceptual differences underly the
various formulations, remarkable similarities exist especially between plasticity-based models and
the familiar rotating crack model when typical non-proportional load paths are simulated. On the
other hand the classical fixed crack model gives predictions that significantly differ from most of
the other approaches, in the sense that the model usually responds too stiff.

3.1. A categorisation of smeared-crack models

Limiting the discussion to grade-1 materials a total stress-strain relation can be defined as

€=f(017?=ﬂ'), [1)

with f a tensor-valued function, £ a strain tensor, o a stress tensor, and i and & tensor and scalar-
valued internal variables, which reflect the loading history of the material element. Eq. (1) assumes
the existence of a single tensor-valued internal variable, p, and a single scalar valued internal
variable, k. Extension of this formulation to include more such variables poses no fundamental
problem, but is not necessary for our present purpose. Alternatively, a constitutive formulation can
be phrased in rate format, such that

€= flo,0,nm,k), (2)
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whereby the dots signify differentiation with respect to a virtual time. A subclass of constitutive
models that fits within the framework of Eq. (2) are the incrementally-linear models,

é == C(avna K)dv (3)

with C a tangential compliance tensor.

A simple model that falls into category (3) is elasticity: € = f(o), which for linear elasticity
reduces to € = C®g, with C® the fourth-order elastic compliance tensor with E the Young’s modulus
and the Poisson’s ratio v as constants for the isotropic case. History dependence can be incorporated
in a simple manner by degrading the elastic compliance via a scalar-valued internal parameter w:

Cto
= . 4
i s (4)
or with D¢ = [C®]~ !,
o= (1-w)D%. (5)

In this isotropic elasticity-based damage theory the damage variable w grows from zero to one
(complete loss of integrity). Damage growth is possible if the damage loading function

fER) =E—k (6)

vanishes. In particular, the damage loading function f and the rate of damage growth w have to
satisfy the discrete Kuhn-Tucker conditions

f<0, w>0, fw=0. (7)

In (6) € is the equivalent strain, which can be a function of the strain invariants, the principal
strains as in Reference [19]

3
=3 (e))?, (8)
=1

with &; the principal strains, and (¢;) = ¢; if ¢, > 0 and (g;) = 0 otherwise, or the local energy
release due to damage

E= %ETCEE. (9)

The parameter x starts at a damage threshold level kg and is updated by the requirement that
during damage growth f = 0. Damage growth occurs according to an evolution law F(£) such that

w = F(£) (10)

Isotropic damage models have been used successfully in predictions of crack propagation in plain and
reinforced concrete [19]. The disadvantage of an isotropic damage model is that possible compressive
strut action is eliminated. This is a disadvantage particularly for the analysis of reinforced concrete
structures.

Directional dependence of damage evolution can be incorporated by degrading the Young’s mod-
ulus £ in the direction of the major principal stress only. When, for planar conditions, distinction
is made between the global z, y-coordinate system and a local n, s-coordinate system aligned with
the principal stress axes one obtains in the local coordinate system the secant tangential stiffness
relation

Ons = *Dipgéns (11)
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with 8Dy defined as

(1-w)E 0 0
sDng - 0 E U P (12)
0 0 BG

with w = w(enn) and B = B(enn) functions of the normal strain in the local n-direction. The (secant)
shear reduction factor § represents the degradation of the elastic stiffness G and is gradually reduced
from one to zero. Alternatively, B can be assigned a constant value between zero and one. In a
further enhancement Poisson coupling can be added in the secant stiffness relation of the damaged
material [14].

Let now ¢ be the angle between the n and z axes and assume that the directions of principal
stress and strain coincide throughout the damage process. Then, the standard tranformation rules
for second order tensors apply:

ens = T(¢)exy (13)
and

ons = T(P)oxy (14)
with T the standard transformation matrix. Combination of Egs. (11), (13) and (14) yields

0xy = TY(9) *Das T(9) Exy - (15)

Equation (15) incorporates the traditional fixed crack model and the rotating crack model. The
only difference is that in the fixed crack model the inclination angle ¢ is fixed when the major
principal stress first exceeds the tensile strength (¢ = ¢o), while in the rotating crack concept ¢
changes such that the n-axis continues to coincide with the major principal stress direction. This
difference has profound consequences when deriving the tangential stiffness, especially with regard
to the shear term. For the fixed crack model differentiation of Eq. (15) yields

Gxy = T(¢ho) Duns T(¢0) éxy (16)
with D, the local material tangential stiffness matrix:

(1 == W,Enn)E 0 0
Dys = 0 E 0 |, (17)
B'nsG 0 pG

where the prime signifies differentiation with respect to &,5,. From Eq. (17) we observe that for
non-constant 3 the local material tangential stiffness matrix becomes non-symmetric. On the other
hand, the requirement of coaxiality between stress and strain tensors that is imposed in the rotating
crack model results in a considerably more complicated expression [3, 21, 28]:

6y = [T(#0) Dus (1—L)T(do) +aT™(¢0) L T(do)] by (18)

with I the identity matrix, L = diag[0,0, 1], and & = (0np — 0s)/[2(Enn — €s5)]. Comparison of
(16) and (18) shows that the tangential shear stiffness is now given by a instead of BG. As we
shall show in the example to be discussed in the next paragraph a can become negative, leading to
a reduction of existing shear stresses and thereby also reducing the existence of locked-in stresses
[21].

In all formulations discussed above the strains were recoverable. Upon removal of the load the
strains vanish. This is not so for a deformation type plasticity model, which can also be cast in the
format (1). In it the total strain is partitioned into an elastic part €° and an inelastic part g, as
follows

e=e*+¢€. (19)
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The elastic strains are related to the stresses via

e =C%, (20)
while the inelastic strains are derivable from a plastic potential f
i
i X 21
c do (21)

where the plastic multiplier A and f(o,7,x) must satisfy the discrete Kuhn-Tucker conditions
A>0, f<0and fA=0. Accordingly, f also takes the role of a loading function. Combining Eqs.
(19)—(21) results in
e=C%+ A@i (22)
do
which, upon elaboration, can be shown to fit the format (1).

We now select the Rankine (major principal stress) criterion as loading function and plastic
potential and we introduce the reduced stress tensor £ = o — 9, with 5 the so-called back stress
tensor, which governs the amount of kinematic hardening. In a plane-stress configuration the major
principal stress can be expressed in terms of the stress vector with the aid of Mohr’s circle and one
obtains

f=1/3€"Pe+ 1aTe— () (23)

with the equivalent stress & a function of the internal parameter &, and -y a factor which sets the
ratio between kinematic hardening/softening and isotropic hardening/softening. Pure kinematic
hardening is obtained for v = 0 and v = 1 sets the other limiting case of pure isotropic harden-
ing/softening. The projection matrix P and the projection vector x are given by

boh o
P=|-1 10/, (24)
0 0 2
and
x=[1,1, 0T, (25)

respectively. The equivalent stress &(vyx) is the current uniaxial tensile strength which starts at the
initial tensile strength f, and evolves for instance according to a tension-softening model with a
fracture energy Gp. The internal parameter x is assumed to be a measure for the internal damage
and is supposed to be determined by a work-hardening hypothesis

KO = th-:i 4 (26)
The back stress 1 is given by
of
_ _ bt 2

with Fis a secant stiffness modulus and A = diag[l, 1, %] A rationale for this formulation has
been given by Feenstra [14].

Alternatively, the Rankine yield criterion (23) can be used within the framework of a flow theory
of plasticity. While the strain decomposition (19) and the relation for the elastic strains (20) remain
unaffected, a direct expression for the inelastic strain in the sense of Eq. (21) is no longer assumed.
Instead, an expression for the inelastic strain rate is adopted

=221

do (28)
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where the plastic flow rate A must satisfy the Kuhn-Tucker conditions: A > 0, f<0and fA=0.
In a similar spirit we now have to define evolution equations for the rate of the internal harden-
ing/softening parameter &

ko = ETé (29)
and the back stress rate

A af

= A1 —v)ExsA=—.

N = A(1 — ) Exs % (30)
It is noted that differentiation of Eqgs. (19)-(20) and combination with Eq. (28) results in

¢ = C% + Aot

3 o+ e (31)

which, upon further elaboration can be shown to fall within the format (3).

3.2. An elementary tension-shear model problem

The fundamental differences of the formulations discussed so far will be elucidated with an elemen-
tary problem proposed by Willam et al. [28], in which a plane-stress element with unit dimensions
is loaded in biaxial tension and shear. This causes a continuous rotation of the principal strain
axes after cracking, as is typical of crack propagation in smeared crack finite element analysis.
The element is subjected to tensile straining in the z-direction accompanied by lateral Poisson
contraction in the y-direction to simulate uniaxial loading. Immediately after the tensile strength
has been violated, the element is loaded in combined biaxial tension and shear strain, Figure 1.
The ratio between the different strain components is given by Aez, : Aeyy : Ay = 0.5:0.75: 1.
The reference set of material parameters is: Young’s modulus £ = 10,000 MPa, Poisson’s ratio
v = 0.2, tensile strength f; = 1.0 MPa. A linear strain softening diagram with a fracture energy
G¢ =0.15 x 107® N/mm has been used.

B == B Eyy
[ = . oy

b)

Fig. 1. Tension — shear model problem: a) tension up to cracking, b) biaxial tension with shear beyond
cracking

The behaviour of the different formulations for smeared cracking can be studied in detail with this
problem. The constitutive behaviour will be compared with respect to the shear stress—shear strain
behaviour and the normal stress-normal strain behaviour in the z- and y-directions. Particularly
the shear stress-shear strain response gives a good impression of the behaviour of the model when
applied to the analyses of structures. The first issue which will be treated is the different behaviour
of the models formulated in the total strain concept. The comparison between the isotropic damage
model, the rotating crack model and the Rankine deformation plasticity model with isotropic and
kinematic hardening should make clear whether the plasticity model is capable of predicting a
flexible shear stress-shear strain response. The second issue is the comparison of the rotating
crack model and the Rankine plasticity model within an incremental format. Because the response
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of models with a total formulation is in general more flexible than the response of models with
an incremental formulation, we expect that the Rankine plasticity model with an incremental
formulation shows a less flexible shear stress-shear strain response, but the comparison should
provide insight if this less flexible response is still acceptable.

The shear stress—shear strain response of the fixed and rotating crack models and the deformation
theory based plasticity models is shown in Figures 2-4. The fixed crack model has been used

=°0.20+ i

£ initial shear modulus

-; rotating crack model
=.0.104 Rankine isotropic

& fixed crack model

0.0

4

Rankine kinematic

-0.10

0.5 1.0 1.5 2.0
Yy [107]

Fig. 2. Total formulation of the constitutive models. o5, — 7., response.

ES" 10. rotating crack model

£ ] fixed crack model

2 0.8 -

& 0 6: Rankine kinematic
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0475 10 0 30
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Fig. 3. Total formulation of the constitutive models. o, — £.- response.

'§ 1.0- rotating crack model
'3
= 0.8- Rankine kinematic
g 0.6 1
0.4 - fixed crack model
Rankine
0.2- isotropic
%5060 10 20 30

£y, [107]

Fig. 4. Total formulation of the constitutive models. oy, — £,, response.
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with a shear reduction factor 8 = 0.05, which results in a monotonically increasing shear stress
with increasing shear strain, Figure 2. The rotating crack model shows an implicit shear softening
behaviour which has been observed previously [21, 28]. It is interesting that the same behaviour
occurs for the deformation plasticity model either with isotropic or with kinematic hardening. The
two formulations are in fact indiscernible until the shear stress has almost softened completely.
Then the isotropic and the kinematic hardening models yield different responses which is due to
the fact that with isotropic hardening it is impossible for the shear stress to become negative for
positive increments of the shear strain component of the strain vector. It is obvious from Figure 2
that the differences with the rotating crack model are small, but that the fixed crack model gives
a completely different response.

The 0,2, response depicted in Figure 3 shows that the input stress—strain softening diagram is
exactly reproduced by the fixed crack model. This is logical, since the softening has been monitored
in the fixed crack directions which are aligned with the z- y-axes. The behaviour of the other models
shows an implicit normal stress-shear stress coupling. The Rankine plasticity model with isotropic
softening shows a progressive degradation of the stiffness until the stress has been decreased to
approximately 50% which is attended with a zero shear stress. At this stage the apex of the yield
surface has been reached and the stress components in z and y-direction are softening in the
direction of the origin. The response in the lateral y-direction is shown in Figure 4 which shows
the formation of a secondary crack perpendicular to the first crack for the fixed crack model which
again reflects the input softening diagram. The rotating crack model and the Rankine plasticity
model with kinematic softening show a gradual degradation of the stiffness in the y-direction. This
can also be observed for the Rankine plasticity model with isotropic softening until the shear stress
becomes equal to zero and the stress in y-direction begins to soften linearly which is in accordance
with the input softening diagram.

Although the tendencies are the same, somewhat larger differences exist between the rotating
crack model and the deformation-type plasticity theories on one hand and, on the other hand, the
isotropic damage models as formulated in Eqgs. (5)-(10). In particular the shear stress response is
stiffer, although to a lesser extent for the equivalent strain definition via the local energy release
(Eq. (9)) than for that of Mazars (Eq. (8)), Figure 5. While the oz,—€;; curves are rather similar,
Figure 6, the oy, —&,, responses displayed in Figure 7 show that here the isotropic softening models
react much softer. The above observations are an inherent property of the isotropic character of
the damage model.

The performance of the constitutive models based on a total formulation has been shown with the
elementary tension-shear model problem. The formulation of a maximum principal stress criterion
within the framework of elasticity or within the framework of plasticity does not result in major

0.20+ initial shear modulus

— damage model, eq.(8)

£ 010

Z,

& 0.0.

0.0 rotating damage, €q.(9)
crack model

V10— 0 75 20

Yy [107]

Fig. 5. Damage models and the rotating crack model. 04, — 72, response.



Robustness in numerical computations 35
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Fig. 6. Damage models and the rotating crack model. o;z — £z response.
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Fig. 7. Damage models and the rotating crack model. oy, — €,, response.

differences. In particular, the elasticity-based rotating crack model and the Rankine plasticity
model with kinematic hardening show an almost identical behaviour. The behaviour of the Rankine
model with isotropic hardening is identical to the behaviour of the Rankine model with kinematic
hardening until the shear stress is equal to zero. At that stage the apex of the yield surface has
been reached for the isotropic hardening model and the shear stress is equal to zero.

The limiting case with no softening (Gy = oo) confirms that the different formulations within
the total strain concept result in a similar behaviour. The shear stress—shear strain responses of
the rotating crack model and the Rankine plasticity model are shown in Figure 8. The response
is identical for all models with a total formulation. It is clear from this figure that although no
softening has been assumed, the shear stress-shear strain response shows an implicit softening
behaviour. Also depicted in Figure 8 is the response of the Rankine model formulated within an
incremental concept, which shows a shear stress-shear strain response that is less flexible, but
still shows an implicit shear softening. The coincidence between the rotating crack model and the
Rankine plasticity model based on the deformation theory for ideal plasticity has also been shown
in [13].

The plasticity model based on an incremental formulation has also been applied to the tension-
shear model problem with the standard softening material properties and compared with the ro-
tating crack model in the following figures. The first interest concerns the behaviour in shear which
is depicted in Figure 9. It is clear from Figure 9 that the rotating crack model has the most flexible
response in shear, but the differences between the rotating crack model and the plasticity model are
minor. Again, the Rankine plasticity model with isotropic hardening results in a shear stress equal
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to zero when the apex of the yield surface has been reached. The normal stress-strain response in
the z-direction, Figure 10, again shows an implicit normal stress-shear stress coupling for the mod-
els based on an incremental formulation, with an even more pronounced coupling for the plasticity
model. The normal stress—normal strain response in the lateral direction, depicted in Figure 11

£0.30-
§ initial shear modulus
Hao 50 incremental formulations
&0.
total formulations
0.104
%000 20 30 40 50
Yy [1077]
Fig. 8. Gf = 00. 0zy — 7Yay response.
§ S initial shear modulus
:2: Rankine kinematic
bm' 104 Rankine isotropic
= rotating crack model
-0.10

0 05 ~ 10 15 ~ 20
Yoy [1077]

Fig. 9. Tangential formulations and the rotating crack model. o, — 7z, response.
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0-%% T0 20 30

4 [1074]

Fig. 10. Tangential formulations and the rotating crack model. o;; — £, response.
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Fig. 11. Tangential formulations and the rotating crack model. o, — &,, response.

shows a similar behaviour as for the models based on the total formulation, given in Figure 7. The
response for the Rankine plasticity model with isotropic hardening again shows the linear softening
relation when the apex of the yield surface has been reached. The Rankine plasticity model with
kinematic hardening shows a gradual degradation of the stiffness in the y-direction.

3.3. Influence of crack models in reinforced concrete

Now, we shall investigate how the differences between the various smeared-crack models that were
brought out before for plain concrete carry over to reinforced concrete. This will be done by the
analysis of an idealised panel, which can be modelled as a single element [13]. The panel has the
dimensions 10 x 10 mm? and has a thickness of 1 mm. It is reinforced with one layer of a reinforcing
grid with ¢ = 0°, Figure 12. The reinforcement ratio in the p-direction is equal to 0.04232 and in
the g-direction equal to 0.00768. The Young’s modulus of the reinforcement is E; = 200,000 MPa
and the yield strength of the steel is f;, = 500 MPa. The panel is loaded in a combined biaxial
tension-shear loading with o,z = oy, = 2.54 MPa and o,, = 5.0u MPa, with p the loading
parameter such that it is equal to one at the analytical collapse load associated with yielding of the
reinforcement [13]. The analytical collapse load has been determined with a no-tension limit analysis
with linear-elastic behaviour in compression (Young’s modulus of the concrete E = 20,000 MPa).

y

yZaN

Fig. 12. Finite element model for reinforced concrete panels
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The results of the analyses are shown in Figure 13, where the loading parameter is plotted against
the 2-displacement of the upper-right node of the element. The comparison of the different smeared-
crack formulations for plain concrete shows that a proper choice is important even if the tensile
strength is equal to zero and a no tension-softening description is used. The interaction between
the reinforcement and the concrete compressive struts after cracking results in different responses.
The fixed crack model shows a collapse load which is too high, irrespective of the magnitude of
the shear retention factor. The rotating crack model and the plasticity-based models approximate
the exact failure load. The responses of the rotating crack model and the Rankine deformation
plasticity theory are the same [13].

15- fixed crack model g =0.25

AT fixed crack model g = 0.05

1.0+ -+~ ——— e - failure load
rotating crack model /

0.5- Rankine deformation
Rankine flow

0 . .
0 0.25 0.50

x — displacement

Fig. 13. Results for an idealised reinforced concrete panels

4. WELL-POSEDNESS OF MATHEMATICAL MODELS

A major problem when using a standard, rate-independent continuum for modelling degradation
processes such as smeared cracking is that beyond a certain level of damage accumulation the
governing set of partial differential equations changes type. In the static case the elliptic character
of the set of partial differential equations is lost, while, on the other hand, in the dynamic case
we observe a change of a hyperbolic set into an elliptic set. In both cases the rate boundary value
problem becomes ill-posed and numerical solutions suffer from spurious mesh sensitivity.

The inadequacy of the standard, rate-independent continuum to model failure zones correctly is
due to the fact that force-displacement relations measured in testing devices are simply mapped
onto stress—strain curves by dividing the force and the elongation by the original load-carrying area
and the original length of the specimen, respectively. This is done without taking into account the
changes in the micro-structure that occur when the material is so heavily damaged as in fracture
processes. Therefore, the mathematical description ceases to be a meaningful representation of the
physical reality.

To solve this problem one must either introduce additional terms in the continuum description
which reflect the changes in the micro-structure that occur during fracture, or one must take into
account the viscosity of the material. In both cases the effect is that the governing equations do
not change type during the damage evolution process and that physically meaningful solutions are
obtained for the entire loading range (regularisation procedures). It is emphasised that although
concrete can be regarded as a disordered material, the introduction of stochastic distributions of
defects does not replace the need for the introduction of regularisation procedures [11]. For a proper
description of failure in concrete both enhancements are necessary: enrichment of the continuum
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by higher-order terms, either in space or in time, and the introduction of the occurrence of material
flaws as a stochastic quantity.

Another way to look upon the introduction of additional terms in the continuum description is
that the Dirac distributions for the strain at failure are replaced by continuous strain distributions,
which lend themselves for description by standard numerical schemes. Although the strain gradients
are now finite, they may be very steep and the concentration of strain in a small area can still be
referred to as strain localisation or localisation of deformation.

The essential deficiency of the standard continuum model can be demonstrated simply by the
example of a simple bar loaded in uniaxial tension, Figure 14, e.g. [6]. Let the bar be divided into m
elements. Prior to reaching the tensile strength f; a linear relation is assumed between the (normal)

+Y  m elements

o-—-
——
—

- X

L L .
il =R
Fig. 14. Strain-softening bar subjected to uniaxial loading
stress o and the (normal) strain e:
o= Ee (32)
with E Young’s modulus. After reaching the peak strength a descending slope is defined in this

diagram through an affine transformation from the measured load-displacement curve. The result
is given in the left part of Figure 15, where &, marks the point where the load-carrying capacity is
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Fig. 15. Stress-strain diagram (left) and response of an imperfect bar in terms of an stress-average curve
(right)

totally exhausted. In the post-peak regime the constitutive model can thus be summarised as:
e=e*+¢, (33)
which constitutes a decomposition of the strain into an elastic part °:

et =Elo (34)
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and a contribution due to inelastic effects (e.g., cracking or plastic slip)
e =h"'(o-fi), (35)

where h plays a role for the inelastic strain €' similar to that of E for the elastic strains. In case of
degrading materials h < 0. Eq. (35) may also be thought of as an integrated form of the evolution
equation for the stress rate after failure:

o= fi+he. (36)

Now suppose that one element has a tensile strength that is marginally below that of the other
m—1 elements. Upon reaching the tensile strength of this element failure will occur. In the other,
neighbouring elements the tensile strength is not exceeded and they will unload elastically. The
result on the average strain of the bar £ is plotted in the right part of Figure 15 for different
discretisations of the bar. The results are fully dominated by the discretisation, and convergence
to a “true” post-peak failure curve does not seem to occur. In fact, it does occur, as the failure
mechanism in a standard continuum is a line crack with zero thickness. The finite element solution of
our continuum rate boundary value problem simply tries to capture this line crack, which results in
localisation in one element, irrespective of the width of this element. The result on the load-average
strain curve is obvious: for an infinite number of elements (m — oc) the post-peak curve doubles
back on the original loading curve. Numerous numerical examples for all sorts of materials exist
which further illustrate the above argument. From a physical point of view the above behaviour
is unacceptable and when we adhere to continuum descriptions one must enrich the continuum by
adding higher-order terms, either in space or in time, which can accommodate narrow zones of
highly localised deformations.

As an intermediate solution between using the standard continuum model and adding higher-
order terms the Crack Band Model has been proposed [4], in which the area under the softening
curve in the left part of Figure 15 is considered as a material parameter, the so-called fracture
energy:

szfo‘duzfae(s)du. (37)

When we prescribe the fracture energy Gy as an additional material parameter the global load-
displacement response can become insensitive to the discretisation. In finite element calculations
the crack localises in a band that is one or a few elements wide, depending on the element type,
the element size, the element shape and the integration scheme. In Feenstra [14] it is assumed that
the width over which the fracture energy is distributed can be related to the area of an element

e Ty
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h = ap/Ae = ay (Z z det(J)wEw,?) , (38)

E=1n=1

in which we and w, the weight factors of the Gaussian integration rule as it is tacitly assumed that
the elements are integrated numerically. The local, isoparametric coordinates of the integration
points are given by ¢ and 7, and det(J) is the Jacobian of the transformation between the local,
isoparametric coordinates and the global coordinate system. The factor oy is a modification factor
which is equal to one for quadratic elements and equal to v/2 for linear elements [21].

Although the introduction of a fracture energy is a major improvement in calculations using
any smeared-crack concept, locally nothing has altered and localisation still takes place in one row
of elements. This is logical, since the loss of ellipticity occurs at a local level, even though the
energy that is dissipated remains constant by adapting the softening modulus to the element size.
For numerical simulations this implies for instance that severe convergence problems are usually
encountered if the mesh is refined or if in addition to matrix failure the possibility of interface
debonding between matrix and grains is modelled by inserting interface elements in the numeri-
cal model [22]. Also, the frequently reported observation still holds that the localisation zones are
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biased by the discretisation and tend to propagate along the mesh lines. This can be nicely demon-
strated with the example of impact loading of a concrete specimen in a Split-Hopkinson device,
Figure 16 [24]. The results for the deformed specimen at failure are shown in Figure 17 for three
different discretisations in the region between the notches. We observe a clear spurious localisation
pattern with the localisation concentrated in a single band of elements which generally follows
the mesh lines and occasionally jumps from one row to the next and back without any physical
motivation.

concrete specimen
__|2 - F(1)

o 165

Fig. 16. Numerical model of Split-Hopkinson bar
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Fig. 17. Displacements of concrete specimen (t = 0.50 - 107 s)

From a physical point of view the introduction of rate dependence is perhaps the most natural
way to regularise ill-posed initial value problems which arise because of the introduction of damage
or frictional effects. Here we adopt a simple, linear rate-dependent smeared crack model as developed
by Sluys [24]. In it the major principal stress degrades according to

1
o = fi + hé S (39)
at
with &' the inelastic strain, h the softening modulus and m a rate-sensitivity parameter. Using the
rate-dependent smeared crack model as defined in Eq. (39) the experiment of a concrete specimen
under impact loading in a Split-Hopkinson bar has been reanalysed. The incremental displacement
patterns are shown in Figure 18. The most striking difference with the displacement pattern of
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Figure 17 is that localisation now does not proceed along the element lines and is no longer confined
to the rows of elements between the notches. This is even more obvious when the strains in the
vertical direction are plotted (e,,) as has been done in Figure 19. We observe a clear branching of
the cracks.
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Fig. 18. Displacements for rate-dependent analysis at ¢t = 0.45 107% s
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Fig. 19. Axial strain profile in the notched area at ¢t = 0.45-107* s
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5. SHORTCOMINGS OF NUMERICAL MODELS

Ever since the landmark paper of Nagtegaal et al. [20] researchers have tried to improve finite
element concepts such that the observed “locking behaviour” at fully developed plastic flow can be
eliminated or at least alleviated. To repeat the problem in simple terms, we refer to the elementary
element patch of Figure 20, which is thought as being representative of a large finite element grid
if the given boundary conditions are adopted (cf. [17]). For simplicity we have selected simple,
constant strain triangles and we have adopted a plane-strain configuration, so that the out-of-plane

/ fixed

Fig. 20. Locking of two three-noded triangular elements for fully developed plastic flow

strains are zero. Obviously, any constitutive relation that makes the material incompressible, such
as incompressible elasticity, or Mises—Huber plasticity at fully developed plastic flow, constrains
the movement of the right-upper node to a horizontal line when applying this kinematic constraint
to the right-lower element. Similarly, the left-upper element constrains the possible displacement of
this node to a vertical line, as also indicated in Figure 20. Evidently, no displacements of the node
are possible and an excessively overstiff behaviour is obtained in incompressible elasticity while
a severe overestimation of the collapse load is observed in elastoplastic calculations, if a proper
limit load can be obtained at all. This phenomenon, which occurs particularly for low-order finite
elements in plane strain, axisymmetric and three-dimensional configurations, is now well-known
in the literature and an abundance of possible solutions have been put forward. One of the early
solutions is the use of special arrangements of elements, such as the crossed triangular patches
[20], the use of reduced or selective integration [29], which is closely related to the B approach
of [16], the independent interpolation of displacements and pressures [5, 27], where the pressure
degrees-of-freedom are usually condensed at element level, the mixed approaches, where especially
the Enhanced Assumed Strain concept of Simo and his co-workers [26] has gained much popularity,
and finally the use of higher-order displacement models [7, 23], which is maybe the “royal road
solution”, expensive, but very robust.

While the phenomenon of “element locking” in isochoric deformations has received much atten-
tion in the past, it has not been recognised at a large scale that dilatant or contractant plastic flow
imposes essentially the same kinematic constraint upon the elements. As will be argued below in
a more rigorous manner, plastic dilatancy or contractancy essentially imposes a pointwise relation
between the shear deformation and the volumetric deformation. For the constant strain elements
of Figure 20 this means that if the right-lower element is sheared, a volumetric strain must occur,
and the node can only translate along one of the dashed lines emanating from the node, where the
amount of uplift is governed by the dilatancy 1 of the material. Similarly, any shearing applied
to the other element also causes volumetric straining, and as a result the movements of the same
node are restricted to the other set of dashed lines. The conclusion is that, similar to the case of
isochoric deformations, which obviously is just a special case (1 = 0), no movement is allowed and
no proper collapse load can be obtained for ideal plasticity.

Another problem that has been given less exposure than deserved is the danger that inelastic
constitutive relations cause spurious element behaviour. It is known that for instance at ideal
plasticity the tangent operator of the constitutive relations has at least one zero eigenvalue. It
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turns out that for certain element formulations, especially when reduced integration is applied,
or when mixed methods are adopted, the element tangent stiffness may exhibit a multitude of
zero eigenvalues, thus leading to highly unstable element behaviour. In practical computations, a
premature divergence of the global equilibrium-finding iterative procedure is often observed as a
result of this.

5.1. Basic notions in soil plasticity

One of the most frequently used yield criteria for soils and rocks is the over two centuries-old
Coulomb criterion. Expressed in terms of principal stresses, the Mohr-Coulomb yield function
reads:

f= %(03—01)"'%(03+01)5in¢““05¢* o)

with ¢ the angle of internal friction, ¢ the cohesion of the material and oy < 03 < 03. A non-
associative flow rule is obtained by adopting

¢ 69
P = A—, 41
€ p (41)
with g a plastic potential function that resembles the yield function f:
g= %(03 —-o1)+ %(03 + o) sin®) — const. (42)

1 is an additional material constant, which is commonly named the angle of dilatancy. The angle
of dilatancy controls the amount of plastic volume change. Defining the volumetric plastic strain
rate as

el =¢el + &b +¢&f (43)
and introducing the rate of plastic shear deformation

P = - (44)
one can use Egs. (41) and (42) to derive that

P = 4Psing) (45)

which shows that the angle of dilatancy v sets the ratio between the rate of plastic shear deformation
and the rate of plastic volume change. For ¢ > 0 an irreversible increase of volume occurs, while for
1 < 0 a decrease is predicted (plastic contraction). ¥ = 0 is the special case of plastically volume-
preserving (isochoric) flow. The Tresca plasticity model with an associative flow rule is obtained
by setting ¢ =1 = 0 in Egs. (40) and (42).

5.2. Element locking in dilatant flow

In ideal plasticity, the behaviour at a limit state requires that the stress field remains stationary.
In consideration of the injective relation that exists between the stress rate ¢ and the elastic strain
rate €°, the elastic strain rates must vanish at this point and relation (45) changes into

Ey = Jsiny (46)

which effectively imposes a kinematic constraint on the possible velocity field. It is emphasised that
this constraint condition applies irrespective of the value of 1, and that ¢ = 0 (volume-preserving
plastic flow) is just a special case. Another case where material behaviour imposes a kinematic
constraint upon the velocity field is when a matrix material is reinforced with inextensible fibres.
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Now, we choose the principal axes of the strain rate tensor to coincide with the local &, -
coordinate system of an element. This choice is permissible, since under planar deformations &,
and 7 are both invariant. For the Mohr-Coulomb yield function resembling plastic potential (42),
Eq. (46) then specialises as

(1 —siny)ée + (1 +siny)é, +€¢ = 0. (47)

We now consider the four-noded plane strain element of Figure 21. This element configuration can
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Fig. 21. Single four-noded element subjected to non-uniform shear

be thought of as representative for an arbitrary domain of finite elements with boundary conditions
[17]. The velocities within the element are interpolated in a standard isoparametric fashion, so that

. 1 ;
= 7(1+&Q1+n)u
: (48)
b= T(1+&1+n)
The normal strain rates within the element are obtained by standard differentiation as:
E‘E 1+ n 0 .
1
b p=7| 0 1+¢ {:} (49)
E¢ 0 0

Upon substitution of expressions (49) for the strain rates into the kinematic constraint (47), the
following restriction upon the velocity field ensues:

[(1 = sinep)it + (1 + sinep)s] + (1 — sinp)in + (1 + sinyp)v€ = 0. (50)

The term between square brackets sets the ratio between the horizontal velocity % and the vertical
velocity o of the right upper node of the element. Its vanishing is a direct reflection of the kinematic
constraint imposed on the possible velocity field by the constitutive relation. Since this term must
be zero, vanishing of the entire identity (50) can only be achieved for arbitrary pairs &, 7 if 4 and
¥ are both zero. This implies that the element is not able to deform, which phenomenon is known
as volumetric locking. We emphasise that this observation holds for all values of v, including the
isochoric case (1 = 0).
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Next we consider the case of uniform reduced integration for the four-noded quadrilateral (one-
point integration). For this element, denoted by Qr4 in the remainder of this article, the normal
strain rate field is defined as:

ée 10 :

1
é p=7]0 1 {‘;} (51)
& 0 0

and substitution of this expression in the kinematic constraint (47) gives:
(1 —siney)u + (1 +siny)o =0, (52)

which is satisfied by definition for arbitrary pairs &, 7. Volumetric locking will therefore not occur,
but as is well-known, the Qr4 element has two hourglass modes, which makes practical computations
not feasible without proper stabilisation.

Thirdly, we consider the four-noded element with selective (one-point) integration on the dilata-
tional strain rate. This approach can be cast within the so-called B-concept [16] and the normal
strain rates are redefined as

2 s
& 1 l+3n 36 .
3 == | ok 2 Lo £
g —gn  —gk

Note that the normal strain rate in the third direction, é, does not vanish pointwise, but only in
an average sense. Substitution of this strain rate field in the kinematic constraint (47) leads to

[(1 —siny)d + (1 + sin)o] — sinep(dn + v€) = 0. (54)

Obviously, this condition can only be satisfied for arbitrary pairs ,n when ¢ = 0, the special
case of plastically volume preserving flow. For arbitrary values of ¢, that is for dilatant plastic
flow (¢» > 0), or contractant plasticity (¢» < 0), @ and ¥ must vanish identically, which means
that the Q4 B element locks for the general case of ¢ # 0, and is only effective for the case of
isochoric plastic flow. This is demonstrated for the elementary test of Figure 21, where a single
element is subjected to non-uniform shear. A Drucker-Prager flow rule with an angle of internal
friction ¢ = 30° and a dilatancy angle of 9 = 20° is adopted. Obviously, the standard four-noded
four-noded element locks completely, but also the Q4 B element does not result in a yield plateau,
Figure 22. The latter result confirms the conclusion drawn from Eq. (15).

Next, we augment the strain rates by defining additional strain rate fields. The simplest possible
enrichment for the normal strain rate field is to set

?’;.‘g 1+?7 0 . E 0 .
én =i 0 1+¢ {:}+ 0 7 {Z‘} (55)
éc 0 0 00 ’

with ¢, & additional, incompatible strain rate variables. Substitution of the strain rate field (55)
in the kinematic constraint yields

[(1 —sing)u + (1 + sinp)?]
+(1 = sinep)n(d + 4ée) + (1 +siny)é(0 + 4a1) = 0. (56)
which is satisfied for arbitrary pairs &, n for

(1 —siny)u + (1 +siny)o =0,
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Fig. 22. Force-displacement curves for single four-noded element. Drucker-Prager flow with ¢ = 30°,
P = 20°

i+ ddy =0. (57)
b+ 4dy =0.

Accordingly, an element is obtained that is free of volumetric locking effects for all values of .
This is confirmed by the non-uniform shear test of Figure 21. Figure 22 shows that this element,
which will henceforth be called Q4 EAS 2 since two extra variables are used to enrich the strain
rate field, indeed captures a proper limit load.

Figure 23 shows the response obtained for a rigid disk which is being pushed into a halfspace.
The boundary conditions are such that symmetry conditions apply at the left boundary while the
lower and right boundaries are fully restrained. Loading is applied by direct displacement control
of the disk. Non-associated Drucker-Prager ideal plasticity is used with a Young’s modulus E = 50
MPa, a Poisson’s ratio v = (.25, a cohesion ¢ = 2 kPa, a friction angle ¢ = 30° and a dilatancy
angle ¢ = 10° (dilatant flow). The standard Q4 element and — as predicted for dilatant plastic
flow — the selectively integrated Q4 element show significant locking. The Q4 EAS 3 element (the
axisymmetric version of the Q4 EAS 2 element) captures the limit load properly without giving
convergence difficulties. On the other hand, the Q4 EAS 5 element, in which the shear strains are
enhanced in addition to the normal strains, originally introduced by Simo and Rifai [26], behaves
unstable and diverges in an early stage of the loading process. The reason for this behaviour will
be explained next.

5.3. Spurious mechanisms
In non-associated plastic flow without hardening, the elastoplastic tangential matrix reads:

Dmn'D
DP =D ——— —
2 nTDm (58)
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Fig. 23. Load-settlement curve for axisymmetric punch problem

in which D is the elastic stress-strain matrix, n = df/do is the normal to the yield surface and
m = dg/do is the flow direction. This matrix is singular since m is an eigenvector associated with
a zero eigenvalue.

In mixed approaches variables are introduced additional to the standard displacement degrees-of-
freedom. If we assemble the displacement nodal degrees-of-freedom in a vector a and the additional
degrees-of-freedom, which are for instance related to enhanced strain interpolations like in the EAS-
concept [26], in the vector e, then the tangential stiffness relation can generally be written in the
following format:

7 a)ia)-{e) ®

in which K, T, I" and Q are submatrices of the total tangential stiffness matrix, and f, and f,, are the
right-hand side vectors related to the displacement and additional degrees-of-freedom respectively.
The superimposed dots denote differentiation with respect to a (virtual) time.

Generally, the additional degrees-of-freedom are condensated at element level. This implies that
the condensed element tangential stiffness matrix K* = K —I'Q~'T enters the global or structural
tangent stiffness matrix. This tangential stiffness matrix can become singular because of two rea-
sons. Firstly, for ideal plasticity the submatrix Q can become singular at fully developed plastic
flow. As a consequence the condensed tangential stiffness matrix K* is undefined. As K* is used
to assemble the total tangential stiffness matrix, this has a disastrous effect on the total tangential
stiffness matrix and thus on the convergence of the global iteration process. For instance, for the
five-parameter EAS plane strain/stress element as formulated by Simo and Rifai [26], exact inte-
gration yields a non-singular Q-matrix, but a standard 2 x 2 Gauss integration renders Q singular.
For the seven-parameter assumption of Andelfinger and Ramm [2] singularity of Q is obtained even
for exact integration [15].

The fact that condensation can be performed is a necessary condition for robustness of the
element. A second requirement is that the element does not possess spurious mechanisms due
to ideal plasticity. In ideal plasticity the elastoplastic material tangential stiffness matrix D has
exactly one zero eigenvalue at smooth parts of the yield surface as has been shown above. Additional
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eigenvalues arise in the condensed element tangential stiffness K* due to the additional strain rate
modes and will result in spurious mechanisms, which are not resisted by surrounding elements.

Similar arguments can be raised for axisymmetric or three-dimensional configurations. When-
ever additional fields are introduced for the shear strain rates, spurious mechanisms or worse,
breakdown of the condensation mechanism, arise in ideal plastic flow. Finally, it is noted that the
occurrence of spurious mechanisms is by no means restricted to mixed appoaches. For the eight-
noded quadrilateral element with 2 x 2 Gaussian integration this has been shown before by de
Borst [6].

5.4. Some further comments

The issue of element performance in inelastic solids is still a relatively open area. Pure displacement
based elements generally provide the most robust solution in terms of stability of the numerical
process. However, especially simple elements like the four-noded element in plane stress/strain and
axisymmetric applications and the eight-noded brick element in three-dimensional configurations
tend to suffer from diseases as “locking” and poor representation of shear stress in bending. Higher-
order interpolations are a possible solution, for instance the fifteen-noded triangle 7, 23] in planar
and axisymmetric applications, or the fourteen-noded brick element [25] in three-dimensional situ-
ations. However, these elements tend to generate large bandwidths, which leads to relatively large
computer times, although this disadvantage gradually diminishes with the rapid increase of com-
puter power. Other solutions, like mixed approaches or reduced/selective integration can be highly
efficient, but must be used with care because of the inherent danger of the occurrence of spurious
mechanisms in case of inelasticity. It seems that for a successful use of these approaches one must
tailor the element to the application.

6. INADEQUACIES IN STRUCTURAL MODELLING

At the hand of the example of a three-span, skewed-slab bridge, for which predictive finite element
analyses were carried out prior to its destruction, the importance and the difficulties of adopting
proper boundary conditions in numerical analyses will now be illuminated.

6.1. Description of the bridge

The bridge which has been analysed and tested is a three-span, skewed-slab bridge, Figure 24,
see also Reference [1], which provides the necessary details on the lay-out of the reinforcement.
Inspection prior to the analyses and the testing revealed that severe damage had occurred, especially
near the sides of the bridge [1], while the driving lanes were in a reasonable condition. In the areas
of visible damage of the concrete the reinforcing bars had corroded severely. The visual inspection
was hampered by the existing asphaltic overlay, which was removed only shortly before the final
destructive testing.

To obtain a better judgement of the concrete properties cores were drilled at several places.
The concrete test specimens were then subjected to uniaxial compression tests which resulted
in values for the mass density p and for the uniaxial compressive strength f. which ranged from
2450 kg/m? to 2470 kg/m?® and from 49 MPa to 56 MPa respectively. The value for Young’s modulus
E appeared to be around 33,000 MPa. As will be detailed below, in the analyses the possible effect
on the remaining structural capacity of the observed poor quality of the concrete was modelled
by adopting artificially low values for Young’s modulus and for the uniaxial compressive strength.
Properties for the reinforcing steel could be derived from uniaxial tension tests on rebars [1].

Prior to the final destruction test modal tests were carried out in order to obtain data on
the boundary conditions which would have to be applied in the analyses. In contrast to the final
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Fig. 24. Plan view and side view of the bridge

destruction test the modal tests were conducted with the asphaltic layer still in place, and resulted
in a lowest eigenfrequency of approximately 8.3 Hz [1].

The actual destructive tests were carried by pulling down two concrete blocks of 0.6 m by 1.8 m,
which were placed on the bridge deck in order to distribute the forces exerted by servo-controlled
hydraulic actuators. On each block two of such actuators were placed. Rock anchors were attached
to the actuators to provide the reaction force that was needed to load the bridge. The total load
at which failure occurred was 3.24 MN. In the remainder of this article we shall always refer to the
load that was exerted on one of the blocks only, so that collapse occurs at a load level of 1.62 MN.

6.2. Discretisation and loading configuration

The finite element mesh that was adopted in the analyses which have been carried out is shown
in Figure 25. It consists of 144 eight-noded degenerated plate/shell elements with a 2 x 2 Gauss
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Fig. 25. Finite element model for the Delft FE analysis of the bridge and position of the loads
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integration in the plane and a nine-point Simpson integration through the depth. It is noted that
the used element may not be optimal for skewed meshes as used here. Reinforcement was modelled
using an embedded approach, that is the interpolation functions of the concrete were used also for
the reinforcement. The reinforcement grid has its own integration stations, which do not have to
coincide with the layers of the plate/shell element. The discretisation of Figure 25 was considered
sufficiently refined for the expected bending-type failure. Analyses with different meshes should
have been tried to verify this, but, because of time restrictions — the analyses had to be completed
before the actual bridge testing — this has not been done. The loading blocks have been modelled as
two line loads which were each placed at the edges of two elements, Figure 25. Linear dependence
relations have been supplied to ensure that all nodes beneath a line load had the same vertical
displacements.

6.3. Assessment of the boundary conditions

The piers have not been modelled in the predictive analyses, because they have no influence on the
final collapse load or the failure pattern. However, there is some influence on the load-deflection
pattern, not only because of the neglected axial stiffness of the piers, but also because the piers act
as rotational springs on the bridge deck. From a hand calculation it appeared that the maximum
axial shortening of the piers would be approximately 0.1 mm, which is negligible. The rotational
stiffness of the piers was not taken into account either. This simplification will be justified below.

A most important issue when modelling an existing structure is the interaction of the structure
with the environment. At the abutments as well as at the piers we have the question whether the
most appropriate boundary condition would be a clamped support, a hinged support, or a roller
support. The question of clamped support vs. hinged support can be partly resolved by carrying out
eigenvalue analyses and comparing the numerical results with the lowest eigenfrequency that comes
out of the modal test (= 8.3 Hz). In the finite element analyses with the mesh of Figure 25 the
mass density of the concrete was taken as p = 2370 kg/m® and Young’s modulus E and Poisson’s
ratio were assumed as 24,800 MPa and 0.2 respectively. The reduced value for Young's modulus
was adopted to model the observed deterioration of the concrete. In the first analyses all supports
were assumed to be hinged. When the influence of the asphaltic concrete cover was neglected an
eigenfrequency of 7.43 Hz was computed, whilst the slightly lower value of 6.76 Hz was found for
the analysis in which the asphaltic concrete cover was included. These values are much closer to
the experimentally determined eigenfrequency than the value of 22.69 Hz that was obtained for the
case with clamped ends and hinged supports at the piers. This indicates that (i) the supports at
the abutments are not clamped and (ii) neglecting the bending stiffness of the piers is reasonable.
However, the issue of hinged vs. roller supports cannot be answered by modal analyses and will be
investigated below.

6.4. Model parameters for nonlinear finite element analysis

In the nonlinear analyses the following data have been used. For the reinforcement an elastic-plastic
model was utilised with a Young’s modulus Es = 200,000 MPa, an initial yield strength ogy = 345
MPa and a hardening modulus A = 7000 MPa, which is in agreement with the experimentally
supplied data. The inelastic behaviour of concrete in tension has been modelled by the multiple
fixed crack model of de Borst and Nauta [8-10] and Rots [21]. The shear retention factor  was set
equal to 0.2 in all analyses. For the expected type of bending failure a variation of § hardly has
any impact on the results.

To account for the stiffness of the concrete between the smeared-out cracks a tension-stiffening
model was adopted with a linear softening branch and an ultimate strain at which the residual load-
carrying capacity is exhausted ¢, = -% fsy/Es. The factor % has been introduced because previous
experience has shown that this generally leads to a better prediction of the structural behaviour
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and because a hand calculation for a rectangular cross-section showed that taking €, = fsy/Es
would result in a moment at which the steel starts yielding, My, that is larger than the moment
at which collapse ultimately occurs (M,).

The concrete stresses in biaxial compression were limited by a Drucker-Prager yield contour,
which was fitted such that the pure biaxial compressive strength fi,. equals 1.16 times the uniaxial
compressive strength fe. Perfectly plastic behaviour was assumed thereafter, because any introduc-
tion of softening in compression would result in an extreme mesh sensitivity, which cannot yet be
modelled properly. The uniaxial compressive strength f. itself was set equal to 27.5 MPa. This is a
relatively low value, and was adopted to account for observed damage in the concrete. The tensile
strength was initially set equal to f, = 3.2 MPa, which is the value that had been suggested by
investigators of the University of Cincinnati [1], but later the value f; = 1.8 MPa has been used
which follows from applying f; = 0.75(1 + f./20), which formula is used in the Dutch Codes of
Practice. In parameter studies it later appeared that the tensile strength affects the load-deflection
curve only in the first stages of cracking.

6.5. Numerical results

When carrying out nonlinear finite element analyses it is sensible to first concentrate on the most
important causes of the nonlinear structural behaviour. For 90% of all reinforced concrete structures
cracking and yielding of the reinforcement are the dominant nonlinear phenomena which govern
the structural response. Therefore, first analyses were carried out in which concrete plasticity was
not taken into account. The results are the upper and lower curves of Figure 26, in which half of
the total load has been plotted against the deflection of the outermost loading block. The upper
curve was obtained under the assumption that all supports (at the abutments and at the piers)
were hinges, while the lowermost curve was obtained assuming that all supports were rollers except
for one of the abutments.

We observe that this variation in boundary conditions has a tremendous impact on the structural
response of the bridge. This phenomenon can be explained as follows. In the latter case (the lower-
bound solution) cracks due to the bending moments penetrate deep into depth of the slab which
causes large horizontal strains in the midplane of the slab. As a consequence an axial elongation of
the midplane occurs. On the other hand, this elongation is entirely prevented in case of hinges at
all supports. This means that additional in-plane forces prestress the slab. These membrane forces
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Fig. 26. Influence of boundary conditions on load-bearing capacity
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effectively prevent collapse of the bridge, as an almost linearly ascending load-displacement curve
was computed up to a displacement of 0.2 m, at which point the calculations were stopped. At
this point a large part of the reinforcement was yielding. Because no real collapse load could be
identified at this point, which is far beyond the failure loads predicted by yield line solutions [1],
the role of the membrane forces seems unrealistically high for these boundary conditions.

To further illustrate the important role of the membrane forces an additional analysis was
undertaken in which the piers were roller-supported, but where both abutments were modelled
as hinges. The membrane actions that develop are now distributed over all three spans and, as a
result, the load-displacement curve nicely falls between both extremes. At a deflection of 0.2 m
significant yielding of the reinforcement was again observed, but there were no signs of impending
collapse.

The solutions with hinges at all supports and with hinges at only one abutment can be considered
as upper and lower bound solutions respectively. Because the precise boundary conditions were
unknown a more accurate prediction of the collapse load could only be obtained by improving
the upper and lower bounds. To this end the various material data were varied extensively. This
appeared to have hardly any impact upon the lower bound solution, but inclusion of concrete
plasticity in compression with f. = 27.5 MPa lowered the upper bound solution by about 25%.

6.6. Discussion

The lower bound solution was expected to be closer to the experiment than the upper bound solu-
tion, since it was believed that the abutment was not sufficiently rigid to sustain the large horizontal
forces without undergoing horizontal displacements. Accordingly, the most realistic assumption for
the conditions at the abutments would be roller supports rather than hinges. This expectation was
confirmed when the testing had been carried out, Figure 27.

Although the numerically predicted lower-bound solution for the failure load and the experi-
mentally obtained collapse load agree extremely well, this is not completely the case for the failure
mechanism. From observations on the experimental failure pattern it seems that first a pure bending
type failure has occurred, but that after significant deformations the shear capacity was exhausted.
This point, that is when the capacity to sustain external loads starts to decrease, is marked by the
onset of the softening branch in Figure 27. Obviously, the used plate/shell element cannot be used
to properly model this descending branch where ultimate failure is due to punching.
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Fig. 27. Numerically obtained lower-bound solution and experimental failure load
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