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Optimization of shallow Schwedler domes
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The paper deals with the optimization of regular space trusses with fixed external dimensions under
uniform snow and dead-weight loading. Attempts are being made to find such a number of truss joints
which minimise the material volume. The set of constraints imposed on a structure includes the effect of
the loss of stability of the compressed bar. The statical problem of shallow domes including geometrical
nonlinearity was solved by using the Newton-Raphson iteration procedure.

1. INTRODUCTION

The Schwedler dome is a regular space truss well known in technical publications [6]. The present
paper deals with Schwedler domes with joints which lie on a regular net of M meridian and N
latitudinal circles of a spherical surface with the base diameter D and height F. The bars connected
at any joint of a truss make the configuration shown in Fig. 1 which is repeated many times in
the structure. The domes are supported by means of an elastic ring and subjected to a fixed
axi-symmetric load.
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Fig. 1. Basic geometry elements and loads of the dome
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The integers M and N will determine the length of the members of the dome, the resultant forces
acting on the joints, the axial forces and cross-sectional areas of its members. The material volume
of the structure, considered as the objective function of the optimization problem, also depends
on the value of M and N. A search is being made for such values of the numbers M = M V- and
N = NV which would minimise the theoretical material volume V of the structure (V = Viin). The
optimization mentioned above presents a nonlinear programming problem. It was solved numerically
by a systematic search for the points (M, N) of the feasible region of solutions, [2]. In the calculation
of bar forces in a shallow Schwedler dome, it is required to account for the effects of the geometrical
nonlinearities. This problem was solved by the stiffness method, using the Newton-Raphson iterative
formula. The general problems of geometry, statical analysis and construction of bar domes are given
in [6]. Problems of nonlinear analysis of bar structures are discussed in many papers, see e.g. [1,
4, 5, 7, 8]. The foundations of optimum design in civil engineering are given, among others, in 2]
and [3].

2. GEOMETRY AND LOADING OF A DOME

The net of N latitudinal circles on a sphere is created on the basis of a uniform angular division of the
circle in the meridian plane. The basic geometrical elements of the dome are the radii of latitudinal
circles r; and the vertical distance between two adjacent latitudinal planes h;,i = 1,2,..., N. These
elements are shown in Fig. 1. In a regular net of M meridian circles, the angular distance between
two adjacent meridian planes is constant, and it is equal to 2¢, where ¢ = w/M. Using r;, h; and
¢ it is possible to determine the length of bars L1;, L2;, L3; and their direction cosines. In each
joint of the truss, a local system of cylindrical co-ordinates z; y; z; was used, see Figs. 1 and 2.
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Fig. 2. Local co-ordinate systems

Any axi-symmetric load causes equal displacements of the truss joints lying on the same latitu-
dinal circle 4 (in local co-ordinate system)

qiz[uivvhwi]T’ 7;2172,"'7N+1a (1)

where v1 = w; =0 and uy4+1 = vn4+1 = 0.
Thus the basic geometrical elements of the truss are:

T = [(T‘P + ui)2 =+ vi2]1/2 :
hi = h) + w1 — wi,

where 79 and h) are the initial values of r; and h; (in the undeformed structure).
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The lengths of deformed members are computed according to the following formulae:

Ll =rpainee, 4=1,2,::.4::N, (3)
L2; = {[(ﬂoﬂ + Uit1) €08 2 — Vi1 8in 2 — 1Y — u;)?
0 : 2 Y
+ (i1 + uig1) sin 2 + vi41 cOS 20 — v4) +hi} , 1=12...,N—-1, (4)
0 0 2 e gk
L3i={(7"i+1—7”i +ui1)” + (vig1 — ;)" + By } , 1=12,...,N. (5)

Their direction cosines are computed as the components of the unit vectors shown in Fig. 1, relative
to local co-ordinates system

by; = [bugi, buy, bu]T, v=1,2,...,6 (6)
and they are as follows:

bl = [(r? + u;) cos 2¢p — v; sin 2¢p — r,o —w;)/L1;,

bly; = [(r? + u;) sin 2¢ + v; cos 2¢p — v;]/L1;, (7

bl,;; =0,

b2gi = [(rdy1 + Uit1) €08 2 — viq1 8in2¢ — r? — ;] /L2;,
b2yi = [(r1 + ui1) 8in 200 + vig1 cos 20 — v;]/L2;, (8)
b2.s = B/ L2;,

b3zi = (riyy — rf + wir1 —w;)/L3;,
b3yi = (vip1 —vi)/L3;, (9)
83 = hifL3;,

9 + u;) cos 2¢ + v; sin 2 — r? — w;)/L1;,

[(
[— (9 + u;) sin 2 + v; cos 2¢ — v;]/L1;, (10)
0,

<
||

b5z = [(7‘?_1 + ui_l) €oS 2¢ + v;—1 Sin 2¢p — T‘? - ui]/L2i_1 3
b5yi = [=(r)_; + u;_1) sin2¢p + v;_; cos 2¢p — v;]/L2;_1, (11)
b5z = —hi—1/L2_1,

b6; = —b3;_; . (12)

A uniformly distributed gravity load should be transformed into a system of resultant forces
acting on the truss joints. In the present paper axi-symmetric snow load s, and dead-weight g are
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considered. Due to this type of load, the forces P; in the joints which lie on the same latitudinal
ring ¢ are equal, and these are the following:

P; = [P, Py, P]" =0, 0, B,|", S 13)
where

P,(g9) = gFgi, Pi(s) =sFy, (14)
and

Fy =sing {[cos2 o (rd —rd 1) + hi M2 (2r0 + 1))
+[cos? o (r) — rdy1)? + hi*)M2(2r0 + 7°$+1)} /3, (15)

Foi =sin2p (r]_) — i) (rioy + 10 +141)/6. (16)

3. STATICAL ANALYSIS

As the theoretical model of the dome, the space truss with pinned joints was used. The number w
of degrees of freedom of the truss joints, in the case of axi-symmetric load, may be reduced to:

w=3N-1. (17)

The geometrically nonlinear analysis of the structure was carried out by the stiffness method
based on equation, [1]:

(Ke +Kg)q =P (18)
in which

Kg(w,w) is the standard elastic stiffness matrix,

K¢ (w,w) is the geometrical stiffness matrix which depends on the current value of axial forces,

q(w) is the vector of joint displacements,

P(w) is the vector of joint loads.

The stiffnes matrix K = Kg + K¢ is most frequently built in one Cartesian co-ordinate system.
In the case presented above, it is convenient to use a multi-global co-ordinate system, similarly
to Ref. 3. This leads to a considerable reduction of the number of degrees of freedom of the truss
joints, according to formula (17).

Fig. 3. Local notation of truss joints
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Fig. 4. Storage of stiffness matrix

As the matrix K is symmetric, only half of it needs to be stored. It is shown in Fig. 4. The
matrix is composed of the submatrices K;;(3,3). The submatrices K;; and K;;, according to the
signs of the truss joints shown in Fig. 3, are computed as follows:

Kii=K1H+KII+KIJ, i=1,2,...,N—1, (19)
Kij=Kis+Kmr, j=23,..,N, (20)

where respective submatrices are calculated from the formulae, [1]

6 )

KH = Z kl/i bl/i ¢ bViT + Z 711/1‘(13 . bVi : bViT) ) (21)
1/:]_ l/Zl

K = —kl1;b4; - b4;T - D — nl;(I3 — b4; - b4;T) - D, (22)

Ky = —k1;b1;- b1, - DT — n1;(Is — b1; - b1;T) - DT, (23)

Kis = —k2;b2; - b2, T . DT — n2;(I3 — b2; - b2;T) - DT, (24)

Kigr = —k3;b3; - b3iT - n3; (13 - b3; - b3iT) ’ (25)

I3 = unit matrix of order 3,
and
kvi = EAv;/Ly;,
nv; = Nv;/Ly;,
in which
E = modulus of elasticity,
Av; = cross-sectional areas of the members,

Ly; = lengths of the members,

Nv; = axial forces in the members.
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The transformation matrix D of order 3 is
cos2¢p sin2¢ 0
D=| —sin2¢p cos2¢ 0 |, (27)
0 0 1

in which the angle 2¢ = 2/M (see also Fig. 2), M is the number of meridians. Since the stiffness
matrices depend on the displacement vector q, Eq. (18) is nonlinear. It was solved by using the
Newton-Raphson iterative methods. In each current iterative step j, based on equation

(KL + K%,) - dg; = dP;, (28)

the increment of displacements dq; caused by residual forces dP; should be computed, and next
the current value of displacements should be determined,

qj+1 = q; +dq;. (29)
This procedure may be repeated until the errors become as small as desired, according to formula
dg, < eqr, (30)

where ¢ is the small factor. In the numerical example (Section 6) ¢ = 1-10~% was used, and number
r of iteration steps for domes with different M, N and F was changing between 3 and 12.

4. DETERMINATION OF THE CROSS-SECTIONS OF THE BARS

Determination of the cross-sectional areas of the bars was made according to the limit state method
design. For compressed bars the design procedure is based on the Euler and parabolic formula.
Both these curves are shown in Fig. 5. The shape of the cross-section of a bar is described by the
dimensionless factor 1) = A%/I, where A is the cross-sectional area, and I is the second moment of
area. For a circular tube with dimensions r, ¢ (r — radius of the centre line, ¢ — wall thickness),
% = 16mn/(4 +n*), where n =t/r.

f.=f4(1-052%)
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Fig. 5. Relationship between f. and slenderness ratio A
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If the bar 7 is loaded by the tensile force N;, its cross-sectional area is calculated from the
formula:

A; > Ni/fq, (31)

where fq is the design strength of the structural material.
For the bar j, compressed by a force IV J’~, one should compute first its characteristic length:

1 = Apy/2N;/($fa) (32)

where A, = m\/E/(0.75f4), N; = abs(N]’»), 1 is the shape factor, F is Young’s modulus, and then
its cross-sectional area, using one of the formulas:

Aj ,\_]‘ 20N,/ fa, S e (33)
N] . J
Aj> L 7 + ¢(z eyt e (34)

where [; is the real length of bar j. Eq. (33) is based on Euler’s curvature, Eq. (34) — on the
parabolic formula.

5. FORMULATION OF THE OPTIMUM DESIGN PROBLEM
In the above described optimization problem of the Schwedler dome, the constant parameters are:
e external dimensions of the spherical surface D and F,
e the value of the loads g and s,
e the design strength of the structure material fjy,
e the shape of the cross-section of the bar given by the dimensionless factor ).

The integer numbers M and N are decision variables. The objective function V (M, N) expresses
the theoretical volume V of the structural material. The criterion of the optimizatoin is formulated
as:

V=V(MN)=min=V". (35)
The set of restrictive conditions imposed on a structure consists of:
a) cross-sectional areas A; of the tension members are determined from Eq. (31),
b) cross-sectional areas A; of the compression members are determined from Egs. (33) and (34),
c) Ak > Amin for all members,
d) the bar length is bounded by lnyin < I < lmax-

Since the analytical formula of the objective function is unknown, its values are computed nu-
merically from the formula V' = 3, [y Ax. The restriction d) (above) creates a discrete region of
permissible solutions, in which the optimal structure is to be found (for example, see Fig. 6 in
Section 6).
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Fig. 6. Map of the objective function for the domes with F = 4.0 m
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Fig. 7. Material volume V'V as a function of the dome height F
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6. NUMERICAL EXAMPLE

In order to investigate the described optimization problem, a computer program was written (in
TB). The following values of constant parameters have been accepted: D = 30 m, g = 0.95 kN/m?,
s =0.80 kN/m?, fq = 210 MPa (steel). It is assumed that the members of the structure are made
of circular steel tubes described by the shape factor ¢y = 1.876, of which the smallest cross-section
is Amin = max(Ag,¥l%/200?), where Ay = 3.676 cm?, [ is given in centimetres. The bar length was
bounded by lyin = 0.40 m and lax = 4.0 m.

For the fixed value of F the local optimization task was solved by means of a computer. Fig. 6
presents a map of the objective function (treated as continuous) for the domes having F' = 4.0 m.
The shape of the line V' = constant is only probable. In Fig. 6a are presented the results of
computations with allowance made for geometrical nonlinearity, and in Fig. 6b the results obtained
according to linear statics are given. The optimal solution has been found for point (MY, NV)
= (32,7), in which V'V = 0.8503 m? of steel. In the region of permissible solutions, the maximal
difference of material volume between domes with different M and N is equal to 12.2%. The
difference between the values V'V according to nonlinear and linear statical analysis is small and
equal to 2.41%. Cutting the function V(M, N) at the point (MY, NV) = (32,7) in the direction
parallel to M axis and parallel to N axis, one can state that the function V' (M, N) is more sensitive
to a change of the number of latitudinal circle N than to a change of the number of meridians M.

In further analysis the optimization of the dome with changing height F' has been provided.The
height F' of the spherical surface was changing in the range 3.0 m to 10.0 m. Some results of the
computation are shown in Fig. 7, where the local optimal structure is represented by one point.
It has been found that the global minimum of the structure material is in the dome with ratio
F/D = 7/30.
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