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In the presented work a model of a layered, delaminated composite beam based on the finite elements
method was introduced. In this model the beam was divided into finite elements, while the delamination
was modelled using additional boundary conditions. One delaminated region in the cross-section of the
beam was considered which extended to the full width of the beam. It was also assumed that the de-
lamination was open. The influence of the delamination length and position on the changes of natural
frequencies of flexural vibrations of the laminated composite cantilever beam were investigated.

1. INTRODUCTION

Recent years have brought a considerable growth in the applications of anisotropic reinforced
laminated composites in the field of mechanical and civil engineering. Nowadays these mate-
rials are widely used in modern high-speed machinery and lightweight structures where high
strength-to-weight ratios are required.

Delamination is one of the most important failure modes in laminated composite materials.
Acquired during the manufacturing process or produced by impact and other service hazards,
delamination may greatly reduce the stiffness of the whole structure, thus influencing the vibration
and stability characteristics.

The influence of delamination on the buckling and post-buckling deformation and the delami-
nation growth with different geometrical parameters, loading conditions, material properties and
boundary conditions have been studied extensively in the past [1, 2, 3, 10, 14]. Only a few ef-
forts have been made to study the effect of delamination on the vibration characteristics. Natural
vibrations of delaminated beams have been studied by Ramkumar [6] on the basis of the Timo-
shenko beam theory. The authors did not, however, take into account the effect of coupling of the
transverse vibration with the longitudinal wave motion in the upper and lower split layers. The
analytical results obtained by them predicted significant reduction of the fundamental frequency,
and this prediction did not agree with their experimental observation. Wang et al. [9] applied
the classical beam theory but, contrary to Ramkumar [6], they considered the coupling effect. In
case of including the coupling effects, the calculated fundamental frequency was not sufficiently
reduced by the presence of a relatively short delamination and the results were in close agreement
with experimental measurements. Wozniak et. al. studied the influence of micro-cracks densities
on the material properties in the macro scale [11], and also investigated the effects of interlaminar
imperfections on behaviour of composite shells [12, 13]. Natural frequencies of a composite beam
with delamination originating from a transverse crack have been analysed by Ostachowicz and
Krawczuk [5].

The present work is devoted to the analysis of natural vibrations of a layered composite beam
with a single delamination. The beam is modelled by finite beam elements with three nodes and
three degrees of freedom at each node (i.e., the transverse and axial displacements and the in-
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dependent rotation). In the delaminated region, additional boundary conditions are applied. It is
assumed that the delamination is open (i.e., damping caused by contact forces between lower and
upper parts can be neglected in the model due to its small influence on changes of natural fre-
quencies) and extends to the full width of the beam. The influence of the delamination length and
position on the changes of natural flexural frequencies of the laminated composite cantilever beam
is investigated.

2. FORMULATION OF A DELAMINATION MODEL
In Fig. 1, a model of a delaminated part of the beam is presented. The delaminated region is

modelled by three finite beam elements which are connected at the delamination crack tip where
additional boundary conditions are applied.
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Fig. 1. Delamination of a beam modelled by finite elements

The layers are located symmetrically with respect to the z-z plane. Each element has three
nodes (z = —L/2, z = 0, z = L/2) with three degrees of freedom, which are axial displacements g;
(i = 1,4,7), transverse displacements g; (i = 3,6,9) and the independent rotations ¢; (i = 2,5,8).
It is also assumed that the number of degrees of freedom is independent of the number of layers.

2.1. Description of the element No. I

Neglecting the effect of warping, the axial displacements u and v of a point can be expressed as:

{ u(z,y) = u’(z) - yé(z),
v(z,y) = v°(z)

where u°(z) denotes the axial displacement, ¢(z) — the independent rotation, and 1°(z) — the
transverse displacement.

The bending displacement v°(x) is assumed to be a cubic polynomial in z, while the axial
displacement u°(z) and the rotation ¢(z) are assumed to be quadratic functions of z. Addition-
ally it is assumed that the shear strain variation is linear [7]. Applying the above conditions, the
displacements and rotation in the element may be written in the following form:

1)

u¥(z) = a1 + a2z + azz?,
#(z) = a4+ asx + 3agz?, (2)

0(z) = ag + arz + agz? + agz®.
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The constants a; — ag can be expressed in terms of the degrees of freedom of the element by using
the nodal conditions in the following form:

U‘O("E:_L/Q) =q, UO(Q":O) =4q4, ’U,O(.'L‘:L/Z) =dq7,
¢($=—L/2) =Qq2, ¢($=0) =35, ¢($:L/2) = g8, (3)
V(e =-L/2) = g, V(z = 0) = g, V(z=L/2) = qo.

Finally we obtain:

.,
a1 = 44,

a3 = (g7 —aq1)/L,
a3 = 2(q1 — 2q4 + g7)/L?,

a4 = (g6,
{ as = (g9 — q3)/L, (4)
ag = (g5,

a7 = (2¢6L + 693 — 6g2 — q3L — qoL) /6L,
ag = 2(q2 — 2g5 + gs)/L?,
[ a9 = 2(g3 — 2¢6 + q9)/3L2.

Taking into account Eqgs. (4) and Eq. (2), the matrix of the shape function for a single layer of
the element can be determined,

N = XA (5)

where matrix X has the form:

(1 z 22 —y —zy 0 0 0 —3z%
X - 9 (6)
1000 0 0 1 z 22 2
whereas the matrix A can be expressed by:
[0 0 0 1 0 0 0 O 0 7
1 1
I 0 0 0 0 0 I 0 0
2 4 2
7 0 0 Iz 0 0 Iz 0 0
0 0 0 0 0 1 0 0 0
1 1
A= 0 0 7 0 0 0 0 O I (7)
0 0 0 0 1 0 0 O 0
1 1 1 |
=hiy o= 0 = e
2 L 6 0 3 0 L 6
2 4 2
0 7 0 0 Iz 0 0 7 0
2 4 2
0 0 — —— —
L 3L2 0 v 3L? ¢ 9 3L2
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Using the shape function matrix for a single layer, the inertia matrix of the whole element can
be calculated from the formula

R R R R
Me=ZM§=ij/ NTNdv; =ijAT/ XTXdV; A=) pATMIA, (8)
j=1 j=1 Vi j=1 Vi j=1
where j denotes the number of the layer, R — the total number of layers in the element, V; — the
volume of the j-th layer of material and p; — the density of the j-th layer.
The value of the integral in Eq. (8) (for the j-th layer) can be expressed in the closed form,

L2 1 i 1
L2 L2
L4 L2 3L4
1 e
M¢ = BL L 0 0 0 0 (9)
J 3_67 )
L2
a 0 Ea 0
L2 L4
Ea 0 %a
L4
. — 0
Symm 80a
LS n Ry A
i 448% " 80 7 |

where a = Hj1 — Hj, 5=H12+1—H32» 7=Haa+1 _Has'

The strains in a single layer of the material are given by the following formulas:

_ Ou(z,y) _ o0u’(z) _yaqf)(:c)

R Oz oxr ’ (10)
_ Ou(z,y) | Ov(z,y)  9(z)
Yoy = oy T dr Oz )=

Considering relations (2) and (4), the strains in the single layer can be expressed as a function
of nodal degrees of freedom:

q1

{8“ }=B 2L (11)
Yy .
q9

where the matrix B equals
B=XA (12)
while the matrix X is given by

% 01 2x 0 -y 00 0 -6y
o0 0 -1 -z 012 0
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The stiffness matrix of the whole element can be calculated from the following equation:

R R
K*=) K} =Z/V_ BTD;BdV; =
j=1""

R R
ZAT/ X™D;XdV; A=) ATKSA, (14)
j=1 :

j=1 J j=1
where D; denotes the matrix which describes the relations between stresses and strains in the j-th
layer of the element (see Appendix A).

The value of the integral in Eq. (14) (for the j-th layer of the material) can be presented in
closed form,

0 0 0 0 0 0 0 0 0 1
Sua 0 —516a —-S%lﬂ 0 Slea 0 0
511L2 516L2 516L2 S11L?
3 a 0 5 «a 0 0 5 «a 5 J6]
S
See0x 716ﬁ 0 —Sgex 0 0
K? = BL SGGLQCM + 45117y 0 — 566L2a B SGGLZ 0 )
12 6 6
0 0 0 0
Sﬁﬁa 0 0
SeeL? _516L25
symm. 5 5
L S117
(15)

where a = Hj41 — Hj, ,8=H32+1 _H]2a ’Y=H;3+1_H?-

2.2. Description of elements Nos. IT and III

In order to connect element I with elements II and III, the following boundary conditions-are
applied at the delamination crack tip:

$1(z) = ¢2(z) = ¢3(z), { w)(z) — y2¢2(2) = ud(a), (16)
) (z) = v(z) = v(z), ud(z) — ysga(z) = ui(z),
where 3, and y3 denote distances between the neutral axes of elements I-II and I-III, respectively
(see Fig. 1).
Taking into account relations (16) and (2), the relationships between constants a;—ag for the
elements mentioned above can be evaluated in the form

(ol =af~yaaf, ol = f - yua,
of o —yoal, ol = af ~yaa,
al! = a} — 3yqad, af!! = a} — 3ysad, .
< afe-aflmglll athi= g}l = afll, (1)
o =afll, o= ol =af",
ol =l =all!, o —afl =i,

where the superscripts I, I and 111 denote the number of the element in the region of delamination.
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The shape function matrices for the elements No. IT and III will have the following forms:

N, = XA,, (18)
N3 = XAj3, (19)
where A; (i = 1,2) is given by the following formula
[0 0 0 1 0 Yi 0O 0 O 1
1 Yi 1 Yi
7 0 T 0 0 0 I 0 -7
2 2y; 4 4y; 2 2y;
7 Yy " TR Yy T Y
0 0 0 0 0 1 0 0 O
1 1
0 0 0 0 1 0 0 0 O
1 1 1 | 1
0 ¢z % © 0 3 0 7 -5
2 4 2
0 7 0 0 7 0 0 Iz 0
2 4 2
- 77 A T

The inertia matrices of elements II and IIT can be calculated by considering Ay, Az and using
Eq. (8).

In a similar way, matrices Bs and B3 of elements II and III can be evaluated, and finally the
stiffness matrices of these elements can be determined, Eq. (14) being used.

3. NUMERICAL CALCULATIONS

Numerical calculations have been carried out for the cantilever composite beam of the following
dimensions: length 600 mm, height 25 mm and width 50 mm (see Fig. 2). The beam was made of a

11'12,13 '14 /15 '16

B=50

N
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=
)

1 2) 3)
Fig. 2. Geometry of the cantilever composite beam subject to the effects of delamination: 1) location across the
beam, 2) location along the beam, 3) total length
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graphite-epoxy composite. It was assumed that in all layers of the beam the fibres were inclined at
the same angle to the z-axis. The mechanical properties of the material are given in Appendix B.

The first example illustrates the influence of the position of delamination measured across the
beam on the changes of the first natural bending vibration frequency for four different volume
fractions of the fibres. The length of delamination was equal to 37.5 mm (a/L = 0.0625) and the
centre of delamination was located 431.25 mm from the free end of the beam (L;/L = 0.71875).
The angle of inclination of the fibres (measured from the z-axis of the beam in the z-z plane) was
45 degrees, whereas the volume of fibres was equal to: 20%, 40%, 60% and 80% of the volume of the
beam. In this case the beam was modelled by 17 finite elements (2 elements in the layers modelling
delamination and 15 elements outside the delaminated region). The results of numerical calculations
are given in Fig. 3. It is clearly shown that the largest reduction of the natural frequency is observed
when the delamination is located along the neutral axis of the beam. When the delamination is
located near the upper or lower surfaces of the beam, the changes of the natural frequencies are
negligible.

First natural frequency [Hz]
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Fig. 3. Effect of the position of delamination measured across the beam upon the first natural bending vibration
frequency

The next example shows the influence of the position of delamination measured along the beam
on the changes of first three natural vibration frequencies. As in the first and second examples,
the beam was made of graphite-epoxy composite material. The delamination was located along the
neutral axis of the beam. The length of the delamination was equal to 37.5 mm (a/L = 0.0625).
In the finite elements modelling, the same number of elements were used as in the first example.
Fig. 5 illustrates the influence of location of the delamination for the analysed frequencies of the
beam. It is clearly shown that the changes of natural frequencies strongly depend on the location
of delamination. For the analysed beam, the largest reduction of the natural frequency is observed
if the centre of the delamination is located at the node of the mode shape associated with this
frequency.

The third example presents the influence of the length of delamination on the behaviour of the
first three natural vibration frequencies. The delamination was located along the neutral axis of
the beam and expanded towards the fixed end of the beam. Other parameters were the same as
in the first example. To model the growth of the delamination various numbers of finite elements
were used (16 in the case of the undelaminated beam and 31 for the maximum delamination length
considered). The results of numerical calculations are presented in Fig. 4. It is noted that when
the length of the delamination increases, the values of natural frequencies are greatly reduced. The
intensity of these changes depends also on the number of the natural frequency (i.e., the mode
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shape and the location of delamination along the beam) and volume fraction of the fibres. The
reduction of natural frequency increases in the case when volume fraction of the fibres grows.
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Fig. 4. The effect of the delamination location on the: a) first, b) second, c) third natural bending vibration

0.0

frequency

4. CONCLUSIONS

A model based on finite element was developed to study the natural bending vibration frequencies
of a cantilever composite beam with delamination. The method of modelling the delamination in the
beam is versatile and allows for the analysis of the influence of multiple delaminations on natural
vibration frequencies of beams with various boundary conditions. Using the proposed model, the
effects of location and size of the delamination on natural vibration frequencies of the composite
beam were studied.
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Fig. 5. Influence of the total length of delamination on the: a) first, b) second, c) third natural bending vibration
frequency

The numerical investigations carried out allow to draw the following conclusions:

1) In all considered cases the delamination reduces the natural vibration frequencies of the exam-
ined composite beam.

2) The changes of natural frequencies are a function of the position of delamination (measured not
only along but also across the beam), of the delamination length and of the volume fraction of
fibres.

3) The greatest reduction of the natural frequency associated with the analysed mode shape is
observed if the centre of delamination is located at the point of maximum bending moment.

4) Reduction of the natural frequencies depends on the location and the length of delamination.
It is observed that the greatest reduction appears when the delamination is located along the
neutral axis of the beam or when the length of the delamination increases.
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APPENDIX A

For the analysed element, the stress—strain relations matrix has the form [8]:
Sn S }

Dj = B B
S16  See

where the elements of the matrix D; are expressed by relations:
S11 = S1m* + 2(S12 + Ses)m2n? + Syon?,
S16 = (S11 — S12 — Ses)m®n + (S12 — S22 + Ses)n’m,
Se6 = 2(S11 — 28512 + Sa2 — Sg6)m3n? 4 Sge(m* + nt),

where m = cosa and n = sina (a denotes the angle between the fibre direction and the axis of the
beam perpendicular to the delamination).

The terms S;; corresponding to the principal material axes are determined by the following
formulas:

S = B 2= . 5o S12= = 2E y Ses = G2,
9 22 o oo o B
1 —vip—=— 1 -y 1 = Vg
Eqy Eyy En

where Eq1, Fa9, 119 and G192, are given in Appendix B.

APPENDIX B

The properties of the graphite-epoxy reinforced composite analysed in the paper are assumed as
follows [4, 8]:

Epoxy resin Graphite fibre
Elastic modulus | B, = 3.43 GPa FEr = 275.6 GPa

Poisson’s ratio Vm = 0.35 vr = 0.2

Shear modulus | G, = 1.27 GPa Gr = 114.8 GPa

Mass density pm = 1250 kg/m3 | pr = 1900 kg/m?>

The material is assumed to be orthotropic with respect to its symmetry axes directed along and
perpendicular to the fibres. The gross mechanical properties of the composite are calculated using
the following formulas:

p = prvol + pm(1 —wol),
Eq = Efvol + En(1 —val),
vig = vpvol + vp(l —vol),

Et + En + (Bt — En) vol]
E¢t + Ep, — (Ef — Eqy) vol |’

Ey = Em[

Gy = G [Gf+Gm+ (Gt — Gn) vol] ’

G¢ + Gm — (Gt — Gp) vol

where vol denotes the volume fraction of the fibre. The principal axes 1 and 2 lie in the plane of
the composite specimen and are directed along and perpendicular to the fibres.
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