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Numerical analysis of a spectral photoelastic effect
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Interference effects in centers of “disk-like” solid cylinders of different photoelastic materials loaded by
uniaxial forces acting along diameters was subject of study. An analysis of the intensity of light passing
through the cylinder was carried out, and a few numerical models of the phenomenon were constructed
and compared with the experimental results. The dispersive character of the “photoelastic constant” is
shown and its consequence for the effect are emphasized. A computer aided spectrometer was specially
constructed for the research as “the heart” of a semi-automatic measurement stand. The utilization of the
effect for the construction of the optical force sensor is mentioned.

1. INTRODUCTION

The spectral photoelastic effect which has been discovered during the research on optical sensors
[1, 2] consists in the appearance of a characteristic spectrum caused by interference effects observed
in polarized light transmitted through the center of uniaxially compressed disk of photoelastic
material.

The registered quantity is the intensity I'(\) of light passing through a medium of the photoe-
lastic element (sensor) exposed to the force F'. The theoretical shape of the observed spectrum is
described in [2] by the following equation:

I'(\) = sin? 8ff : (1)

where ) is the light wavelength, d is the diameter of the disk, C is the photoelastic constant of the
material of the disk compressed by force F.

The characteristic extremes are observed in the spectrum at such values of Aeyx, for which the
derivative on F of the function (1) is equal to zero:

16F
2 C:Nﬂ', where N =0,1,2,.... (2)
Aexd

The number N denominates the following extremum. The number m = N/2 is attributed to the
well-known notion in photoelasticity, of the order of an isochrome. Note that the above allows us
to obtain the expression for the so-called model constant K [3]

F 7ndAe

K=—=——.

m 8 € 3)

We obtained the value K (at A = const) in a calibration process.
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The aim of our work is the numerical analysis of the conditions at which one can estimate the
force F' acting on a sensor when the spectral changes I'()\) are registered.

2. EXPERIMENTAL RESULTS

A number of series of measurements was performed in which all significant parameters of the optical
sensor were changing: the kind of the material, the diameter d and the disk thickness t. Within every
set of measurements the spectral change determining the relative light intensity I’ as a function
of the wavelength A\ at the known value of the force F' has been registered. The interval of light
wavelengths was from 460 to 730 nm, the applied force values were from 0 to 200 kG and the
following materials were used: polycarbonates, epoxides and glass.

Laboratory, computer-aided spectrometer was built for taking precise measurements at different
loading conditions (Fig. 1) [4].
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Fig. 1. Semi-automated stand for measurements of spectral photoelastic effects: 1 — light source, 2a and
2b — bunch of glass fibers, 3 — sample, 4 — force transducer, 5 — spectrometer with a dispersive element
(grating G) and a detector (CCD line), 6 — amplifier, 7 — computer and a CCD controller card

Each individual distribution of a change of light intensity, i.e. the shape of the function I'()),
corresponds to the fixed value of force F'. This function is represented by a numerical signal con-
taining a set of 1024 numbers (pixels; 13 pm x 13 pm size). Spectral response of the CCD sensor
is given by the producer — in this case we have a high sensivity from blue (400 nm) up to Near
Infrared (1100 nm). The electrical signal from each pixel is proportional to the intensity of the
incident light. The signals from the CCD line, after pre-amplification in an amplifier (6) are trans-
ferred to a CCD-controller (a computer (7) card). Specialized software allows collection, storage
and visualization of the spectra. The magnitude of the acting force F' is measured independly in
the laboratory stand by a calibrated force transducer (4).

For every force F acting on the sample made of photoelastic material, the spectrum shows unique
pattern of the fringes (e.g. Fig. 2).

When the pressure on the sensor is increased, the effect of an apparent shift of the observed
band toward the longer wavelengths takes place.

Before starting our measurements, we have performed the calibration of the sensor consisting in
registration of the force F' ascribed to the isochrome with the known value of the order m observed
by means of interference filters at some fixed light wavelength A. It turned out that the magnitude
of the model constant K (3), expressing the value of the force AF which induces the change of the
order m of isochrome by unity at the wavelength A, depends on the light wavelength A at which it
has been registered and therefore we have denoted the quantity, similar to K, by:

Xy, = 2—:; [kg/isochrome order] at )\ = const. 4)
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Fig. 2. Typical set of the spectra observed in the center of the disk uniaxially compressed by different forces F'

The dispersive character of the model constant K noted by us, is illustrated in Fig. 4a, Fig. 6a
(for polycarbonate) and in Fig. 5a and Fig. 6b (for epoxide S3).

3. NUMERICAL MODELLING

Several computer programs have been developed and used for modelling the dependence between
the parameters F', m and X of the calibration process.

The phenomenon of photoelasticity, discovered by Seebeck (1813) was mathematically described
by Maxwell in 1890:

n1—n2=C(0'1—02), (5)

where: n; and ny — the indices of refraction, caused by the stresses o; and o9, along the two
principal axes associated with the stresses; C' — the relative stress-optic coefficient dependent on
the kind of the material. Equation (5) is known as the fundamental equation of photoelasticity [3].

The differences in values of refractive indices n} and n} for light passing through birefringent
material of thickness ¢, manifest themselves in relative linear retardation 6* between two compo-

nents of the light having wavelength \:
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Fig. 3. Theoretical lines — the dependence F = f() for different m (0,1,2,...) — and experimental points
— for two numerical models: a) F = mK;(\); b) F = Ko(A) + mK1(A)

& =mA=t(n} —nj). (5a)

It should be emphasized that Equation (5) is satisfied for a given wavelength X, because of the
material dispersion: n = n()), and dependence of the measured photoelastic constant C' on the
wavelength X\: C = C()). So, Eq. (5) can be rewritten in the following form:

n} —n) = C(\)(o1 — 02) . (5b)

In the center of the disc of diameter d and thickness ¢, loaded by diametrically applied force F' —
the normal stresses o; and o9 are given by [6]:

2F 6F . 8F
=i o= so the difference: o7 — o9 = T (6)

o1 = —_—
! mtd’
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Fig. 4. Numerical model for polycarbonate (d = 3.98 cm, t = 0.42 cm): a) Experimental points F' = f(m) for
different A = const, and theoretical lines (calibration process); b) Numerical model of the spectrum for two
forces ' = 45 kG and F = 145 kG, isolines m = const and experimental points; c) Isolines F' = const (at
10 kG steps), theoretical spectrum for the two forces as above and the experimental points

Taking into account the relations (3), (5) and (6) we can write the equation linking parameters
F, mand X:
cmA
(7)

F()\,m) = T :mK)‘,

where ¢ = md /8. Equation (7) is analogous to Eq. (3). As follows from our laboratory and computer
experiments, the well-known photoelastic constant C' = cA/ K is no longer a “constant”, according
to the relation (5b), but turns out to be a dispersive quantity depending on \. Therefore we can
denote it as C(\) (Fig. 6).

Numerical values of the quantities ' and m as functions of A were determined using a sufficiently
large set of experimental points (up to 120) for each series of measurements. In the analysis of
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Fig. 5. Numerical model for epoxide S3 (d = 4.00 cm, ¢ = 0.52 cm): a) Experimental points F = f(m) for
different A = const, and theoretical lines (calibration process); b) Numerical model of the spectrum for two
forces F'=45 kG and F'=145 kG, isolines m =const and experimental points; c) Isolines F=const (with a step
10 kG), theoretical spectrum for the two forces as above and the experimental points

experimental data and their graphical representation, the method of least squares was applied. The
quantity C(A\) has been fitted to the polynomials of order n = 0, 1 and 2. The minimum value of
root-mean square deviation from experimental points was achieved at n = 2. So, we have

C(X\) = Cy + Cod + C3)2. (8)

Now, using the dispersion relation (8) one can determine the unknown forces when the relevant
spectral changes are registered as described in the paper [5]. It should be stressed at the same time
that one has to determine the position of extremum A¢x of the function (1) corresponding to the
lines with definite number N, and to identify this number and the isochrome order m = N/2 (2).
But the observed spectra are disordered and it is necessary to filter them effectively before starting
to automatic identification of extreme positions.
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Approximations of the dependence between F, m and X other than those defined in Eq. (7) were
examined as well. They have been represented by polynomials of two variables, A and m, at different
sets of the mononomials and different numbers of coefficients C; to be determined (changes from
1 to 9). In all models and for all materials studied, the value of coefficient Bsq is minimal when
F(A\,m) has the following form:

F(\,m) = C} + Co) + C3X2 + m(Cy + CsA + CeA?) = Ko(A) + mK1()), (9)

where K(() is the value of F' for m = 0.

The quantity Ko()\) expresses imperfections of the sample and the apparatus.

Modification of the classical model (7) by factor Ky()) caused better fitting of the model to the
experimental data (see Fig. 3).

Taking into account our postulate (9) one can modify Eq. (7) into form:

cmA
Fym = F —— 10
or
Fym=cm—-m )—/—\— (11)
From the above follows that expression (1) can be written in the modified form:
I'(\) = sin?[zr(m — my)], (12)

where mom means the initial phase for the samples under study. The numerical models of the
spectrum for the two materials are shown in Fig. 4b,c and Fig. 5b,c.
This does not appear in the classical formulation following from the Maxwell model.
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Fig. 6. The dependences: C, A/C, K1, —Kj vs. X: a) for polycarbonate (d = 3.98 cm, t = 0.42 cm) b) for
epoxide S3 (d = 4.00 cm, t = 0.52 cm)

4. CONCLUSION

Our calculations and relevant graphical analysis show that it is reasonable to perform the calibration
of a sensor according to the modified formula (7).
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The relation (9) confirms our note about nonlinearity of the dependence of K on . Moreover,
in this way a nonlinear component, independent of m, is introduced to the expression for F.

The relations (10) and (11), unlike Eq. (7), admit non-zero value of the force F at m = 0,
which compensates the influence of the initial state of the material of the sample or/and the initial
positions of the polarisers (see Figs. 4 and 5).

The graphical presentation is very helpful revealing the relations between the parameters and
so suggesting other possible models.

Optical sensors of the new type will be available for use in the evaluation and registration of
stress changes occurring inside objects under extreme conditions. At the same time, they will have
to satisfy the stringent requirements of reliability and full service automation.
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