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The paper presents a specific technique of solving the non-homogenous wave equation with the use of
Trefftz functions for the wave equation. The solution was presented as a sum of a general integral and
a particular integral. The general integral was expressed in the form of a linear combination of Trefftz
functions for the wave equation. In order to obtain the particular integral polywave functions were used.
They were generated by using the inverse operator L−1 of the equation taking into consideration the
Trefftz functions.
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1. INTRODUCTION

The solving functions methods for linear partial differential equations have been developing very
quickly in recent years. The main idea of these methods is to find an approximate solution of the
considered equation in terms of functions satisfying the equation (Trefftz functions) by fitting to
given initial and boundary conditions properly. The method presented below belongs to them.

Solving a linear wave equation in regular areas leads to eigenproblems (see [1, 6, 16]). The
solution of an eigenproblem is expressed by the linear combination of eigenfunctions. Work [16]
presents solution for Laplace’s eigenvalue problems, in paper [6] a solution of eigenvalue problems
of polygonal membranes and plates is obtained with the use of Boundary Element Method (BEM).
The question is if we can determine a general solution of the wave equation in an irregular area in the
form of linear combination of base functions which satisfy a considered equation (wave polynomials).

Paper [3] presents two methods of determining one-dimensional wave polynomials for the wave
equation in Cartesian coordinates. The first of them is based on a Taylor series expansion, the
second uses the generating function and leads to recurrent formula for wave polynomials and their
derivatives. As it turned out, both give the same formula for functions. An approximate solution
of the considered equations is shown as a linear combination of wave polynomials. The unknown
coefficients of this combination are sought by means of the minimization of a functional which fits
the combination to given initial and boundary conditions in the L2 norm. In papers [7, 8] the theory
was extended on two- and three- dimensional cases.

The third method of determining the wave functions uses inverse operations. The inverse Laplace
operator of harmonic functions is defined in [3, 14] for different co-ordinate systems. In papers [4,
5, 14] inverse operations were applied for determination of functions satisfying heat conduction
equation not only in Cartesian co-ordinates. The paper [14] refers to heat conduction equation.
It presents solutions of heat conduction problems in the form of heat functions given by inverse
operations. Both direct and inverse problems are considered. Work [14] also contains a description
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of modified FEM with base functions (Trefftz functions for 2D heat conduction equation) given by
inverse operations.

The papers [4, 5] present recurrent formulas for wave polynomials obtained by using inverse
Laplace operator. In papers [9, 13] explicit formulas for these functions obtained from the Taylor
series expansion can be found. It is worth mentioning that wave polynomials (see [4, 5, 9, 13]) are
different from those obtained in [7, 8].

In paper [15] a numerical algorithm for solution of multi-dimensional wave equations is presented.
The proposed method based on the Houbolt finite difference (FD) scheme, the method of particular
solutions (MPS) and the Fundamental Solutions Method (MFS). It leads to transformation the
wave equation into a Poisson-type equation with time-dependent loading.

Papers [9, 11, 12] are devoted to application FEM to wave equation. In FEM base functions (in
general, see [2]) do not satisfy the given differential equations. Wave polynomials were used as base
functions in FEM in paper [9]. The usage of Trefftz functions (wave functions) implies that the
functional for FEM will have a different form than the traditional one. In [9] three kinds of modified
FEM are compared (nodeless, continuous and discontinuous FEM). The problem of membrane
vibrations was considered, moreover, two kinds of aforementioned functions as base functions were
taken.

This work extends the wave polynomials method with the use of polywave function in non-
homogeneous equation cases.

2. SOLUTION OF THE 2D NON-HOMOGENOUS WAVE EQUATION BY THE WAVE

POLYNOMIALS METHOD

Take into account a non-homogenous wave equation

Lu(x, y, t) = Q(x, y, t), L =

(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2

)

u. (1)

It is commonly known that the general solution of this equation can be given by

u(x, y, t) = L−1(0) + L−1(Q) (2)

where L−1(0) is the general solution of a homogenous equation and L−1(Q) is the particular solution
of the non-homogenous one.

In the wave polynomials method a general solution is expressed by linear combination of the
Trefftz functions for the wave equation νn(x, y, t)

u ≈ w(x, y, t) =

N
∑

n=1

cnνn(x, y, t). (3)

The unknown coefficients cn are obtained by minimization of the functional describing adjustment
of the approximate solution to given boundary and initial conditions, in the mean square sense.

The formula for determining the particular solution L−1(Q) is given in [6]. It is a result of
applying operator L−1 to the Taylor series expansion of the function Q. In this work a different
approach to calculate the particular solution is proposed, namely the expression of the particular
solution in terms of polywave functions.

The presented method can easily be extended on other co-ordinate systems. Moreover, the solu-
tion given by (2) expressed in terms of wave and polywave functions may be used in modified FEM
because these functions have no constrains as regards the shape of considered area.
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2.1. The general solution of homogenous 2D wave equation – wave polynomials

generation

Let us consider a homogenous equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
, (x, y) ∈ Ω ⊂ R2, t ∈ (0,∞). (4)

The function u = u(x, y, t) satisfying equation (4) is expanded into the Taylor series in a neighbour-
hood of an arbitrary point (x0, y0, t0)

u(x, y, t) = u(x0, y0, t0) +

∞
∑

i=1

dnu(x0, y0, t0)

n!
. (5)

The right hand side of the expansion is transformed so as to eliminate the derivatives ∂2u
∂t2 according

to the wave equation. After grouping the same derivatives and extracting the Laplace operator ∆u

we obtain a form of expansion in which coefficients are functions satisfying wave equation, namely,

u(x, y, t) = u0 · 1 +
∂u

∂x
x̄+

∂u

∂t
t̄+

∂u

∂y
ȳ +

∂2u

∂x2

(

x̄2

2!
− ȳ2

2!

)

+
∂

∂x

(

∂u

∂t

)

t̄x̄

+∆u

(

t̄2

2!
+

ȳ2

2!

)

+
∂3u

∂x3

(

x̄3

3!
− x̄ȳ2

2!

)

+
∂2

∂x2

(

∂u

∂t

)

t̄

(

x̄2

2!
− ȳ2

2!

)

+
∂

∂x
∆u

(

t̄2

2!
x̄+

x̄ȳ2

2!

)

+∆

(

∂u

∂t

)(

t̄3

3!
x̄+ t̄

ȳ2

2!

)

+
∂

∂x

(

∂u

∂y

)

x̄ȳ +
∂2u

∂t∂y
t̄ȳ

+
∂2

∂x2

(

∂u

∂y

) (

x̄2ȳ

2!
− ȳ3

3!

)

+
∂

∂x

(

∂2u

∂t∂y

)

t̄x̄ȳ +∆
∂u

∂y

(

t̄2ȳ

2!
+

ȳ3

3!

)

+ · · ·

=
N
∑

n=0

[n2 ]
∑

k=0

∂n−2k

∂xn−2k
(∆ku)





k
∑

j=0

tj

j!
∆−k+jFn−2k(x, y)





+

N
∑

n=1

[n−1
2 ]

∑

k=0

∂n−1−2k

∂xn−1−2k

(

∆k ∂u

∂y

)





k
∑

j=0

tj

j!
∆−k+jGn−2k(x, y)



 +RN+1

(6)

where x̄ = x− x0, ȳ = y − y0, t̄ = t− t0, and Fn, Gn are the following harmonic functions

Fn(x, y) = Re

(

(x+ i y)n

n!

)

=

n≥k
∑

k=0,2,...

(−1)k/2 xn−kyk

(n − k)!k!
, (7)

Gn(x, y) = Im

(

(x+ i y)n

n!

)

=

n≥k
∑

k=1,3,...

(−1)k/2 xn−kyk

(n− k)!k!
. (8)

In this way two independent sequences of Trefftz functions (wave polynomials) are obtained. They
are expressed by the inverse operation of harmonic functions. Obviously, it is possible to eliminate the

other derivatives (∂
2u

∂x2 or ∂2u
∂y2 ), which leads to formulas for different sequences of wave polynomials.

All possibilities are discussed in the work [13].

The inverse Laplace operator (∆−1) of harmonic functions includes monomials xm

m!
yk

k! and can be
defined in the following manner [3]

∆−1
(

xm

m!

yk

k!

)

=















xm

m!

yk+2

(k + 2)!
for m = 0 or 1, and k ≥ 0,

xm

m!

yk+2

(k + 2)!
−∆−1

(

xm−2

(m− 2)!

yk+2

(k + 2)!

)

for m ≥ 2, k ≥ 0.

(9)



212 M. Sokała

However, harmonic functions Fn(x, y), Gn(x, y) are symmetrical with respect to variables x and y,
whereas calculations of successive inverse operations in accordance with the formula (9) distinguish

the variable y (∆−1(1) = y2

2! ). By symmetry of ∆ with respect to the variables x, y it is possible to
define ∆−1, which distinguishes the variable x. Both possibilities are shown in [14].

In consequence, the general solution of the homogenous equation can be expressed as a linear
combination of wave polynomials.

2.2. Particular solution for 2D non-homogenous wave equation given by polywave

functions

Determining the particular solution for the non-homogenous wave equation by polywave functions
is similar to generating the particular solution for the heat conduction equation by polyheat func-
tions [14]. We start from the considered equation

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+Q(x, y, t), (x, y) ∈ Ω ⊂ R2, t ∈ (0,∞). (10)

Applying operator L =
(

∂2

∂t2
− ∂2

∂x2 − ∂2

∂y2

)

u to (10) as many times as needed to get the right side

of equation equal zero ((M + 1)-times) leads to the following formula

LM+1u(x, y, t) = 0. (11)

The solution of (11) can be expressed as a linear combination of wave polynomials, namely,

LM
(

Lu(x, y, t)
)

= L
(

LMu(x, y, t)
)

= L
(

W (x, y, t)
)

= 0, (12)

hence

W (x, y, t) =

∞
∑

n=0

anνn(x, y, t) = Θ0(x, y, t) (13)

and

LMu(x, y, t) = Θ0(x, y, t). (14)

Carrying out integration of the equation (14) with operator L−1 M -times we obtain

Lu(x, y, t) = Q̃(x, y, t) =
M
∑

j=0

L−jΘM−1−j(x, y, t). (15)

It denotes that the source function Q(x, y, t) can be approximated by the following formula

M
∑

j=0

βjL
−jΘM−1−j(x, y, t). (16)

So the function Q(x, y, t) as well as the particular solution of the equation (10) can be given by
linear combination of polywave functions (polywave polynomials). The unknown coefficient βj can
be derived from the problem interpolation or by fitting linear combination to the function Q(x, y, t)
in the mean square sense.
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Table 1. Wave and polywave polynomials

Wave polynomials Polywave function of order m, L−m(H) = L−1
(

L−(m−1)(H)
)

Floor[n
2
]

∑

k=0

(

k
∑

j=0

tj

j!
∆−k+jFn−2k(x, y)

)

Floor[n
2
]

∑

k=0

(

k
∑

j=0

L−m
(

tj

j!
∆−k+jFn−2k(x, y)

)

)

Floor[n
2
]

∑

k=0

(

k
∑

j=0

tj

j!
∆−k+jGn−2k(x, y)

)

Floor[n
2
]

∑

k=0

(

k
∑

j=0

L−m
(

tj

j!
∆−k+jGn−2k(x, y)

)

)

Formulas on polywave functions are based on an inverse operator L−1 proposed in [8], which
should also be applied to wave functions (see Table 1). L−1 is defined (17) with accuracy to inte-
gration constant, which may be wave polynomial:

L−1(xkyltm) =

1

3(k + 2)(k + 1)

(

−xk+2yltm +m(m− 1)L−1
(

xk+2yltm−2
)

− l(l − 1)L−1
(

xk+2yl−2tm
)

)

+
1

3(l + 2)(l + 1)

(

−xkyl+2tm +m(m− 1)L−1
(

xkyl+2tm−2
)

− k(k − 1)L−1
(

xk−2yl+2tm
)

)

+
1

3(m+ 2)(m + 1)

(

−xkyltm+2 + k(k − 1)L−1
(

xk−2yltm+2
)

− l(l − 1)L−1
(

xkyl−2tm+2
)

)

.

(17)

For example polywave functions of the first and second order obtained from harmonic function
H(x, y, t) = 1 are as follows

L−1(H(x, y, t) = − t2

2!
− x2

2!
− y2

2!
,

L−2(H(x, y, t) =
x4

4!
+

y4

4!
+

3t4

4!
+

2x2y2

2!2!
+

2x2t2

2!2!
+

2y2t2

2!2!
.

3. DESCRIPTION OF THE PROBLEM SOLUTION

Let us consider the direct problem described by the following mathematical model: the equation of
motion

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+Q(x, y, t), (x, y) ∈ Ω, t ∈ (0,∞), (18)

with the given boundary conditions

u(x, y, t)|∂Ωi
= u∂Ωi

(x, y, t)fi , (19)

and the initial conditions

u(x, y, 0) = f(x, y),
∂u

∂t
(x, y, 0) = u0(x, y). (20)

In order to solve the problem approximately, we determine the solution successively in k-th time
interval k∆t ≤ t ≤ (k + 1)∆t, k = 0, 1, 2, . . ., as a sum of two linear combinations. The first one
consists of wave polynomials vi(x, y, t), the second one of polywave functions pj(x, y, t)

ũk(x, y, t) =
M
∑

i=1

αk
i vi(x, y, t) +

N
∑

j=1

βk
j pj(x, y, t). (21)
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The unknown coefficients αk
i , β

k
j are determined in a similar way. We minimize the proper functional

Ik, Jk, which describes the adjustment of the approximation in mean square sense, to the pre-set
initial and boundary conditions and also to the known function Q(x, y, t) in the whole domain of
space-time continuum,

Ik =

∫∫

Ω

[

ũk(x, y, (k − 1)∆t)− ũk−1(x, y, (k − 1)∆t)
]2

dΩ

+

∫∫

Ω

[

∂ũk

∂t
(x, y, (k − 1)∆t)− ∂ũk−1

∂t
(x, y, (k − 1)∆t)

]2

dΩ

+
∑

i

k∆t
∫

(k−1)∆t

∫

∂Ωi

[

ũk
∣

∣

∣

∂Ωi

− u∂Ωi
(x, y, τ)fi

]2

dΩidτ

(22)

where ũ0(x, y, t) = u(x, y, 0) = f(x, y), and

Jk =

∫∫

Ω

k∆t
∫

(k−1)∆t

[

∂ũk

∂t2
(x, y, τ) − ∂ũk

∂x2
(x, y, τ) − ∂ũk

∂y2
(x, y, τ)−Q(x, y, t)

]2

dτ dΩ. (23)

The approximate solution includes functions which have no restrictions with respect to the shape
of considered area. Also the type of given initial and boundary conditions (continuous or not) have
no influence on the approximate solution. The difference is only in the form of functionals Ik, Jk

– some of the integrations have to be properly replaced by sums. In the case of more complicated
areas the solution given by (2) expressed in terms of wave and polywave functions can be used in
modified FEM as well. The method can be also used to solve both direct and boundary inverse
problems. Moreover, the main idea of the construction of the approximate solution is the same
in other co-ordinate systems, one should only use different functions, but they do not have to be
polynomials.

4. NUMERICAL EXAMPLES

The effectiveness of the presented method is tested on a numerical example described by the fol-
lowing relations: the governing equation

∂2U

∂t2
=

∂2U

∂x2
+

∂2U

∂y2
+Q(x, y, t), (x, y) ∈ (−1, 1) × (−1, 1), t ∈ (0,∞), (24)

the boundary and initial conditions

U(0, y, t) = U(1, y, t) = U(x, 0, t) = U(x, 1, t) = 0, (25)

U(x, y, 0) = x(1− x)y(1− y),
∂U

∂t
(x, y, 0) = 0, (26)

and three kinds of source functions Q(x, y, t).

Example 1

We assume that the source is a periodic function, dependent only on time, namely,

Q(x, y, t) =
1

10
sin(2π t). (27)
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In this case the exact solution is given as [10]

U(x, y, t) =

∞
∑

k=1

∞
∑

l=1

0.4 sin(kπx) sin(lπy)
√

(kπ)2 + (lπ)2

·
4 sin

(

kπ
2

)2
sin

(

lπ
2

)2
(√

k2 + l2 sin(2πt)− 2 sin
(√

k2 + l2πt
)

)

kl
(

k2 + l2 − 4
)

π3
.

(28)

The solution U(x, y, t) is approximated according to the equation (21)

U(x, y, t) = ũk(x, y, t) =

M
∑

i=1

αk
i vi(x, y, t) +

N
∑

j=1

βk
j pj(x, y, t), (29)

and then compared with the analytical solution. We obtained a good approximation in the whole
first time interval (0,∆t) both for the source and for the solution. For calculation we assume that
∆t = 1, because of the length of the source period.

Figure 1 shows the approximations of the source function in the middle of the area obtained for
different number of polywave functions of the second order. In particular N = 121 means that these
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Fig. 1. The exact source and approximate ones at the point x = y = 0.5 for N polywave functions of the
second order, for the length of time interval ∆t = 1
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Fig. 2. The difference between exact and an approximate source at the point x = y = 0.5 for N polywave
functions of the second order, for the length of time interval ∆t = 1
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polywave functions are generated from wave polynomials of the degree 10, however a satisfying
result is not obtained until N = 225, so wave polynomials of degree 15 were used. Figure 2 shows
the difference between the exact and the approximate source respectively.

To improve the result polywave functions of higher order were used. Figure 3 shows the com-
parison of the exact and approximate source obtained in the middle of the membrane for wave
polynomials of the fifth order. In this case number N = 180 means that these polywave functions
are generated from wave polynomials of the degree 6. Figure 4 shows the difference between the
exact and the approximate source respectively. It is easy to notice that polywave functions of higher
order give better results, although increasing their number caused the extension of time calculation
while not improving the results significantly. The differences between the exact and the approximate
source for 245 and 320 polywave functions are in similar range (Fig. 4).

The approximation of the problem solution (29) requires wave polynomials as well. Figure 5
shows the exact solution, an approximate one and the difference between them at the end of the
first time interval. As could be expected, the highest difference is in the middle area.

For some approximation the following relative errors in the L2 norm

errorq(x,y,t) =

√

√

√

√

∫ ∆t
0

(

Approx(0.5, 0.5, t) − Exact(0.5, 0.5, t)
)2
dt

∫∆t
0

(

Exact(0.5, 0.5, t)
)2
dt

· 100%, (30)
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Fig. 3. The exact source and an approximate ones at the point x = y = 0.5 for N polywave functions of the
fifth order, for the length of time interval ∆t = 1
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Fig. 4. The difference between exact and an approximate source at the point x = y = 0.5 for N polywave
functions of the fifth order, for the length of time interval ∆t = 1
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Fig. 5. The solution U(x, y, t): exact (a), approximate (b), and the difference (c), at the point x = y = 0.5
for 152 wave and 180 polywave functions of the fifth order at time t = 1

erroru =

√

√

√

√

∫ ∆t
0

(

Approx(0.5, 0.5, t) − Exact(0.5, 0.5, t)
)2
dt

∫ ∆t
0

(

Exact(0.5, 0.5, t)
)2
dt

· 100% (31)

were calculated. These errors are presented in Table 2. It is worth mentioning that in all cases a
smaller error for source is clearly seen.

Table 2. Relative errors for the source function and for the solution obtained with the use of 152 wave
polynomials and different number of polywave functions

Number of polywave functions
of the fifth order

errorq(x, y, t) erroru(x, y, t)

180 0.6396% 5.5074%

245 0.0512% 4.4926%

320 0.0197% 4.4716%

784 4.9216% over 30%

The comparison accuracy of an approximate and the exact solution in consecutive time intervals
is shown on Figs. 6-8. In Figs. 6 and 7 one can see a big conformity between the approximate and
exact solutions. Figure 8 shows extrapolation in time of the solution calculated in different time
intervals. It is interesting that the approximate solution can be extrapolated in time backwards with
a very good accuracy, but in the next time interval the extrapolation in time forward loses accuracy
fast. In last case only the approximation from the first time interval gives a satisfying result.
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(0-∆t) (∆t-2∆t) (2∆t-3∆t)

Fig. 6. The solutions: exact (continuous line) and approximate (dashed line) at the point x = y = 0.5 for
the length of time interval ∆t = 0.5
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Fig. 7. The difference between the exact and approximate solutions at the point x = y = 0.5 for the length
of time interval ∆t = 0.5
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Fig. 8. Extrapolation in time: the exact (continuous line) and approximate (dashed line) solutions
calculated in indicated time intervals

Example 2

In the second test example a quickly expiring source is assumed

Q(x, y, t) = (x−x2+y−xy+2t2xy+x2y−2t2x2y−y2+xy2−2t2xy2−y2+xy2−2t2x2y2)e−t
2
. (32)

For this case the exact solution is given as

U(x, y, t) = x(1− x)y(1− y)e−t
2
. (33)

Similarly as in the previous case the approximate solution is constructed according to Eq. (21) for
different number of wave and polywave polynomials. All results presented below are obtained for
∆t = 1. Figure 9 shows the approximations of the source function in the middle of the area obtained
for different number polywave functions of the fifth order (a), and the difference between the exact
and the approximate sources (b).

Figure 10 shows the exact solution, an approximation by 152 wave polynomials and 180 polywave
functions, and the difference between them in the midpoint. It is obvious that the approximation
source and solution are characterized by high accuracy as well.

(a) (b)
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N = 320

N = 245

N = 180

q ex- q app

Fig. 9. The exact and approximate sources (a) and the difference between the exact and approximate
sources (b) at the point x = y = 0.5 for N polywave functions of the fifth order, for the length of time interval
∆t = 1
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Fig. 10. The solution U(x, y, t): exact (a), approximate (b), and the difference (c), at the point x = y = 0.5
for 152 wave and 180 polywave functions of the fifth order at time t = 1

For some approximations the relative errors in the L2 norm calculated according to formulae (30)
and (31) are presented in Table 3. It is worth mentioning that compared to the previous example,
here there is no significant difference in the range of error for the source and the solution.

Table 3. Relative errors for the source function and for the solution obtained with the use of 152 wave
polynomials and different number of polywave functions

Number of polywave functions
of the fifth order

errorq(x, y, t) erroru(x, y, t)

180 0.0261% 0.0171%

245 0.0213% 0.0082%

320 0.0142% 0.0306%

Example 3

In the third test example the source is assumed to be a periodic function, dependent not only on
time but also on space variables:

Q(x, y, t) = (2x− 2x2 + 2y − xy + x2y − 2y2 + xy2 − x2y2) cos t. (34)

In this case the exact solution has the following form

U(x, y, t) = x(1− x)y(1− y) cos t. (35)

In Fig. 11 the comparison of the exact and approximate sources in the first time interval is shown.
For different number of polywave functions approximation of source is close to the exact one.
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Fig. 11. The exact and approximate sources (a) and the difference between them (b) at the point
x = y = 0.5 for N polywave functions of the fifth order, for the length of time interval ∆t = 1
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Fig. 12. The solution U(x, y, t): exact (a), approximate (b), and the difference (c), at the point x = y = 0.5
for 152 wave and 180 polywave functions of the fifth order at time t = 1

The usefulness of the presented approach is confirmed by Fig. 12. We can see that the approx-
imation of the exact solution in the midpoint of the area at the end of the first time interval is
relatively accurate.

The relative errors in the L2 norm were computed and put together in Table 4. The solution was
approximated with the use of 152 wave polynomials and different numbers of polywave functions.
As in the examples mentioned above, the computational results confirm a very good accuracy of
the method.

Table 4. Relative errors for the source function and for the solution obtained with the use of 152 wave
polynomials and different number of polywave functions

Number of polywave functions
of the fifth order

errorq(x, y, t) erroru(x, y, t)

180 0.0125% 0.0079%

245 0.0106% 0.0037%

320 0.0069% 0.0151%

5. CONCLUDING REMARKS

The analysis of the results presented above leads to following conclusions.

The presented computational algorithm is simple and easy to implement in all co-ordinates
systems. There is no difficulty in generating wave polynomials and polywave functions by using
inverse operators.

The results obtained from numerical calculations confirmed a good accuracy of this method,
although the number of functions in the approximation has not increased ad infinitum. The method
is convergent, but a too big number of functions caused ill-conditioning of the matrix in the linear
system of equations for the unknown coefficients of the approximation.

This approach can be applied to areas of more complicated shape by using presented wave and
polywave functions as base functions in modified FEM.

The numerical calculations show that the method presented here seems to be a useful approach
to solving some problems in thermoelasticity.
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