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The flow formulation for metal forming analysis based on a rigid-viscoplastic material model is considered.
Specifically, sensitivity evaluation techniques are discussed for different solution variables with respect
to variations in parameters entering the constitutive (and other) equations such as material constants,
imposed velocities or friction coefficient. A method to avoid spurious pressure modes is introduced which
allows to use Q1/Q1 elements and thus to accurately calculate pressures, their sensitivities and friction
forces. In addition, one pressure unknown for each node is available in this method, thus yielding a finer
discretisation for this variable. )

1. INTRODUCTION

One of the first approaches to analyse metal forming processes was the so-called flow formulation,
initiated by Goon et al. [1], which has since then attracted the attention of researchers for its sim-
plicity and versatility. A complete presentation of the approach was given by Zienkiewicz et al. [2].
Situations frequently met in metal forming processes are well accounted for by considering the
metal as a non-Newtonian fluid, neglecting the elastic strains during the processes (since they are
much smaller than the plastic ones), and, if needed, calculating them additionally at the end of
the analysis. The method is best suited for stationary processes in which the Eulerian approach
considerably simplifies the analysis. The primary variables are the velocities v; of the deforming
body. A rigid-viscoplastic model thus results as a means to describe the material behaviour with
a set of equations analogous to that of a non-Newtonian fluid; the use of the flow approach is
therefore justified. For transient cases different approaches have been proposed that take into ac-
count changes in the configuration due to the movement of the tools, progress of the free surfaces,
contact zone developments, etc. Because of the low velocities which normally take place in these
processes accurate results are obtained by first solving the problem for a fixed configuration, and
then updating it for the incremented time.

The adequacy of such an approach has been both supported and criticised, and it is not our
objective here to comment on that aspect. Our pragmatic viewpoint is, however, that the method
is well suited for solving many problems frequently encountered in metal forming practice.

The sensitivity analysis was first developed for 2D stress problems by Zienkiewicz and Campbell
[3]. Other applications in structural analysis followed by using both the so called direct differen-
tiation method (DDM) and the adjoint system method (ASM) as discussed by Haug [4], Haug
and Arora [5], Haug et al. [6], Ryu et al. [7], Yang and Botkin [8], Raju et al. [9], Kleiber et
al. [10], among others. Useful information regarding the influence of material properties, geometric
parameters, etc. on the results is available from such an analysis at a numerical cost which is small
compared to the solution of the equilibrium analysis problem. At the same time the sensitivity
analysis may constitute a crucial step in optimisation of the process on hand. On the basis of
the sensitivity information a set of optimum design conditions can be satisfied; one can aim at
minimising the plastic deformation energy, the distortion suffered by the material, the maximum
temperature reached, etc.
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In this paper the sensitivity analysis of metal forming processes with respect to parameters
entering the material model is presented. The flow formulation is adopted for the analysis of the
mechanical problem. Both the ASM and DDM are discussed. It is shown that the tangent matrix
used in the analysis problem can most frequently be also used for solving the sensitivity problem,
yielding a linear system of equations with the same governing matrix but a different right-hand side
vector as the only additional quantity to be computed at the sensitivity stage. Finally, the iterative
(secant stiffness matrix based) version of both the ASM and DDM is developed and applied to the
solution of a particular problem where the tangent stiffness matrix cannot be used on grounds of
its ill-conditioning.

2. FLOW APPROACH FOR METAL FORMING ANALYSIS
We shall briefly present in this section the set of equations typical of the flow formulation. Using

notation which has already been standardised in the literature [2], continuum equations describing
the rigid-viscoplastic flow are as follows:

oij = Sij —pbij,

sij = 2W&ij,

s — L. »

gij = 3(vij+vii), (1)
Ek = 0,
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where p is the nonlinear viscosity, oo the static tensile yield limit, s;; the stress deviator, p the
pressure (assumed positive in compression) and y,n parameters of the model. The weak form of
the equilibrium equation reads

/afdﬂz/fvamﬁ/ivdwm 2)
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We now introduce the mixed FEM expansion (the standard matrix notation is used)
o = N, 4= L2000l
E = By (3)
p = Bp,
where N and B are the shape functions for the veloc1ty and pressure and B is the standard strain
rate-velocity matrix while ¢ = {4} = {a},...,a}, @,...,4},..., LS e O RS L e |
and p = {pa}, 2 =1,2,. ., N are the nodal velocity and pressure vectors, respectively, with N and

N denoting the respectlve numbers of kinematic and pressure degrees of freedom, I the number of
velocity components (ie. I=2o0rI =3)and N the number of nodes for velocity discretisation
(hence N =1- N ). The vector q is split in I vectors q; each consisting of subsequent nodal velocity
components along the 's’-axis. By splitting Q, f and f in the same way as q, we obtain from Eq. (2)

/B%dﬂ:Q, | (4)
Q

Qi= [ NEde+ [ N d@)+F, (5)
Q oS
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in which the superscript ’r’ indicates transposition and F is the vector of concentrated loads applied
at the nodes. By substituting Eq. (1) into it we get

(/ﬂzuBTBdQ)q—(/QBTdeQ)f):Q, (6)

ie.
K()a+K{,p=Q (7)
with
Ko = /Q,,Lko a0 = [ BB ag,
| (8)
- % R
K, = - [ B'mBde,

the row vector m = [1 1 1 0 0 0] converting the total strain into the volumetric component and kg
being dependent only on the geometry.

The equilibrium equation (2) has to be solved together with the incompressibility condition (1)4
. written in the weak form as

/ Béw d0 =0, (9)
Q
which after discretisation reads
</ B"m™B dQ) §=0 (10)
Q

or, more compactly

Kpa=0. (11)
The fundamental set of equations becomes

adIHE ‘

- 12

[ K(p) 0 P 0 (12)

or, shorter, in the residual form
R:K(M)Q—Q:‘O. (13)

Equation (12). corresponds to the equations describing the nonlinear Stokes flow. The dynamic
terms are not included, which is justified by the fact that usually low velocities prevail in metal
forming processes. For a typical metal forming case (like extrusion) the Reynolds number is of the
order of 107°.

The matrix K(u) depends on the solution through the solution dependent viscosity u so that an
iterative process is generally needed to find the solution vector q. At the i-th iteration Eq. (13)
reads

mﬂzﬁ%¢n_q_ (14)

In order to employ the Newton-Raphson method we write the next iteration residual approximated
by the first order Taylor expansion

R

(1+1) o R (9)
R = RY + aa

sqt ) =0 (15)
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from which the solution correction is computed as

A\ -1
5q(i+1) — (ai_()) RO,
% (16)
gty = g 4 sqtty)
where
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g K + /ﬂ (koa) 4 d¥=K(,) , ko= [ 0 O] (17)
is the (non—symmetric) tangent stiffness matrix while
1
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Since stationary problems are considered only, no time integration is needed; otherwise, for an
implicit scheme the computation of the contribution of the load term dQ/dq to the tangent stiffness
matrix would be required.

The formulation of the boundary value problem is completed by a suitable specification of the
boundary conditions, which can be either of sticking or no-friction sliping-type, or of an intermediate
type defined by a tangential force applied to the material boundary and computed according to a
given friction law. A simple way of modelling this last option, as suggested by Zienkiewicz [2], is to
insert a thin layer of elements connecting the fixed boundary with the material. According to the
Coulomb friction law, a yield stress proportional to pressure is assigned to the elements so that the
material is acted upon by a tangential force proportional to the force normal to the boundary and
directed opposite to the material movement. If the pressure happens to be zero, a residual viscosity
is imposed in order to avoid numerical singularity of the matrices.

The application of such an algorithm requires an accurate enough pressure evaluation. It is a
known fact that for nonlinear problems the so-called Babuska—Brezzi condition is not satisfied even
by the Q2/Q1 elements and spurious pressure modes appear. Hughes et al. [11] have proposed a
method for pressure stabilisation circumventing the Babuska-Brezzi condition, in which the equi-
librium equation, suitably weighted by the gradient of the shape functions, is added to the pressure
equation in order to obtain the negative Laplacian in the diagonal block for the pressure, which is
responsible for the stabilising effect. The added equation should vanish when the converged solution
is reached. By applying this technique to the flow formulation for metal forming problems we add
to the incompressibility condition (10) the equation

/QO;—fi(VB~(-—V-s+Vp—f))dQ:0, (20)

where « is a stabilisation coefficient, 0 < a < 1, h is a characteristic magnitude for each element
(the mesh size), and s is, as before, the stress deviator. For a = 0 the system of equations reduces
to the standard formulation and the solution will not converge unless the Babuska-Brezzi condition

is fulfilled.
The equations for the pressure assume the form

(Kp+L)g+Mp=H, (21)
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where
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and k,, is a scaling factor for the pressure [12]. The element matrices will in general be non-symmetric
except for linear interpolations, in which case the second derivatives of the shape functions vanish.
The submatrix M connecting pressures at different points is the negative discrete Laplacian which
is responsible for the stabilising effect. In this paper the formulation has been implemented for
Q1/Q1 shape functions (hence B = N) within the finite element code for metal forming analysis
developed by the first author [13].

Having discussed the way to remove the spurious pressure modes we may pass on to the treatment
of friction. In the element layers where friction is considered to take place we assume that the
viscosity is given by

oy .
=3z (23)

with oy defined as

3=

va:‘70+(é_/"/) , it pf>ou,
oy =4 »pf, if 0<pf<oy, (24)

0, if p<o0.

In this way the more compressed the material against the surface, the bigger the shear stress
between the friction layer and the rest of the material.
For the friction elements the derivatives (18) and (19) take the form

Bf . e

—-.—_326‘,']'31']'0[, if 0<pf< Oup »
s oAl S (25)
94 6 .. :
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and
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9p = 35’ if 0<pf<oy (26)
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3. SENSITIVITY ANALYSIS

We consider now a general form of the performance function as
¢ = ¢(S, q; h) 8 (27)

We wish to calculate the sensitivity of ¢ with respect to a material parameter h entering the theory.
As h we may take n, 7, or gg, cf. Eq. (1). Following the so-called direct differentiation method
(DDM) we calculate the gradient

d¢ 8(}5 3(;5 ds 8(1) dq

&k~ 9h T 9sdh T 9gdh’ (28)
in which, given the solution of the equilibrium problem, d¢/0h, 0¢/0q and 0¢/ds are known, or
can be routinely obtained, and ds/dh can be written in an easily computable way as

ds ds dq
dh ~ dqdh’ )
ds ds ds
where aq - {dq dp} and, according to Eqgs. (4), (6) and (1)
ds _ 9uB 42984,
dq Jq (30)
s,
i - i

Therefore, in order to compute d¢/dh by Eq. (28) only dq/dh has to be obtained from additional
calculations. By differentiating the equilibrium equation (13) with respect to h we have

an (K(#q Q) ah q+K(")E_—&E:0’ (31)
where
op dp dq
/ kon+/Q(a dh)kon (32)
By combining Egs. (31) and (32) we arrive at
( e / (ko) g’; dQ) dg, . ( / ‘;" B dQ) (33)
ie., at

K!, < / oy dQ) (34)

This equation can be used for finding the nodal velocity and pressure design gradients dq/dh
provided the nodal velocity and pressure vector q has been solved for from the equilibrium problem.

We can equivalently solve the sensitivity problem by the so-called adjoint system method (ASM),
for which we construct an extended functional £ = L[s, q; h;A] as

L=¢+ATR, (35)

in which the state equation R = 0 is the same as before, cf. Eq. (13) and A is a (N+N)-dimensional
kinematically admissible adjoint vector such that £ is stationary with respect to q, i.e.
dl

E:O. (36)
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We have

d. d¢ dAT TdR

R R (37)
which simplifies to

d.  d¢

because the state equation holds true for both the current and modified value of k. Furthermore

dC 9L  9Ldg

& = oh T aqan (49)
which by Egs. (36) and (38) becomes

d¢ 0L

T = )

and can be directly used for the computation of the sensitivity d¢/dh required. The vector A is
computed from Eq. (36) in a non-iterative way as

L _dg 0K - R d¢ B
i.e. as
T do
Kzu)'\ (dq) ’ (42)
in which
d() 8( )ds ()
dqg  0s dq 5 0q (5]

and ds/dq is given by Eq. (30). Since the stiffness matrix I_{( 4) is non-symmetric, the solution of the
adjoint system is not as straightforward as it is usually the case in structural mechanics problems.
Instead, we are forced to use the transpose of the inverted system matrix in order to get A.

Experiences with solving metal forming problems described by Eq. (13) show, [12, 13, 14]
that the Newton-Raphson scheme, (Eq. (15)), is applicable (i.e. it converges) only for markedly
rate-dependent materials, like steel in hot working conditions. This corresponds (cf. [14]) to the
exponent value n < 2 in the model (1). Thus, for a material behaviour closer to perfect plasticity
direct iterations based on

K, )( (i 1)) & = @ (44)

must be performed. This scheme is always convergent, although only linearly. Procedures for ac-
celerating convergence have been analysed in [12].
In the present context the question arises whether the actual tangent stiffness matrix Kfu) or

the secant stiffness matrix K,y should be used for calculating the sensitivity. In the latter case the
iterative version of DDM takes the form (cf. Eq. (34))

K(u)( ) (/ e dQ) / (kod) j’; dQGz)( v (45)

Similarly, for ASM we have the iterative form equivalent to Eq. (42) as

. d\T . (0K e
3% o UIRREE (oA IR N Bhsicia ()] (i-1)
(WA (dq> ( 9q ) A : (46)
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To compare both versions of the solution algorithm (tangent vs. secant stiffness) for sensitivity
analysis, we have to keep in mind that frequently, as has been stated above, the equilibrium problem
is solved by using the secant stiffness matrix so that its inverse is available at the end of that stage. If
the problem could be solved by using the tangent stiffness matrix, then the decision which method
to use is straightforward. Unfortunately, the Newton-Raphson method (which involves the use
of the tangent stiffness matrix) is practically always divergent in the situations of most practical
importance regarding sensitivity analysis, namely when no nonzero velocities are prescribed. From
a practical point of view it is therefore important to critically evaluate both versions of the solution
algorithm.

The tangent stiffness option with the well conditioned matrix yields the sensitivity solution in
one step. On the other hand, whenever the equilibrium problem cannot be solved by the use of the
tangent stiffness matrix, the solution to the new set of equations is required. In contrast, the secant
stiffness option requires iterations but no new solution of the equations system. Moreover, when
the material behaviour is close to ideal plasticity, the numerical inverse of the K‘” matrix does not
yield the solution in one step: it may be then necessary to iterate even with the tangent stiffness
matrix just to improve the numerically unreliable one-pass solution. And it can happen that this
iterative procedure is divergent, therefore the solution by the secant stiffness matrix as given by
Eqs. (45) and (46) is compulsory. The question of superiority of one approach over the other is thus
strongly dependent on the material behaviour, the way the loads are applied and the boundary
conditions. This is further illustrated in Sec. 5. In particular, for the perfectly plastic material the
tangent matrix is singular and the solution variables become infinitely sensitive to changes in the
physical properties if only the loads are held constant.

The equivalence of DDM and ASM can be shown by considering the case ¢ = g, (a being
a specified component number), i.e. when the performance function coincides with a given nodal
velocity. By Eq. (28) we have for DDM

dgo . dq _ t— </ ) ~
=13 b 47
an l(a) dh l(a)K 8hk() dQ q, ( )

where the k-th component of the vector i, (k) is 1( y = = 6. For ASM, Egs. (40) and (42) take the
form

Mo = A =3 (540 09) X
and
T .
(Kl) A = =i (49)

where A(,) is the adjoint vector corresponding to ¢ = ¢(q)- Finally, substituting A (,) from Eq. (49)
into (48) we obtain Eq. (47). Moreover, taking the set of sensitivity functionals as ¢ = {da} =
{¢o} = q, Eq. (42) takes the form

(k) A =-1, (50)

where the k-th column of matrix A is the adjoint vector A (,) for @ = k. From Eq. (40) we substitute
AT in the expression for the sensitivities obtained by replacing in Eq. (40) ¢ by q, A by A and L
as given by Eq. (35), to get

dg _ . 0R _ / <8u ) e
= 51
dh - on K 6hk0 &t L

which is equivalent to Eq. (34).
Usually, forming processes are conceived of by controlling (normally by holding constant) either
the imposed velocity or the applied force. In the numerical model, as a result of the elimination of
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rows and columns corresponding to the fixed degrees of freedom during the solution procedure, the
first case is equivalent to the application of external forces which are proportional to the viscosity,
and through this dependence these applied forces are also a function of the design parameters. It
comes out from the sensitivity analysis for the case of constant imposed velocities that the velocity
field is all but insensitive to the material parameters, and only the pressure is sensitive to them.
On the other hand, when fixed loads are imposed, the velocity exhibits a strong dependence on the
value of the design parameters, while the pressure is almost constant. For this reason, this second
case is discussed in the applications.

If we want to calculate the sensitivity of the solution to the material parameters entering the
viscoplastic law we have to find, by Eq. (34), the partial derivative of the viscosity with respect
to the given parameter. Equation (1) suggests the static yield stress op, the fluidity v and the
exponent n of the viscoplastic law as possible parameters with respect to which we can analyse the
sensitivity of the solution. We have in turn

op i3

3—00:\/_—3?’ (52)

B i 1 i
7 ynV3é (7\/§> ’ (53)

on_ L&) (2
=i () () v

We can also find the sensitivity to the friction coefficient by differentiating Eq. (23). This deriva-
tive will be non-zero only for some of the friction elements (those which are referred to in the second
row of Eq. (24)), and it has the form

on_»_ (55)

of 3

A further possibility, which may have potentially a great practical significance is to find the
sensitivity to the imposed velocity. This means, for example, the sensitivity to the ram or forging

hammer velocity, or to the tangential velocity of the roll, for extrusion, forge and rolling operations,
respectively. In this case only the loads depend on the design parameter through the viscosity. Thus,

if the tool effect is modeled by imposing a value proportional to v to a subset A = {i, 2, ...,4,...
of degrees of freedom, where vg is the tool velocity,

ga = aavo , (56)

we define the vector 4 such that

fo it acA,
Yo = Vo (57)

0, else.

We have 7, = 0 if either no value is imposed at the a-th degree of freedom, or it is set to zero,
or a velocity is imposed independently of vg. In such a case, by recalling the sensitivity functional
Eq. (27) we have

d¢ d¢ _ d¢
dvo dqa%‘ - dq7’ (58)

d 2
where d—¢ is the sensitivity of ¢ to the velocity ¢,, (i.e. ¢, is taken as the design parameter).
Qo
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4. MATERIAL MODEL AT LOW EFFECTIVE STRAIN RATES

Let us now go back for a moment to the material model. It is a known fact that the flow approach
leads to numerical problems when the velocity field tends to be uniform rendering £ — 0 with the
viscosity p tending to infinity (see the constitutive equation (1)). The traditional way of solving
this problem (cf. [2]) is to define a cutoff value for the effective strain rate so that u = py, for
every £ < &;n. In addition, by pressure scaling a uniform order of magnitude can be obtained for
the stiffness matrix elements, thus allowing a very small value for the effective strain rate limit.
Nevertheless in some parts of the domain an “approximate” value of the viscosity will always
be obtained. For the mechanical solution this is quite acceptable since the strain rate-viscosity
curve is continuous. However, if we consider the tangent stiffness matrix (which is the system
matrix for the sensitivity problem shown in Eqgs. (34) and (42)), we notice that the elements of the
partial derivative 8]5_{(“)/ dq are proportional to £ in the visco-plastic range, but are null in the
“rigid flow” limit when a constant cutoff value is adopted —as described— for & < &,,,. This means
that if the cutoff value for the effective strain rate is, say, 1076, then there is a discontinuity of
the order of O(18) in the effective strain rate limit. This jump clearly affects convergence of the
Newton—-Raphson scheme, and the agreement between the sensitivities as calculated by one of the
“analytical” methods and by finite differences. This difficulty can be overcome in a simple way by
replacing g = i in the interval 0 < € < &, by

d L
n = =L (5 = 51im) = Miim » (59)

de le=s,

that is, requiring a constant first derivative in the interval mentioned.

5. NUMERICAL EXAMPLES
5.1. Direct extrusion

As the first computational illustration of the forming process sensitivity analysis an extrusion matrix
is considered as shown in Figure 1, with the given load applied at the left boundary representing the
ram. The sticking friction conditions are assumed. The material model described by Eq. 1 is adopted

2

[/

F g

Fig. 1. Layout of the extrusion process and mesh 2
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with g = 200, ¥ = 0.1 and n = 1.5. Free surface conditions prevail when the material gets out of
the extrusion die. Sensitivity of the nodal variables v and p with respect to the static yield stress
0o is calculated. Sensitivity isocurves of the velocity module are plotted in Figure 2. The character
of the graph is very much similar to that for the isocurves of the velocity module. Both DDM
and ASM have been employed. Both give the same results, which are also in full agreement with
the finite difference method (FDM): no noticeable differences appear in the graphs. The case of
the extrusion force held constant is considered next. In Figures 3 and 4 the velocity and pressure
solution and their respective sensitivity at the points indicated as a function of the static yield
stress are displayed. In each case the results for two different meshes are shown: the mesh No. 2
defined in Figure 1 and the mesh No. 1 such that every element of it contains four elements of the
mesh No. 2.

s divl

0.226

Fig. 2. Sensitivity of the velocity module to the static yield stress, d||v||/doo

In both cases the results are in very good agreement with the sensitivities calculated by FDM
with the perturbations taken as Ao = 1. The plots are practically identical for any of the methods
employed and the same mesh. As expected, velocities are more sensitive to changes in the static
yield stress as the cross-section becomes smaller. Also, for constant loads the sensitivity of the
velocity component in the direction at which the tool acts is negative since an increase of the yield
stress results in a slower process. In addition nodal pressures are almost constant, as they should be
in the applied load case. If fixed velocities are imposed the load happens to be nearly proportional
to the viscosity. In such a case the velocities are practically insensitive to variations in the yield
stress whereas pressure sensitivity is positive and tends to be linearly proportional to changes in
the yield stress for materials exhibiting behaviour close to perfect plasticity.

A similar analysis is performed with the other parameters entering the constitutive model (flu-
idity 7, exponent of the viscoplastic law n, cf. Eq. (1)), and the friction coefficient f, cf. Eq. (24),
as the design parameters. The results for the chosen set of points are shown in Figures 5 to 7, where
the velocity, pressure and their design derivatives calculated by direct differentiation (full line) and
by FDM (dotted line) are plotted.

It comes out from the sensitivity analysis accounting for the different parameters entering the
constitutive model that the fluidity 7 and the exponent n have negligible effect on the pressure
when loads are held constant. It should be noticed that the discrepancies shown in Figure 5d



274 H. J. Antunez and M. Kleiber

for the pressure sensitivities with respect to the fluidity 4 are negligible when compared to the
pressure. Irregular results are obtained by FDM, which seem to be due to unsufficient precision
while solving the perturbed problem and by the truncation errors inherent when the finite length
of the perturbation v is taken (64 = 0.01 in this case). Similarly, irregular sensitivity results for

the FDM at the end of the considered interval for n suggest similar errors in the application of this
method.

10 T T T T 0 T T T T 1 b
3 mesh 1 —6— mesh 1 —e— X
i mesh2 --@-- mesh2 --@-- o
[a] [a]
w kS .
> >
£ 2z
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Fig. 3. Velocity components and velocity sensitivity coefficients with respect to static yield stress vs. static
yield stress at point D
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Analysis of sensitivity to the friction coefficient f leads to a different situation. Unlike the pre-
vious cases analysed, it has been found that the sensitivity coefficients of the problem variables
with respect to the friction coefficient calculated by the FDM are very sensitive to the size of the
perturbation Af used to calculate the numerical derivatives. In fact, no range of A f was found in
which a stable value of sensitivities could be obtained. Considering the friction phenomenon, we
can expect a non-smooth transition between the two different friction types: sticking (with zero
tangential velocity) and sliding friction. In terms of the friction elements used for this analysis,
according to the local pressure value we may find points alternating between both the types of
friction along with the changing friction coefficient. The specific friction model we are dealing with

pressure at selected points for two meshes
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Fig. 4. Pressure and pressure sensitivity coefficients with respect to static yield stress vs. static yield stress
at different points
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has two aspects which seem to explain the failure of the sensitivity analysis in this case: the
non-smoothness of the friction law, which leads to a discontinuous derivative, and the treatment of
the surface phenomenon as a volumetric one, which implies numerical integration over an essentially
discontinuous zone. This means that the elements which can give acceptable friction results for
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Fig. 6. Velocity and pressure, and their sensitivity coefficients with respect to parameter n vs. n at different
points

the equilibrium problem, are not suitable for sensitivity analysis. We have thus performed the
sensitivity analysis by DDM without confronting the results against those of FDM. DDM results
are plotted in Figure 7, in which important response changes are obtained until a certain value
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pressure p vs. friction coefficient f
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Fig. 7. Velocity and pressure, and their sensitivity coefficients with respect to friction coefficient f vs. f
at different points

of the friction coefficient is reached (for constant value of the imposed extrusion load), starting

at which all the boundary exhibits sticking friction and therefore no sensitivity to the friction
coefficient appears.
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In this example the equilibrium problem has been solved by direct iterations so that the secant
stiffness matrix was available at the end of this step. However, since the material properties were
typical of a material with a relatively high rate-dependence, the sensitivity problem converged
in one to three iterations. Therefore, the K’Eu) option was preferred, even though it required an

additional solution of the equations system.

5.2. Cutting

We have also found that for low rate-sensitive materials the direct solution method according to
Egs. (34) or (42) is not possible: the tangent matrix is nearly singular, and the numerical inverse does
not give the exact solution in one iteration. In spite of that, this matrix, when applied iteratively to
find the solution, usually yields convergence much faster than the direct iterative scheme defined by
Eqgs. (45) and (46). However, in some extreme cases the scheme resulting from the tangent matrix
is not convergent, and solution is only possible by direct iterations. In addition, convergence is very
slow in such a case and it may take thousands of iterations.

This fact is illustrated in the second example, in which a 2-D cutting problem is simulated by
placing a cutting tool at a given depth of an incoming metal flow causing a flow separation: a chip
is separated from the main flow. Figure 8a shows the initial finite element mesh used. Constant

a) b)

Fig. 8. Cutting: a) initial mesh, b) final mesh
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loads are imposed on the upper boundary of the mesh. The metal properties are those of a nearly
perfectly plastic material (n = 40 in Eq. (1)). Most of the domain undergoes rigid body flow: almost
all the plastic deformation is concentrated in the region where the flow separation takes place. The
problem has two free surfaces, which are handled by requiring them to be tangent to the velocity
and accordingly updating the nodal coordinates. For the lower surface contact elements impose
(via penalty) a restriction to the normal velocity when a no-penetration condition requires so, and
release it if normal traction is obtained in the fixed part of the curve. In this way the point where
the chip separates from the tool can be determined. Figure 8b shows the final mesh after solution is
obtained with fulfillment of the contact and free surface conditions. From the initially smooth

numerical derivative
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Fig. 9. Velocity sensitivity to the viscoplastic index n: FDM and DDM
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profile assumed at the beginning, a sharp angle is obtained separating two zones of the free surface
which correspond to rigid body motion of the respective regions connected by a discontinuity line.

In this example, the iterative scheme given by Eq. (45) had to be applied because of the numerical
problems related to the material behaviour mentioned at the beginning of this section. Figure 9
compares the sensitivity of the velocity module to the viscoplastic law index n obtained by the
central finite difference approach and the direct differentiation method. Both methods give the
same solution which consists, similarly to the velocity field, of subdomains with constant velocity
sensitivity separated by a narrow shear deformation rate sensitivity band (i.e. a band with high
values of dé13/dn) in correspondence with the plastic deformation zone.

The failure in using the tangent matrix (its application leads to divergent results) has a physical
interpretation in the fact that a perfectly plastic material is infinitely sensitive to variations in
the material properties if constant loads are applied. The whole process is stable if the boundary
conditions consist of non-zero imposed velocities; it is then seen that the velocity sensitivities are
virtually zero. As a matter of fact, the variations in the applied loads are proportional in this case
to the variations of the material parameters; therefore, no response change is observed.

An additional feature arises from this example. We find that changes in a material parameter
are reflected in the shape of the problem, since the velocity-pressure field determines the free
surfaces (and separation point) location. Therefore there is a coupling between parameter and shape
sensitivity analysis. This coupling, however, has not been considered in this paper; it deserves a
separate treatment and will be covered in a forecoming paper. For the finite difference verification we
considered a fixed domain to calculate the perturbed solutions in order to obtain the corresponding
part of the derivative without considering the coupling.

6. CONCLUSIONS

The parameter sensitivity analysis has been discussed for metal forming problems analysed in the
framework of the flow formulation. Taking the constitutive (and other) parameters as design vari-
ables the way to evaluate their influence on the results has been shown. The problems modelled
with the friction model described in Sec. 2 proved to be very sensitive to changes in the friction
coefficient; for this reason problems in finding an optimum perturbation for calculating the deriva-
tives by the finite difference approach have been encountered. The methods proposed in the paper
which give the sensitivities as a byproduct of the equilibrium analysis have been demonstrated to
work well even for this class of problems, though.

The iterative form of the sensitivity problem, for which the secant stiffness matrix is used for
iterations, has also been presented. An example was shown in which the tangent matrix was not
applicable implying the importance of the iterative scheme. It can be concluded that such a situation
will typically arise in practical computations when both the following conditions hold true: (i) the
material model is close to the ideally plastic one, and (ii) there are no prescribed nonzero velocities.
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