Computer Assisted Mechanics and Engineering Sciences, 3: 223-231, 1996.
Copyright © 1996 by Polska Akademia Nauk

Optimal design of reinforced concrete beams and frames
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Rectangular cross-sections of reinforced concrete beams and columns with nonsymmetric reinforcement are
considered in the paper. The objective function represents the total cost of concrete, steel and formwork.
Several dimensional and behavioral constraints (bearing capacity, cracking, deflection) are allowed for.
The problem was formulated in general form so that introduction of specific regulations following from
national codes is possible. The computer program for optimal design of beams and frames loaded in-plane
has been developed. The numerical examples were computed taking into account the rules of Polish Design
Code.

1. INTRODUCTION

Traditional way of designing r.c. structures consists of three separate actions: preselection of di-
mensions of structural elements, structural analysis and finally designing the reinforcement. If the
initially assumed dimensions appear unsatisfactory, then the whole procedure is repeated. How-
ever, this method does not ensure optimal design. Therefore optimal design of r.c. structures has
focused the attention of engineers in the last decade. General considerations about optimization of
r.c. structures are presented in [4]. The derivation of optimality criteria for cross-sectional shape of
post-stressed concrete beams was presented in [1]. Programming methods of optimal design were
used in studies [2, 3, 5, 7]. In [2] the cross-sections of arbitrary shape were allowed for. Optimality
criteria for r.c. beams and their use in optimal design was presented in [6, 8]. The present paper
further extends the research on optimal design of r.c. structures allowing for various serviceability
limit constraints in the formulation of the problem. The study is based on the general design phi-
losophy of r.c. structures used in national codes and in Eurocode No. 2 [9]. The considerations are
limited to beam and frame structures loaded in-plane. The above mentioned three separate design
actions are integrated in one procedure of optimal design using nonlinear programming. The option
for limited optimization, namely optimal design of reinforcement for preselected cross-sections of
structural elements, is incorporated in the program. The numerical examples illustrate the engi-
neering applicability of the method.

2. FORMULATION OF THE PROBLEM

Consider a beam or frame structure with prescribed support and joint conditions. Let it be subjected
to multiple load sets. Similarly to [9], denote by b, h, d the width, depth and effective depth of
a cross-section and by Ag;, Aso the reinforcement areas in tension and compression, respectively.
Assume that d follows explicitly from h, namely d = h — 3 cm. Our aim is to design optimally the
dimensions of cross-sections b, h, and reinforcement Ag;, Ago for all members of a frame, whereas the
reinforcement is computed for three sections of each member, namely in midspan and at both ends.
These eight cross-sectional parameters referred to all independent members of frame constitute the
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design vector s. For practical engineering reason, we assume the same width b for all structural
members. Assume that the objective function represents the cost of a frame

NE NC
F(s) = ccb)_hili+cs Y (As1 + As2)ili

i=1 =1

NB
+cs (Z 0.7(As1 + Ag2)li +0.2(AL; + AL, + AT, + A;z)z,) (1)
=1
NC NB
+op Y 2(b+ hi)li +ce Y (b+ 2h)ls

i=1 i=1

where c¢, ¢s and ¢f denote the unit cost of concrete, steel and formwork, respectively. The super-
scripts ! and T refer to the left and right support of a beam. The following limit numbers will be
used in the paper:

NB = Number of Beams,

NC = Number of Columns,

NE = Number of structural Elements (NE=NB+NC),

NET = Number of independent Element Types (NET < NE),

NJ = Number of Joints,

NDV = Number of dimensional Design Variables h;.

The constraint for the limit state of bearing capacity, called in [9] the ultimate limit state is
introduced using the limit interaction curves ®(M,N) = 0, which are computed for the actual
value of design variable s and for all members of the frame. This constraint reads

®(M,N) < 0. (2)

Here M and N denote bending moment and axial force, respectively (where N' > 0 for compression).
The stability is considered in the form of a constraint

(Naa)i < B(Nerig)s, for §=1,2,...,NC, (3)

where N,y is evaluated according to [9] and 3 is user supplied coefficient, for example = 0.8. We
allow for the displacement constraints in beams

a; < (@adm); for . i=1,2,...,NB 4)
and crack width constraints in beams and columns

(wk)ijgwadm for ¢=1,2,...,NB; j=1,2,3, (5)
(wg)ij € Wadm for i=1,2,...,NC; j=1,2,3, (6)

where: j = 1 — left support, j = 2 — span, j = 3 — right support.

Note that crack width in beams is constrained in the span and in regions of supports. The latter
cracks result from shear. In order to limit the principal compressive stress in concrete, induced by
shear force, the following constraint is introduced

(VSd)ij < (VRdZ) for = 1a2a' ' ,NEa .7 = 1a31 (7)

where Vgq denotes the design shear force resulting from F.E. analysis, whereas Vrqs denotes the
maximum design shear force that can be carried without crushing the concrete. In the computer
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program Vgqe = 0.25bdf.q was assummed [10]. Next constraints are of geometric type. The rein-
forcement ratio is limited by constraints (8)—(10)

(Asl)i

bd; 2 Pmin for i=1,2,...,NE, (8)
(ASZ)izpmin for i=1,2,._.,NE, (9)
bd;

A = B

)+ (o oo for i=1,3,...,NE. 10

It is reasonable to constrain the ratio of stiffness of structural elements connected in one joint of a
frame. Therefore we impose

(%)
max | <7 for §=1,2,...,NJ, (11)

(+7)
l min

where k£ = 4 for clamped-clamped rods and k¥ = 3 for clamped-hinged rods.
The dimensions of cross-sections are limited by constraints

hi

10< 5 <35 for i=12,...,NDV, (12)

loi :
hig30 for §=1,2,...,NC. (13)

3

Additional geometric constraints, e.g. symmetry constraints for frames can easily be introduced.
The reinforcement for shear and torsion is not considered within this formulation.

For computation of (2) in the ultimate limit state, the equilibrium state shown in Fig. 1 was
assumed. The constitutive relations o = o(e) for concrete and steel can be adopted from [9] or [10].
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Fig. 1. Ultimate state of stress

1

The following equilibrium equations are used

+h
N =b [ " ocle@ldy+ Neo = Ny, (19
-2

+b
M=b / 0 [e()] y dy + Nea(0.5h — agz) + Nyt (0.5h — ag1) (15)
=
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Here M and N follow from linear finite element analysis. The bending moment in columns is
increased allowing for random eccentricities, which are assumed as deterministic values [10]. An
illustrative example of the limit interaction curve ®(M, N) = 0 computed from (14) and (15) for a
rectangular cross-section unsymmetrically reinforced is shown in Fig. 2.

Fig. 2. Limit interaction curve for a rectangular cross-section and As1 < As2

The flexural displacements a in (4) are approximated by multiplication of elastic displacements
resulting from FE analysis by the stiffness ratio, namely

EI
a = aelasticfv 15)

where B denotes the stiffness of r.c. element in the cracked state.

3. SOLUTION OF OPTIMIZATION PROBLEM

The subprograms for structural analysis using Finite Element Method and for optimal design using
nonlinear programming are incorporated into one program [11]. Simple beam finite elements are
implemented in the analysis. In the optimization, the vector of design variables s is decomposed
into two parts: cross-sectional dimensions s' = [b, ;] and reinforcement s? = [(Ag1)i, (As2)i]. For
fixed b, h and fixed M, N, the minimal reinforcement can be computed. Hence, at each iteration
step the vector s! is found using the feasible direction method of nonlinear programming coupled
with FEM, whereas the vector s? is computed using the authors’ procedure for minimization of
(Ag1)i + (As2)i separately for each cross-section.

The above formulated problem is continuum-type optimization problem, where the optimal
design is found using nonlinear programming. In engineering practice discrete sets of reinforcements
and dimensions b, h are used. The discrete solution can be approximated in two-step optimization:

(i) find continuum-type solution (h, Ag1, As2)i for a fixed width of cross-sections b,
(ii) take h; as next elements in a discrete set and find optimal reinforcement.

The solution obtained by this procedure satisfies all constraints, but it is only ‘near to optimal’.

In practical design, even in case of built-up frames, the cross-sectional dimensions of beams and
columns are unified within only few groups. Therefore, ussually, it is not difficult to improve the step
(ii) by the way of systematic search of the descrete values of h; in the vicinity of continuum-type
solution (i). This procedure was used in the numerical examples presented in the paper.
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4. NUMERICAL EXAMPLES

In the following examples the optimization was carried out for fixed width b of cross-sections and
for the price coefficients: ¢, = 100 PLZL/m? = 32 ECU/m3, ¢; = 6500 PLZL/m? = 2038 ECU/m?,
cs = 0.

In order to study the influence of cost of formwork ¢; on optimal design, in the example 4.2 of
portal frame the optimal solutions for ¢c; = 2PLZL /m? were computed, too. The design strength
of concrete foqg = 11.5 MPa and the design strength of steel fyq = 310 MPa were assumed in all
numerical examples. These values correspond to concrete C20/25 and steel A-II [9, 10].

The reinforcement in the beams was computed for three sections: near the left support, in the
mid of span and near the right support. Similarly, the reinforcement in the beams and columns of
frames was computed for three sections of each rod.

4.1. Continuous beam

Consider a three-span continuous beam shown in Fig. 3. The optimal depth A and optimal rein-

forcement Ag1, As2 in three sections of beams for various width b are presented in Table 1.

Table 1. Optimal dimensions h and reinforcement for the continuous beam

Assumed | Dimensional Element Reinforcement ratio p Objective
No b Design h No compression tension Function
[m] Variables | [m] (%] (%] F [PLZL]
1 0.00-0.00-0.00 | 0.00-1.28-1.18
3 h;=hy=hz | 0.85 2 0.00-0.00-0.00 | 1.18-0.56-1.18 527.56
3 0.00-0.00-0.00 | 1.18-1.28-0.00
0.25 h;=h; 0.80 1 0.00-0.00-0.00 | 0.00-1.24-2.04
. hy 0.55 2 2.23-0.51-2.23 | 4.45-2.74-4.45 || 505.96
3 0.00-0.00-0.00 | 2.04-1.24-0.00
1 0.00-0.00-0.00 | 0.00-1.41-1.30
3 hy=hy=h3g | 0.75 2 0.00-0.00-0.00 | 1.30-0.61-1.30 579.87
3 0.00-0.00-0.00 | 1.30-1.41-0.00
0.30 h;=h3 0.75 1 0.00-0.00-0.00 | 0.00-1.15-1.93
4 hy 0.50 2 2.44-0.63-2.44 | 4.60-2.85-4.60 555.62
3 0.00-0.00-0.00 | 1.93-1.15-0.00
1 0.00-0.00-0.00 | 0.00-1.39-1.29
5 h;=ho=h3z | 0.70 2 0.00-0.00-0.00 | 1.29-0.60-1.29 627.95
3 0.00-0.00-0.00 | 1.29-1.39-0.00
0.35 h;=h;3 0.70 1 0.00-0.00-0.00 | 0.00-1.12-1.92
6 ho 0.45 2 2.30-0.82-2.30 | 4.53-3.04-4.53 602.20
3 0.00-0.00-0.00 | 1.92-1.12-0.00
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p = 80 kKN/m

Rl e e A e A e R 0 e A e i o A R i
Ay L /\ 2 /\ 2y JAN

1 2 4
| |
I 1

Fig. 3. Continuous beam

4.2. Portal frame

The frame and the loading are shown in Fig. 4. Table 2 presents 12 optimal designs computed for
various prescribed values of width b and various number of independent variables h;. For compar-
ision the prices of formwork ¢ = 0 and ¢ = 2 PLZL/m? = 0.63 ECU/m? were considered. The
optimal designs for the latter case are denoted in Table 2 by letter b and are printed in italics. In
designs No 2, 3, 4, 5 the cost of formwork ¢ did not influence the optimal values h; and hence the
optimal reinforcement remained the same, too, though the objective function was different. This
was possible because the cost of formwork had only small influence on the continuum-type solution
and the discrete solution remained the same for ¢f = 0 and ¢f = 2.

p = 30 kKN/m

Fig. 4. Portal frame

In order to study the convergence, various initial designs were used as starting points in the
optimization. The greatest reduction of the objective function was observed in the first iteration
step and it depended on the initial design. The solution of optimum-type problem (i) was reached
in 4 to 7 iteration steps, where each iteration step was connected with a call of FEM subprogram.
It should be noted here that the number of iteration steps depends on the starting point and the
required accuracy. The accuracy requirement is introduced by user supplied coefficients in stopping
conditions in nonlinear programming [11].

The continuum-type optimal solution (step(i)) is a lower bound for a final discrete-type optimal
solution (step(ii)). Table 3 illustrates the convergence by the way of 3 runs of optimization program.
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Table 2. Optimal dimensions h and reinforcement for the portal frame (in italics the optimal results obtained for

¢t = 2 are given if they were different from results obtained for c¢ = 0)

Assumed | Dimensional Element Reinforcement ratio Objective
No b Design h No compression tension Function
[m] Variables [m] (%] (%] F [PLZL)
1 0.15 0.99
0.47 1.30
la h;=hy=hz | 0.50 2 0.00-0.00-0.00 | 1.14-0.92-1.14 374.17
1b 0.45 0.00-0.00-0.00 | 1.64-1.13-1.63 426.00
3 0.15 0.99
0.25 0.47 1.30
h;=hs 0.25 1 0.20 1.09
2a 0.25 314.10
2b ho 0.65 2 0.00-0.00-0.00 | 0.15-1.02-0.15 || 364.54
0.65 3 0.20 1.09
1 0.15 1.05
3a h;=hy=hz | 0.45 2 0.00-0.00-0.00 | 1.20-0.97-1.20 || 411.= 51
3b : 0.45 3 0.15 1.05 464.55
0.30 h;=h3 0.30 1 0.15 1.12
4a 0.30 371.02
4b hy 0.60 2 0.00-0.00-0.00 | 0.25-0.87-0.25 424.66
0.60 3 0.15 1.12
1 0.15 1.22
5a h;=hy=hs | 0.40 2 0.00-0.00-0.00 | 1.36-1.09-1.36 || 446.3= 5
5b 0.40 3 0.15 1.22 499.39
1 0.15 1.01
0.35 h;=h;3 0.35 0.49 1.25
6a 0.35 2 0.00-0.00-0.00 | 0.39-0.74-0.39 428.24
6b hy 0.55 0.00-0.00-0.00 | 0.62-0.78-0.62 484.60
0.50 3 0.15 1.01
0.49 1.25
Table 3. Convergence of optimization of the portal frame (Example 2)
Initial Continuum Step (i) Discrete Step (ii)
Design Design Optimal Design Optimal Design
No || b No | Result hi[m) hilm] | Iteration | Analysis hi[m]
[m] | Table 2 F [PLZL] || F [PLZL] | number | number F [PLZL]
h;=hs 0.70 0.25 0.25
1 || 0.25 2a hs 0.70 0.6796 5 27 0.65
F 404.58 312.95 314.10
h;=h3 0.50 0.25
2 | 0.25 2a hy 0.50 0.6809 6 33
F 375.32 313.09
h;=h3 0.70 0.30 0.30
3 | 0.30 4a hg 0.70 0.6340 4 21 0.60
F 465.54 370.90 371.02
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4.3. Three-storey frame

The frame and the loading are shown in Fig. 5. The optimal values of h; for various widths b and
for various number of independent variables h; are presented in Table 4, whereas Table 5 shows the
optimal reinforcement. For the sake of brevity in Table 5 the reinforcement Ag;, Aso is presented
only for one optimal design No 4 from Table 4, where four independent variables h; were allowed

for.

p = 30 kKN/m
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Fig. 5. Three-storey frame
Table 4. Optimal dimensions h for the 3-storey frame
Assumed Dimensional Objective
No b NDV Design h Function
[m] Variables [m] [PLZL]
1 0.30 1 h; + his 0.65 2626.6
2 0.30 2 hj=hs=hg=hg=h7=hg=h;;=h_19=h;3 | 0.60 2604.9
h4=h5=h9=h10=h14=h15 0.95
h1=h2=h3=h6=h7=h8=h11=h=12=h13 0.60
3 0.30 3 h4=h5=hg=h10 0.95 2603.0
hyjs=hys 0.60
hy=hs=hg=hg 0.60
4 0.30 4 hy=hs=hg=hjg 0.95 2601.3
hy1=hiz3=h14=h;s 0.55
hy=h7=h;y 0.60
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Table 5. Optimal reinforcement for four independent variables h

Assumed Dimensional Element Reinforcement ratio p Objective
b Design h No compression tension Function
[m] Variables [m] (%] (%] [PLZL]
h;=h3z=hg=hg 0.60 1,3 0.15 0.15
6,8 0.36 0.35

hy=hs=hg=h;p | 0.95 4,5 0.00-0.00-0.00 | 0.45-0.38-0.78
9,10 0.00-0.00-0.00 | 0.46-0.38-0.76

0.30 | hy=hiz=hia=hys | 0.55 | 11,13 0.52 0.51 2601.3
14,15 | 0.00-0.00-0.00 | 0.87-0.42-0.87
, 2 0.15 0.15
ho=hr=hy; | 0.60 7 0.15 0.15
12 0.15 0.15

5. CONCLUDING REMARKS

The formulation and solution of the problem of optimal design of reinforced concrete beams and
frames were presented in the paper. Ultimate limit state (bearing capacity) and serviceability limit
state (cracking and deflection) were allowed for in the constraints. Geometric constraints result-
ing from engineering practice were introduced, as well. Numerical examples were computed for
a continuous beam and two frame structures. They proved practical applicability of the method.
The proposed algorithm of optimization with the use of decomposition of design variables provided
fast convergence. Reinforced concrete beams and frames are widely used in practice, therefore ap-
plication of the theory of optimal design can facilitate the design process and diminish the cost of
design and erection.
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