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A multi-disciplinary, numerical approach to shape optimization of notches is presented. The design of the
optimal shape of notches in 2-D elastic machine (structural) components is formulated using the Fictitious
Stress Method. The design objective is to minimize the maximum effective stress for a given load. Formu-
lation is based on constant stress boundary element. A special concept of segmented Bezier interpolants
is adopted for defining geometry of the machine component, and the Sequential Linear Programming is
used as optimization procedure.

1. INTRODUCTION

An extensive literature has been developed on optimization of structures and structural elements
which are defined by cross-section and thickness variables (size optimization). A more important
problem, from the point of view of mechanical design, is determination of the shape of 2-D, or 3-D
structural elements (shape optimization). For such problems, the shape of the structural element
must be treated as design variables.

There are some constructional reasons to design holes, fillets, grooves, undercuts, cut-outs etc.
(known collectively as “notches”), which perturb and change any uniform stress state. In the cases
where the increase in the stress results from the existence of notches, the notion of the Stress
Concentration Factor (SCF) is introduced. It is demonstrated in literature that a decrease in the
SCF significantly increases the fatigue life of the components. To decrease the SCF, possibility
exists to minimize stress by changing the shape of the notch. Such a class of optimization problems
is reffered to as the notch shape optimization of construction parts.

Recent work on optimal shape design can be categorized as follows [14, 17]: (1) weight minimiza-
tion with stress constraints, and (2) stress minimization. In most cases, the weight of the machine
component is chosen as the objective function. The notch shape optimization problem with respect
to stresses was initiated by Tvergaard [47]. Since the first numerical treatment of the notch shape
optimization problem by Tvergaard, numerous papers have appeared [3-7, 10, 12, 15, 16, 22, 23,
25-32, 34, 37-43, 46-55, 58, 60].

The focus of this paper is to illustrate the usage of an integrated shape optimal design of notches
in a multi-disciplinary design environment [24, 33, 36]. A general methodology for the shape optimal
design is developed by linking a geometric modeler (shape definition) of the notch in a machine
component, stress analysis by the Boundary Element Method (BEM), called for short analyzer,
the sensitivity analysis, which is related to the analysis method and the optimization procedure
(optimizer). »

The paper consists of eight sections. After the Introduction, components of the notch shape
optimization algorithm are described in section 2. Section 3 presents the shape definition of notches
by modified Bezier curves, and sections 4 and 5 contain the description of the Fictitious Stress
Method (FSM) used for analysis of the stress field and stress gradients computations. In section 6




246 B. Wilczynski

the chosen optimization procedure is briefly discused. Section 7 contains several numerical examples.
In section 8 conclusions are presented.

2. COMPONENTS OF NOTCH SHAPE OPTIMIZATION ALGORITHM

Generally, a shape optimization problem of notches in machine components can be stated math-
ematically as one of minimizing a specific objective function subject to certain behavioural con-
straints and bounds on the design variables. Shape optimization using numerical methods of analysis
of stress field requires the sequential use of structural and sensitivity analysis combined with a nu-
merical optimizer. The success of the shape optimization process depends on the proper choices with
respect to the finite element or boundary element model, behaviour sensitivity analysis, objective
function, constraints, design variables and method of solution of the optimization task.

2.1. Selection of the objective

The objective of the shape optimization of notches is to decrease the peak of stress concentration
and to obtain shapes giving rise to uniform maximum reference stress along the single or multiple
notch boundaries. Different choices of stress functions as the objective function are demostrated
in literature. The objective function can be selected as: the maximum effective stress (von Mises,
tangential) along a boundary of the notch [3, 4, 6, 16, 22, 27, 28, 31, 32, 37-42, 44, 46-48, 50-55,
58], the diference between maximum and minimum tangential stresses [5], maximum shear stresses
(25, 26], stress levelling (integral stress function) [4-6, 30, 43, 46] and mixed weight-stress levelling
objective [6].

The maximum effective stress and stress levelling objective functions have been compared in
the paper [47]. It has appeared from the tests that the best objective function is the maximum
effective stress. A problem of form finding of notches in 2-D machine components with respect to
the maximum effective stress is considered in this paper.

2.2. Problem definition

Let us consider a machine component occupying a domain 2 with varying shape of internal I' = I}
and/or external ' = I notches (Fig. 1). The component is subjected to the boundary tractions T
on a part I't and to prescribed displacements ug on a part I'y. As in every stress analysis problem,

Fig. 1. 2-D machine component with varying shape of internal I'; and external I'e notches, I'* — variation domain
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the stress, strain and displacements fields o, €, u satisfy equilibrium, compatibility and boundary
conditions, as well as stress-strain relations.

A shape optimization (form finding) problem of notches can be stated mathematically as one of
minimizing a maximum effective (von Mises or tangential) stress o, in €2, ie.:

min [mg.x O¢] = min [mrz‘ix Oe) (1)

with the geometrical constraints:
rcre (2)

for a given load.

The min-max problem, which is discontinuos and nondifferentiable is solved in this work by using
a bound formulation. This original min-max problem can be converted to a simple min problem in
terms of an unknown bound on the stresses, and can be written as:

min Gemax (3)
subject to the constraints (2) and to the additional constraints:
Oej(D) — Oemax <0, jF=1,...,n¢, (4)

where nc is the number of critical points, D = [D],DQ,...,Dn]T e{D<D<Dy}CR"isa
vector of design variables, D) and D, are the lower and upper limits on D respectively.

2.3. Shape definition and selection of design variables

The use of coordinates for boundary nodes in the finite element model as a shape design variables
was the earliest used method [14, 17, 21]. Although this approach is simple and associated with the
numerical methods of analysis of stress fields, it has severe drawbacks: it involves a large number
of the design variables, and leads to an undesirable or impractical shapes.

In general, it is desirable to define the shape of the boundary by means of a reasonably small
number of design variables to reduce the dimension of the problem. Some researches have defined
the boundary of the structure by straight, or circular segments [25, 26, 32, 46]. Much more popular is
use of polynomials [4-6, 16, 58], or orthogonal polynomials [27, 31, 50] to locate the boundary shape.
The coefficients of polynomials treated as design variables significantly decrease their number. More
general than the orthogonal polynomials description is a basic function concept [49]. Althought
this polynomial boundary representation guarantees the smoothness of the boundary (one of the
basic requirements for shape definition), it can also give an impractical oscillatory boundary shape
when the polynomial order is too high. The shape oscilations eliminate spline curves [48], Hermitian
splines [30, 42], Bezier curves [26, 33, 51-55]. Other ways for shape definition, for instance, B-splines,
rational B-splines, or the use of the magnitudes of a set of fictitious loads as the design variables
and the deformation produced by those loads to update the shape are reported in literature.

In this paper a special concept of Bezier’s curves is used to locate the boundary of the notches.

2.4. Analysis of the stress field

It is characteristic for optimal shape design, that the mathematical model of a machine component
cannot be expressed in terms of classical functions, and it is necessary to use numerical methods
for response analysis. For the shape optimization of machine components with respect to stress, the
Finite Element Method (FEM) has been used extensively [5, 16, 22, 27, 28, 31, 32, 34, 37-41, 45,
46, 48, 49, 51]. It is well known that the maximum stress is usually attained on the boundary of the
machine component. Because the Boundary Element Method (BEM) , which has been recognized
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as an effective method of analysis of stress field, requires only the modelling of the boundary, it
seems to be ideally suited for notch boundary shape optimization. The essential advantages of
BEM are the following: (1) the method permits us to discretize only the boundary of the machine
component and for this reason is much easier to prepare and control the data input, (2) the method
also assures a more accurate solution, especially for stress concentration, (3) infinite regions are
easy to solve, (4) not so much experience is necessary as in FEM to decide on the element size
needed, (5) coupling to graphic computer program is much easier. Numerous applications of BEM
to notch shape optimization are reported [3, 15, 30, 42, 43, ref. [3] in [45], 50, 52-54, 58]. The use
of FEM coupling with BEM is reported in [23].
In this paper the Fictitious Stress Method (FSM), indirect variant of BEM is used.

2.5. Sensitivity analysis of the shape of the notch

Although many approaches to sensitivity analysis exist, there are two fundamentally different ones,
namely, the discretized approach, called the Direct Sensitivity Analysis (DSA), and the continuous
approach, called the Variational Design Sensitivity (VDSA) [7, 8, 12, 13, 20]. The well known Finite
Difference Method (FDM) can be ranked among the discretized approach.

In the case of DSA approach the sensitivities are obtained by a direct implicit differentiation of
the discrete analytic equations with respect to each design variable. There are several formulations
of this method: 1) analytical techniques like: a) the Direct Differentiation Method (DDM), the
Adjoint System Method (ASM), and 2) semi-analytical (quasi-analytical) technique (3, 7, 8, 12,
13, 20]. The last one is used, when analytical derivatives are complicated, and when the required
derivatives are obtained using finite differences. The DDM method is more efficient than ASM
method if the number of design variables is less than the number of constraints in the case of one
load condition [20]. This is the case in the notch shape optimization problems considered.

In this paper design sensitivities are obtained by the direct implicit differentiation of the dis-
cretized boundary equations.

2.6. Optimization procedures

Two philosophically different approaches have been followed for notch shape optimization problem
[1]. In the first approach, known as the optimality criteria methods (variational approach, see [7, 10,
12, 26, 29]), necessary conditions for optimality are derived. Because these conditions are generally
nonlinear, numerical methods must be used to solve the nonlinear necessary conditions. The sec-
ond approach is iterative, in which numerical algorithms, grouped into primal and transformation
methods [35] are used to improve a starting estimate of the optimum solution.

Several numerical methods have been used for the solution of stress minimization problems:
Sequential Linear Programming (SLP) [3, 4-6, 27, 31, 34, 43, 47, 50-55, 58], Sequential Uncon-
strained Minimization Technique (SUMT) [16, 25, 26, 30, 32, 42], feasible direction method [15,
28], multiplier methods [45, 46]. Schnack [22, 37-41] originally has developed the hypothesis about
the stress reduction in the neighboourhood of a notch helped by dynamic programming method.

The notch shape optimization problem considered in this paper is characterized by: (1) relatively
small number of design variables, (2) a large numer of stress constraints growing in subsequent
iterations, and (3) linear objective function.

In this paper, the SLP procedure based on variable move limits is used.

3. SHAPE DEFINITION BY MODIFIED BEZIER CURVES

It is assumed that the variable boundary I' of a notch can be formed by: (1) a curvilinear part
and, if it is necessary (2), a straight line. In this paper Bezier’s curves will be used to shape
representation of the curvilinear part of the boundary (Figs. 2, 3). A standard, one-segmented
Bezier curve (polynomial) of order m + 1 (degree m) is defined by [59]
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Fig. 2. Standard Bezier curve
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Fig. 3. Bezier curve inside: a) the CT, b) the ZCP
m
Pz FPiBinmll), (5)
1=0
where
Bl =t (11—, and te[0,1] (6)
YT il (m — i) ’ T
is the Bernstein polynomial, P;, s = 0,1,...,m are the Bezier points (control points) in R? (or R3),

and t is a parameter representive of a curve. Bezier curves offer many interesting properties: (1)
each curve lies within the convex hull of the control points that define it, (2) the Bezier curve passes
only through control endpoints, (3) at the end points, the curve is tangent to the corresponding
edge of the polygon formed by the control points.

In the papers [18, 19] some modifications on Bezier curves are presented. A Bezier curve
(Fig. 3a, 3b) is defined by so called characteristic triangle (CT) or Z-shaped polygon (ZCP) and,
for more flexible control, two shape parameters are introduced. The power representation of Bezier
curves is given in Appendix.

The vertices composing a CT satisfy:

P,—- P = Cl(PN —Po), P, — Py = CQ(PN —PQN), 0<ecr,eo<1. (7)
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The vertices composing a ZCP satisfy:
P,— P =ci(Pn—Py), Po—Pny1=co(Pys1—Pong1), 0<ecpe2<1. (8)

Parameters ¢; and ¢y continuosly change the shape of segmented Bezier curve inside the CT and
ZCP. These shape parameters and the position of some control nodes (master nodes, key nodes)
are assumed as design variables.

4. FSM METHOD AS ANALYSER

The Fictitious Stress Method (FSM) presented in [11] is used for an analysis of the stress distribution
in 2-D structural elements. This is an indirect boundary element method. Figure 4 shows a cavity

Fig. 4. Example of 2-D machine component: a) real contour, b) numerical model

(very long in z direction) in an infinite elastic body. The boundary of the cavity is labelled C' in
Fig. 4a. The dashed curve C’ shown in Fig. 4b has the same shape as the curve C. Both curves
are approximated by straight line segments (elements), joined end to end. The difference between
curves is, that curve C” represents the location of these line segments in an inifinite body (without
cavity), which are coincident with the real boundary C. The shear PJ and normal P! stresses
applied to the segment j induce the actual stresses o and o at the midpoints of each element of
curve C', i = 1 to n. The stresses P/ and P! are fictitious quantities and should be determined.
The relation between the actual stresses of and o7 and the fictitious stresses P/ and P! is based
on the analytical singular solution to the problem of constant normal and shear stresses applied to
an arbitrarily oriented, finite line segment in an infinite body (Kelvin solution), what leads directly
to the system of 2n * 2n equations

CP=b, 9)

where: C — the influence coefficient matrix, P — unknown fictitious stress components, b — given
tractions (or displacements).
If the fictitious stresses are known, the tangential stresses can be found

ot = APs + APy, (10)

where: Ais and Ay, are nxn matrices of the influence coefficients for tangential stresses, Ps and P,
are n* 1 vectors of the shear and normal fictitious stress components, respectively. Because constant
stress elements are assumed to be on the boundary, there is no need for numerical integration. The
accuracy of results can be increased by increasing the number of elements. The accuracy of the FSM
for the solution of stress concentration problem in 2-D machine components has been examined in



Multi-disciplinary shape optimization of notches 251

[56]. It has been found that there is no remarkable difference between the results of the FSM notch
stress analysis and the analytical, and numerical results widely presented in literature.

The main motivation for the selection of FSM as the analyser is the relative simplicity of stress
gradient computations.

5. DIRECT SENSITIVITY ANALYSIS

It should be mentioned that the objective function is linear, and only there is a need to evaluate
the gradients of the stresses with respect to design variables. Design sensitivity analysis of a bound-
ary element of a discretized structural element with the notch is based on the analytical implicit
differentiation of the tangential stress equation (10) and of the global equilibrium equation (9).
Differentiating Eq. (10) with respect to design variable D;, we obtain the equation

6at 8Ats 8PS (9Am 6P
— =—P;+A P,+A . 11
9D, ~ aD; “3D;  aD; "' 3D, (1)
The fictitious stress derivatives can be obtained by differentiation of equilibrium equations (7)
oC oP ob
P+C = . 12
BDJ- * 3Dj aDj ’ ( )

Rearranging yields

P _ 4 [ oC Bb] . (13)

aD; ~ap;" ' ap;

The above sensitivities are derived analitically by differentiation with respect to D; [57]. For com-
parison of the results the Finite Difference Method (FDM) is also used

aD; AD; (14)

6. SLP AS OPTIMIZER

It is well known, that the cost of computations is extremaly high when the FEM or BEM is used as
component of optimization algorithm. To overcome these difficulties suitable approximation concept
is introduced, where implicit original optimization problem is replaced by explicit, approximatelly
equivalent one, but which is easier to solve [2]. This concept has found wide application in the
optimization technology.

The simplest is the linear (first-order) approximation based on the Taylor expansion of the
objective function and constraints, what leads to the Sequential Linear Programming (SLP) method
used in this paper. The following facts were the main motivation for the selection of SLP as the
optimization procedure: (1) Earlier [44] and latest investigations [35] showed that the SLP code
is quite robust, efficient and can be applied to solve large real life design problem succesfully. (2)
The SLP method is one of easiest algorithms to program, and efficient linear program algorithms
are available on most computer systems. (3) The objective function because of the use of “bound
formulation” is linear, and only stress constraints should be linearized.

After linearization of stress constraints, the problem (2) can be rewritten as:

minimize: Gemax (15)
subject to the constraints (2) and to the linearized additional constraints:

s+ VEGAD = 1oemax < 0 (16)



252 B. Wilczynski

and
AD; < AD < AD,, (17)

where: AD are design changes and AD; and AD,, are the lower and upper move limits [9] on AD
respectively, which can change in each iteration. They play an important role because they control
convergence and allow to avoid oscillations if a solution does not lie at the vertex of the design
space. The “move limits” are also used for transforming designs into non-negative designs (it is
required by the LP algorithm that all variables are limited to the non-negative range).

7. NUMERICAL EXAMPLES

A computer program written in TurboPascal was developed for the analysis of 2-D machine com-
ponents and for the Sequential Linear Programming method. This program was implemented using
IBM PC/AT computer. The optimization procedure is considered to have converged to the final
minimum stress concentration when the condition |o[*®* — o3| /0% < ¢ is satisfied for the two
succesive iterations, where o; and o;_; are the effective stresses after ¢« and 1 —1 iterations, and ¢
is a user-defined tolerance value (e.g. ¢ = 0.01 corresponds to a 1% convergence criterion). The
tolerance ¢ = 0.0001 is assumed in this paper. Seven examples are chosen to illustrate the use of

the computer program.

Example 1. The classical fillet problem

The fillet problem (Fig. 5) is a classical test problem for shape optimization. The objective is to
find the shape of the transition zone I in the variation domain I'* that minimizes the maximum of
effective stress.

1.0

4.7

Fig. 5. Fillet problem

Due to the symmetry of the problem, only a quarter of the fillet is analyzed. Figure 6 presents
the boundary element mesh (subsequent values of parameters t; and ¢;_; define the endpoints of
the boundary element) and the shape definition of the boundary notch. A boundary of the fillet
is modelled by 21 boundary elements. The shape of the fillet defined by CT is controlled through
the the position of the control node D; = P, and control shape parameters Dy = ¢, D3 = c3 (in
fact the position of control nodes P; 2 and Py 5). The control nodes are only allowed to move in the
directions specified by the arrows. Starting with initial values D = (0.5, 0.5, 0.5) after 6 iterations
the optimal fillet shape (Fig. 7) is achieved for design variables D = (2.400, 0.0624, 0.7161) with
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q=1.0

Fig. 6. Shape definition and boundary element model for fillet
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Fig. 7. Fillet problem — optimal contour

tangential stress

element number

Fig. 8. Fillet problem — stress distribution around transition zone

objective 0.9649, what means that the stress concentration is completely removed. The result 1.0098
after 7 iterations has been obtained in [34] using SLP algoritm with FEM. The optimal profile of
the fillet and the optimal stress distribution (the numbering of nodes on the notch boundary is
local) along the fillet are shown in Fig. 8.

Example 2. Optimum shape of quasi-square hole in infinite plate under uniaxial tension

The next example is also treated as the test problem. The infinite plate is under uniaxial loading.
The problem is symmetric about both coordinate axes, so only the quarter of the plate needs to be
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modelled. A boundary of the hole is described by the seven-order Bezier curve (N = 3). Control
shape parameters Dy = c1, D3 = c2, and the position of the control node D; = Ps (measured in
z direction) are treated as design variables (see Fig. 9). The boundary of the hole is modelled by
28 boundary elements. Starting with initial values D = (0.5, 0.5, 0.5) after 4 iterations the optimal
hole shape (Fig. 10) is achieved for design variables D = (0.7785, 0.1210, 0.010) with objective
2.16. That means a 28 percent reduction of stresses with comparison to a circular hole. The above
results are similar to these obtained in the papers [38, 40]. Schnack in [38, 40] optimizes the shape
of the hole by the method of dynamic programming (non gradient technique) through the FEM.
The number of 48 iterations to obtain the optimal profile of the hole is reported in [40].

(iEARARRAREEENERE

y Vb

1.0
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Fig. 9. Single hole problem
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Fig. 10. Single hole problem — optimal contour and stress distribution for optimal hole profile and circular hole
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Example 3. Optimum shape of a hole in an infinite plate under biaxial tension

This example comes from the papers [30, 42]. The plate is under biaxial field with the ratio
o2/01 = 1/2. In the cited papers the plate is treated as finite with ratio of the width of the plate to
the diameter of the hole equal 20/1. The FSM gives the possibility to consider an infinite plate. De-
tails of the algorithm in the papers [30, 42] are the following: the direct variant of BEM is used, the
model contains 36 quadratic boundary elements, the hermitian cubic spline defined the hole bound-
ary, and the optimization method used is the extended penalty function. In the present paper: the
indirect BEM (FSM), 25 constant elements, Bezier curve, and the SLP method respectively. The
circular hole is taken as the starting profile in both algorithms. The initial design variables and
the movements directions are shown in Fig. 11. The standard Bezier curve order m = 3 with

Fig. 11. Optimum shape of hole: a) initial shape, b) optimum shape [30,42], ¢) Author’s optimum profile,
d) analytical solution

Dy = D3 = 4/3(v/2 — 1) = 0.55 gives a good approximate expression of the circle. Starting with
initial values D = (1.0, 0.55, 0.55) and the objective o, = 2,4995, after 8 iterations (25 iterations in
[30]) the final shape is achieved for design variables D = (0.4999, 0.5581, 0.2738) with o, = 1.5021.

' A

21

14

0 : Angle
0 20 .40 60 80

Fig. 12. Stress distribution around hole: a) for initial shape, b) for optimal solution [30], c) present solution,
d) analytical solution

Figure 11 also shows the optimal analytical solution (o, = 1.50) and that obtained in the papers
[30, 42]. Figure 12 shows the stress distribution along the hole before and after optimization with
the comparison to the results in the above mentioned papers.




256 B. Wilczynski

Example 4. Optimum shape of a quasi-ovaloid hole in infinite plate

The stress concentration can be reduced by making the hole oblong in the direction of loading
(so-called oblong, ovaloid hole). If the loading acts perpendicularly to the oblongity, the SCF
increases). A CT concept is used for the shape definition of the boundary of the quasi-ovaloid hole.
Only three (practically two) design variables are needed to control the shape of the boundary.
Figure 13 shows the SCF’s for the holes with the circular rounded boundaries, and the SCF’s
corresponding to the optimum shapes of quasi-ovaloid holes, for two loading cases 8 = 0°, and
B = 90°, and for different values of the parameter ¢. About 28-39% reduction in stresses is obtained
in comparison with the ovaloid hole with circular rounded boundaries, when the oblongity is in the
direction of loading. More details are presented in the paper [54].

Gt 7

6.5

5.5

4.5

Fig. 13. Stress concentration factors for: ( - - - ) ovaloid hole with circular rounded boundaries (Ref. [1] in
[54]), ( — ) optimal hole profile, ( o ) FSM test results for ovaloid hole with circular rounded boundaries

Example 5. Optimum shape of quasi-square hole in finite tensioned strip

In this example the shape of the hole in finite tensioned strip is optimized. For details of the problem
description see Example 2. Table 1 presents the optimal results for a single hole in finite tensioned
strip for different ratios r/w, where r is the dimension of the hole, and w is the width of the strip.
Figure 14. shows the optimal contour of the hole and the corresponding stress distribution around
the hole in finite strip for r/w = 0.5.
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Table 1

Optimal design variables | Optimal | Number of
No. | r/w

D, Dy Ds objective | iterations
1 0.10 | 0.7829 0.1264 0.0100 | 2.2338 5
2 0.25 | 0.7998 0.1207 0.0100 | 2.3125 6
3 0.50 | 0.8601 0.2754 0.1762 2.9745 14
4 0.75 | 0.9394 0.7298 0.3688 | 4.9989 16

y N

1

05 +

0 + X

0 0.5 1

tangential stress

element number

Fig. 14. Optimal contour and stress distribution around single hole in finite tensioned strip for r/w = 0.5 for
optimal hole profile and circular hole

Example 6. Optimum shape of quasi-square cut-out in finite tensioned strip

In this example the shape of the external notch cut-out in finite tensioned strip is optimized.
Figure 15 shows the optimal contour of the cut-out and the corresponding stress distribution
around the cut-out for r/w = 0.5.
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Fig. 15 Optimal contour and stress distribution around cut-out in finite tensioned strip for r/w = 0.5 for
optimal profile and circular cut-out

Fig. 16. Optimal contours for central and defense holes

Example 7. Optimum shape of internal notches (holes) in finite strip under uniaxial
tension

One method for reducing the static stress concentration is introducing additional (defense) holes
in the direction of loading on either side of the central hole. Further reduction of the stresses is



Multi-disciplinary shape optimization of notches 259

possible with simultaneous shape optimization of both kinds of holes. The problem is symmetric
about both coordinate axes, so only the quarter of the strip needs to be modelled (Fig. 16). The
boundary of the central hole was modelled using 21 boundary elements, and the boundary of the
additional hole using 42 boundary elements. The exterior boundary of the strip is divided into 60
boundary elements. Figure 16 shows the optimal design of the central end defense holes, and Fig. 17
shows the optimal stress distribution along the design boundaries. The 37% reduction in stresses
in comparison with the single circular hole is obtained by the presented numerical approach.

35+ central hole defense hole

tangential stress

element number

Fig. 17. Stress distribution along central and defense design boundaries

8. CONCLUDING REMARKS

A multi-disciplinary, numerical approach to shape optimization of notches is presented. Shape
optimization of notches in 2D machine components to minimize stress concentrations is formulated
as the sequential linear programming problem with the use of the Fictitious Stress method. The
Fictitious Stress Method is very suitable for shape optimization problems, and in comparison with
the Finite Element Method, needs much less data, and gives more accurate stress solution. Stress
derivatives are found by differentiating the tangential stress and the global equilibrium equations,
which is less costly and accurate. The geometry of the notch is defined by a special concept of
Bezier technique. A significant reduction in stresses is obtained in comparison with traditionally
used shapes of the notches. With such reduction in maximum stress level, the improvement in
fatigue life of the component with the notch (notches) can be very significant.

Presented algorithm is a small scale shape optimization problem. Practically only a few design
variables are necessary to control the shape of single, or multiple notches, which means that these
and similar problems can be easily solved using IBM PC computers.

APPENDIX
Power representation of Bezier interpolants [18, 19]

The Bezier segment inside CT is:

2N P, j=,
= 41 . —
s _galt HEneT (=1)° (%]Y) [Pb+(—1)i (;) Pj] , 1<i<2N,
(P, 1< a1,
Pj = P pes iy Pr= Py iy, =By =Py,
Py N+1< j<2N -1, Pyty1=Pnya=...=Piy_1 =B
| Pan j=2N,
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The Bezier segment inside a ZCP is described as:

P, 1=0,
INH1L
P(t) = Zait’, a; = /9N +1 ;
i=0 (”1)1( .+> P0+Z 1)’() i, 1<i<2N+1,
[ B 1£ gE N=1;
Py j=N,
. Po=Py= =P =B,
Pj=4 Pvn N+1s g<2N~1,
, Pyyo=Pyy3=...=Py=F.
P N+2< j<2N,
L Panvt1 J=2N+1,
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