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In many engineering problems modelling of wave propagation in infinite or semi-infinite domains is of
great importance. One of the main limitations of the usage of the finite element method in dynamic
soil-structure interaction arises when it is used for the modelling of an infinite domain. If nothing is done
to take care of artificial reflections at the mesh boundaries, errors are introduced into the results. To
handle the reflections different artificial boundaries have been proposed in the literature and used. This
paper deals with an improvement of one of the most widely used local absorbing boundary condition —
the standard viscous boundary. Both analytical investigations of the efficiency of the boundary as well as
numerical results are presented.

FOREWORD

How to formulate the radiation condition of the unbounded soil is the key issue in the analysis
of soil-structure interaction. A real challenge ezists to develop a transmitting boundary of higher
accuracy which is local in time and space and which can handle (approzimately) all types of waves
without restrictions to the geometry and on the material properties such as Poisson’s ratio. This
is definitively the area of soil-structure interaction analysis where the research efforts should be
concentrated. [11]

1. INTRODUCTION

In many engineering problems like problems involving transport structures, railways, road tun-
nels, subways, underground passages in towns, live-line systems, pile-driving, nuclear plants and
underground or surface mining of mineral resources the modelling of wave propagation in infinite
or semi-infinite domains is of great importance. This paper deals with a brief survey of existing
local absorbing boundary conditions. Then an improved viscous boundary is studied for dynamic
problems. The last part of the paper deals with the verification of the behaviour of the developed
boundary in dynamic problems.

The fundamental objective of the dynamic analysis of a structure-foundation system using finite
elements is depicted in Fig. 1. A specified time-varying load acts on the structure. The dynamic
response of the structure and, to a lesser extent, of the foundation has to be calculated taking into

!The paper was presented at the 12th Polish Conference on Computer Methods in Mechanics in Warsaw-Zegrze
on May 9-13, 1995. Further papers presented at the Conference will be published in the forthcoming issues of this
Journal.
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Fig. 1. Discretized model of soil-structure system

account the radiation of energy of the waves propagating into and out of the foundation region not
included in the model.

Such interaction problems can be classified into two types according to the source of the dynamic
load. One type of the problems involves loads that can be included in the finite element model,
such as unbalanced masses in rotating machinery, wind loads, aeroplane impact or an explosion in
the surrounding atmosphere. In the other type of problems loading is generated in the foundation
medium, such as an earthquake or an underground explosion and results in elastic waves entering
into the computational domain.

2. TRANSMITTING BOUNDARIES

One of the limitations of the usage of the finite element method arises when it is used for the mod-
elling of an infinite domain. In dynamic problems energy then radiates from the source outwardly
towards infinity. If nothing is done to prevent from artificial reflections at the mesh boundary er-
rors are introduced into the results. To handle reflections several different artificial boundaries have
been proposed in the literature and used. The aim of such boundaries is to make them behave as
nearly as possible as if the mesh extends to infinity. In literature they are known as transmitting,
absorbing or silent boundaries.

Three classes of transmitting boundaries for the numerical analysis of problems of wave propa-
gation in continua of infinite extent are distinguished in literature (see e.g. [8]):

e the elementary (non-transmitting) b.c. which are perfect reflectors,
e the consistent (non-local, perfect transmitting) b.c. which are perfect absorbers,
e the local (imperfect transmitting) b.c. which result in spurious reflections.

Elementary boundary conditions are perfect reflectors. In this case either the displacements or
the stresses are prescribed to be zero at the boundary. These boundaries are perfect reflectors in
the sense that no energy is absorbed or transmitted. They can only be used if they are placed
at sufficiently large distance from the source and when the damping in the modelled material is
sufficient.

Consistent boundary conditions are perfectly absorbing boundary conditions for any kind of
waves impinging on the boundary with arbitrary incidence. However their realisation requires con-
ditions which are essentially non-local in nature. All degrees of freedom on the boundary are
coupled. It destroys the banded structure of the stiffness matrix in a finite element formulation and
increases computational cost.
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2.1. Local absorbing boundary conditions

Local absorbing boundary conditions (labc) are mainly based on physical or mathematical approxi-
mations or even on heuristic concepts. As labc are approximations of perfectly absorbing conditions
full wave absorption can only be obtained for one particular angle of incidence so far. They are
usually tailored to perfectly absorb incident waves normal to the boundary, however for non-normal
incidence non-perfect absorption results. During the past twenty years many such boundaries were
proposed (see [1,9,10]). The most of the well-known and commonly used labc are mathematically
equivalent and therefore they should have comparable wave-absorbing attributes (see [7]).

The first labc was formulated by Lysmer and Kuhlemeyer [9]. It was based on the simple physical
observation that for plane waves in 1-D and 3-D problems the stresses are proportional to velocities.
They used viscous damping forces acting along the free boundary as a means of absorbing the
radiated energy which can also be modelled as a set of viscous dashpots (dampers) or damping
elements normal and tangential to the boundary. The method is relatively easy to implement. It
treats both dilatational and shear waves. The big advantage of viscous dampers is the fact that they
are frequency independent. The technique is thus suitable for transient analysis however cannot
carry static load. This boundary is also known as the standard viscous boundary (svb) or the
full-space boundary condition (see [6]).

2.1.1. Standard viscous boundary

Such dampers work perfect if a plane wave travels perpendicular towards the boundary. If the
artificial boundary is truncated at a certain but large distance away then the outgoing waves at each
point on the introduced convex boundary can be treated as plane waves. The model corresponds
to the physical situation in which the truncated boundary is supported on infinitesimal dashpots
oriented in normal and tangential directions at the boundary.

The basic idea of the boundary proposed by Lysmer and Kuhlemeyer is illustrated in Fig. 2
for the plane strain case. One applies boundary stresses ¢ and 7 to an otherwise free boundary to
cancel the stresses which are produced at the boundary by the incoming waves. It can be written
as equations of zero-traction condition at the free boundary

(Oin+ oba) +0¢ = 0,

1
(Tin + Tbd) + 7ot 0 (1)

in which ‘in’ stands for incident stresses, ‘bd’ for applied boundary stresses and ‘rf’ for reflected

wave stresses.
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Fig. 2. Orientation of wave and schematic representation of a viscous boundary

The effect of the exterior region on the interior region is identical to that of an energy absorbing
or non-reflecting boundary. This observation leads directly to the idea of determining the dynamic
response of the interior region from a finite model consisting of the interior region subjected to a
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boundary condition which ensures that all energy arriving at the boundary is absorbed. Lysmer
and Kuhlemeyer [9] have investigated different possibilities for expressing this boundary condition
analytically and have found the most promising way to express it by the following conditions

Ozz = GPCHU,

(2)

where p is the mass density, ¢, and cs are the pressure and shear wave velocities respectively, a and
b are dimensionless parameters.

The proposed boundary condition corresponds to a situation in which the convex boundary is
supported on infinitesimal dashpots oriented normal and tangential to the boundary. The efficiency
of the boundary will be studied in a similar way as it was done in [9] and [10].

Toy = bpesV

3. BOUNDARY REFLECTIONS

The situation studied in the case of an incident P-wave is shown in Fig. 3. The y-axis represents
the viscous boundary and the elastic medium is located in the lower half plane. The incident wave
generates two reflected waves.

Fig. 3. Incident P-wave at the boundary

The horizontal and vertical displacements may be written in terms of the displacement potentials
® and ¥ (in usual form) in which ® is related to the displacements due to the P-waves and ¥ to
the S-waves respectively.

Since the wave fronts of three waves (incident P-wave and reflected P- and S-waves) must travel
along the y-axis at the same velocity ¢ the displacement potentials for harmonic waves of frequency
w must have the form

® = explik(ct + ztana — y)] + Aexplik(ct — z tana — y)]
U = Bexplik(ct — ztanf — y)]
where k is the wave number defined as

k== (4)

(3)

and A and B are the unknown amplitudes of the reflected waves. These amplitudes may be deter-
mined by the stress boundary conditions o, = 0, 7z, = 0 for z = 0. They can be expressed in
terms of displacement potentials as follows
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where k can be defined according to Snell’s law as

C; 1-2v
T, o B T ) ©

Substituting Eqs. (3)1,2 into (5)1,2 results in two linear equations

2

(1-2k%cosa+asina)A + (sin28 + acosa)B = 2x2cos’a — 1+ asina,

7§
(k?sin 2 + bcos B)A + (cos 23 — bsin §) B = k%sin2a — bcos 3, (7)

from which the amplitudes A and B may be obtained as functions of the incident angle.

sin B

Fig. 4. Incident S-wave at the boundary

The incident S-wave case shown in Fig. 4 can be studied in a similar way as the P-wave case.
The expressions for the displacement potentials should be replaced by
® = Aexplik(ct — ztana — y)],

U = explik(ct + ztanB — y)] + Bexplik(ct — z tanf — y)]. ®

The linear equations used to define A and B are in this case

(k%sin 2a 4 bcos B)A + (cos 28 — bsin 8)B = — cos 20 — bsin 3,
(—cos2B + asina)A + (sin28 + acosa)B = sin2f3 —acosa.

A special case occurs when the incident angle § becomes smaller than the critical angle g*
defined by

D =K. (10)

In that case we have
cos . .
cosa = K'B>1, sina = —ivcos2a —1. (11)

The physical significance of the imaginary sine of the angle a is that the appropriate reflected
P-wave does not exist but instead a surface wave shows up, travelling along the boundary and
not back into the continuum. Coefficients of equations (9);,2 now become complex, and so are the
amplitudes A = Ay + 14, and B = By + 1B, . The amplitude of the boundary wave decreases with
distance from the boundary and does not reflect energy back into the continuum, thus it gives no
contribution to the reflected energy.
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4. EFFICIENCY CONSIDERATIONS

The energy transmitted per unit of time (power) through a unit area of the wave front of an S-wave
with amplitude B is

1
By = E,ocso.z2 B2, (12)
The similar expression for a P-wave of amplitude A is
1 ¢ 45,2
E,=—p—w*A°. 13
P 2,0 % w (13)

A good measure of the ability of the standard viscous boundary to absorb impinging elastic
waves is the energy ratio Fr defined as the ratio between the transmitted energy of the reflected
waves and the transmitted energy of the incident wave. This ratio can be computed from the wave
amplitudes A and B. Such an energy ratio is a measure of the reflected energy for a particular
incident angle only. '

The energy that arrives at a unit area of the boundary is proportional to the sine of the incident
wave (see Fig. 3 or 4), so a better measure of the overall ability of the boundary to absorb energy
is the product of reflected energy multiplied by the sine of the incident angle, and denoted by Ef .
It is called the effective energy ratio.

Another possible measure of the efficiency (see [1]) is the mean energy ratio Ej; which is the
mean value of Eg over the whole range of incident angles vy (v = a, ). It represents the average of
reflected to incident energies and can be computed as '

[, Egdy
fLdy
Figure 5 depicts the variation of the effective energy ratio Eg for a P-wave with the angle a for

different values of v. The worst behaviour of the boundary is observed for small angles. It further
shows that the absorbing capabilities of the boundary are decreasing for higher values of v.

EM =1- mean(EE) =1- (14)
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Fig. 5. Effective energy ratio Eg for incident P-waves Fig. 6. Effective energy ratio Er for incident S-waves

In the case of an incident S-wave for the region where the incident wave angle (3 is smaller than
critical 4*, the boundary wave does not reflect energy back into the continuum and it makes no
contribution to the energy ratio.

Figure 6 shows the effective energy ratio Eg for a S-wave as function of the angle (8 for different
values of Poisson’s ratio. Large differences in absorbing properties are observed near the critical
angle which is located in the range [r /4, 7 /2]. Different from the incident P-wave case the absorbing
properties of the boundary for v < 0.4 and 8 < 8* are nearly identical. For v in the range [0.4, 0.5]
the effective energy ratio increases substantially.



Improved viscous boundary 61

5. IMPROVED VISCOUS BOUNDARY

Improved viscous boundary (ivb) conditions have been described in detail in [5] and presented
in [3,4]. They have a term to account for the non-plane wave fronts. The ivb conditions are obtained
by expressing the normal derivatives of the displacements in terms of the velocities

o1,
0r Gy

o0 _ 1, “5)
0r ¢

and then substituting them into the expressions for the boundary stresses. It results in the following
equations

Il

. ov
Oz peptt + [)\ 51;] ",
. ou (16)
Toy = PCsV + l:/ia—y'] 72,

where y and A are Lame constants, 4; and v, are additional dimensionless multipliers.

Equations (16); 2 are the mathematical formulation of the improved viscous boundary condi-
tions. They include the standard viscous boundary as a special case (711 = 72 = 0), i.e. for the
plane wave case. The second term on the right hand side of Eq. (16);,2 will be zero if the waves are
purely plane. It is reasonable to expect, that such a modified viscous boundary will perform better
in practical computations where waves generally do not propagate in a plane wave form.

The efficiency of the ivb has been investigated in a similar way as for the svb. The best relative
improvements in the energy ratio with respect to the svb obtained for vy =y, = 1,a = b =1 and
for incident angles of P- and S-waves smaller than 7 /6 are presented in Fig. 7.
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Fig. 7. Relative improvements of the energy ratio Fr

The figure shows the differences in the relative improvements of the energy ratio Ex obtained
for various values of the Poisson’s ratio. Relative improvements for an incident P-wave are larger
for higher values of v. The maximum relative improvement of Egr is 90% in the range up to 7/6.

Similar results are obtained for an incident S-wave. For v > 0.3 no improvement was observed.
For v < 0.3 the maximum relative improvement is also up to 90%.



62 H.A. Dieterman and R.R. Gajewski

6. IMPLEMENTATION AND NUMERICAL RESULTS

The ivb has been implemented into the finite element code DIANA in a similar way as the svb. For
a two-noded element with length [ the stiffness and damping matrices have the following forms

0 —%/\ 0 %)\ 261 0 C1 0
1 1
, | —3u 0 o1 0 _ 0 2¢, O Co 17
= g0 _ix o | %Tla 0 2 0| (17)
—%,u 0 %u 0 0 ¢ 0 2c

where ¢; = pcpl/6, co = pesl/6.

The meshes used for numerical tests were definitely coarser than those normally used for practical
engineering problems. The purpose of the tests was to evaluate and compare results obtained for
a small model without and with ivb to those obtained from an extended model, large enough to
avoid spurious reflections.

All of the loading was applied on one node and only for a few time-steps. This input, similar to
a delta function, contains high-frequencies. This approach was selected since it subjects the viscous
boundaries to relatively severe conditions. The two kinds of excitations which were considered are
a vertical pulse that generates mainly dilatational waves and a horizontal pulse that generates
primarily shear waves. They were applied at the top surface in the left upper corner (see Fig. 8).
These loadings were selected because of their simplicity and their relevance to the vertical and
horizontal loadings that occur in dynamic soil-structure interaction (see [2]).

N <

86

absorbing bounda;i-es

Fig. 8. Finite element meshes for small models

One of the main aims of the performed calculations was to determine the ability of the b to
absorb the energy of the waves coming to the boundaries. The verification has been performed
by comparing the obtained results with those from the extended model treated as exact. This is
reasonable for a limited time of observation. Results were also compared with those obtained for a
small mesh where elementary boundary conditions were employed.

The first presented example concerns the wave propagation caused by a horizontal impulse
applied to a half-space. Horizontal and vertical displacements of selected points of the mesh are
depicted in Fig. 9. In all figures results for the extended mesh, for the small mesh with elementary
boundary conditions and for the mesh with the ivb are denoted by e, s and i, respectively.

The second example concerns the wave propagation due to a vertical impulse. Displacements of
selected points are depicted in Fig. 10.

All pictures show the ability of the improved viscous boundary to model infinite media (elastic
half-space).
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7. CONCLUSIONS

In this paper the standard viscous boundary (svb) has been improved by accounting for the
non-planarity of the wavefronts. The ability of the improved viscous boundary (ivb) to absorb
the incoming energy shows to be substantially better.

After implementation of the ivb in the finite element code DIANA comparison of its performance
with an ”exact” solutions in a severe calculation shows that the 7vb is adequate in modelling infinite
domains in soil-structure interaction.

The numerical efficiency of the iwb elements in practical calculations is lower than expected,
due to the lack of symmetry in their stiffness matrices. This disadvantage can be overcome by
developing a subprogram capable of solving linear equations with partially nonsymmetric matrices.
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