Computer Assisted Mechanics and Engineering Sciences, 2: 87-104, 1995.
Copyright © 1994 by Polska Akademia Nauk

On improvement of computational efficiency
in FEM calculations
of incompressible fluid flow and heat transfer!

Jerzy Banaszek
Institute of Heat Engineering, Warsaw University of Technology
ul. Nowowiejska 25, 00-665 Warsaw, Poland

(Received October 20, 1994)

The operator splitting algorithm has been applied in FEM analysis of fluid flow and heat transfer to im-
prove the computational efficiency through the use of the optimum FEM models and the optimum solvers
independently for convection and diffusion. The need for decoupling convection and diffusion operators
in FEM calculations comes from the behavioural error analysis, where conditions have been studied for
a proper representation of major physical features of the convective-diffusive transport phenomenon on
a coarse grid. The accuracy and efficiency of the algorithm have been verified by solving two pertinent
benchmark problems of recirculating flow and free convection. The results obtained show that solutions
of both equal- and unequal-order FEM interpolations are free from wiggles and spurious pressure modes
and they fit fairly well the results reported elsewhere.

1. INTRODUCTION

A major impediment in widespread use of the Finite Element Method (FEM) in modelling fluid flow
and heat transfer problems is its poor computational efficiency in comparison with the FDM simu-
lation. It results from a denser form of FEM matrices, coming from the use of irregular grids and
high-order polynomial interpolations of unknown field quantities. It also comes from the application
of a simultaneous solution algorithm commonly used in the early FEM analysis of incompressible
fluid flow.

There are two possible ways to improve computational efficiency in the FEM simulation of field
theory problems.

The first one is simply to use a coarse mesh. This is justified by the fact that the finite ele-
ment discretization technique provides simple means for an accurate approximation of curvilinear
geometry on a sparse grid. This feature cannot be overestimated if one takes into account the fact
that the solution of many field theory problems is sensitive to even minor change in the shape of
a geometrical domain. However, the problem of accuracy of the FEM solution arises here. It turns
out that not only quantitative but even qualitative errors can appear on a coarse grid unless a
proper discretization model is used [7,9,10]. Moreover, the classical error analysis does not give
enough information about errors on a coarse mesh because it provides the convergence estimation
only for an asymptotic case when grid increments tend to zero.

In this context, the present paper shows that the behavioural error analysis, where conditions
are studied for a proper discrete representation of major physical features of a convective-diffusive
transport phenomenon, provides means for setting up FEM models of an acceptable accuracy on
a coarse mesh. To obtain such models, conditions for a proper discrete representation of both
the conservation principle and the maximum principle as well as means to reduce the numerical
dispersion error significantly are considered here.
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The second possible way to improve the FEM computational efficiency lies in the use of special
sophisticated acceleration techniques for the solving process. Most of them take their origin from
the FDM analysis but their efficient utilization in the FEM context requires means which make
possible the exploitation of the advantages of these techniques along with the retention of the
commonly appreciated versatility of the finite element discretization procedure.

Such attempts are still in progress. L. Hayes [19] has proposed a patch interpolation of the
Jacobian matrix determinant of isoparametric mappings to adopt the classical ADI technique in
the FEM analysis for a curvilinear arbitrary domain. The multiplicative and additive correction
procedure has been designed by C.N. Chen and L.C. Welford [13] to accelerate convergence by
solving a sequence of problems on increasingly coarser meshes. The correct solution in a coarse
grid is obtained by finding multiplicative and additive correction coefficients interpolated in ac-
cordance with the piece-wise FEM interpolation procedure. J.M. Winget and T.J.R. Hughes (35
have proposed the element-by-element algorithm (EBE), which results from the combination of the
FEM discretization procedure and the approximate factorization technique. The EBE retains the
generality of the FEM simulation as it does not impose any restrictions on a domain geometry and
its spatial discretization. Moreover, the EBE can be easily implemented on a multi-processor com-
puter [35]. In the context of parallel processing in FEM calculations the overlapping subdomain
technique (Schwartz alternating method), originally designed for the FDM analysis, can also be
used.

In incompressible flows pressure is an implicit variable that instantaneously adjusts itself in
such a way that the incompressibility condition is satisfied. This implies that proper velocity and
pressure fields can be obtained by means of a simultaneous solution of a coupled nonlinear set of
discrete momentum and continuity equations. Such a solving technique was commonly used in the
early FEM analysis of incompressible fluids (e.g. [34]). Unfortunately, this algorithm is not a rea-
sonable choice in terms of the cost-effectiveness of calculations. Indeed, it requires a large amount of
computer storage and CPU time. Therefore, the segregated solution techniques, where pressure and
velocity fields are separated and momentum and mass balance equations are solved consecutively,
have been elaborated for the FDM calculations [24]. This is a key reason why the FDM analysis
is economical in comparison with the one inherent in those FEM calculations, where the simul-
taneous solution algorithm is taken. In the fractional step method (also called velocity correction
method), originated by A.J. Chorin [14], the momentum equation is first solved disregarding the
pressure gradient term. Then the provisional velocity field thus obtained is corrected by taking into
account the pressure contribution through the enforcement of the incompressibility requirement.
The most popular technique in FDM analysis is the segregated velocity-pressure solution algorithm
(“guess and correct” method) of S.V. Patankar [24], where, for guessed initial values of unknowns,
pressure and velocity components are found in a sequence of iterations. In each iteration cycle, the
discrete momentum equations and the Poisson-like pressure correction equation, resulting from the
imposition of the continuity constraint, are solved in a sequential manner and finally an updating
procedure is used to obtain a velocity field that satisfies the incompressibility condition. Both above
techniques were recently successfully applied in the finite element analysis, based on the Galerkin
weighted residual method [15, 32], to improve the economy of calculations.

The FEM analysis of transient fluid flow and heat transfer problems can also be speeded up
with the use of the splitting-up method [23], in which the discrete convection and diffusion oper-
ator is split according to physical processes and the contribution from each of these processes is
calculated separately in the time integration procedure. B. Ramaswamy [25, 26, 27] has reported a
successful use of this technique in the Galerkin FEM calculations whereas J. Banaszek [8] has used
it succesfully in the control-volume formulation of FEM.

This splitting up technique, in which the convection and diffusion in the momentum and energy
balance equations are treated in two distinct consecutive phases, is used in the present study so
that the optimum numerical models and the most efficient solvers of a set of algebraic equations
can be chosen independently for convection and diffusion.

The above mentioned behavioural error analysis leads to the general conclusion that accuracy
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and computational efficiency of FEM approximation for simultaneous convection and diffusion of
a field quantity depend on the proper choice of a discrete model which is due to the intensity
of both forms of transport. For example, in diffusion-type problems the lumped capacity (mass)
matrix model is a reasonable choice from the point of view of stability and early-time solution
accuracy (3, 5]. On the other hand, in the case when convection dominates (moderate and high Peclet
numbers), the consistent capacity (mass) matrix model significantly reduces numerical dissipation
and dispersion [6,9]. Hence, there is no general FEM approximation equally accurate and efficient
for both problems. Each of them needs individual approach, for each of them different optimum
discrete models should be used to obtain an efficient numerical technique. In fluid flow and heat
transfer problems, where a coupled convection-diffusion occurs, such a technique can be developed
through decomposition of both forms of momentum and energy transfer in the time integration
procedure of the splitting-up method.

Therefore, to utilize the results drawn from the theoretical error analysis in FEM calculations
of fluid flow and heat transfer, the splitting-up technique has been used here along with Chorin’s
velocity correction method. First, the momentum equations with the disregarded pressure terms
are solved consecutively for each provisional velocity component in two steps: pure diffusion and
then pure convection. Next, the pressure is calculated from the Poisson equation resulting from
a combination of the continuity equation and divergence of the momentum equation. Finally, the
provisional velocity field is corrected by taking into account the pressure contribution to acceleration
through the enforcement of the incompressibility condition. This solution algorithm has been tested
on several benchmark problems, commonly used to verify the accuracy and economy of numerical
solutions for incompressible fluids. The exemplifying results of two selected problems, i.e. driven
cavity flow and free convection in a square enclosure, are given in the paper.

2. FEM EQUATIONS FOR CONVECTION-DIFFUSION PROBLEMS

The balance equation for the scalar quantity ®, which can denote mass, momentum components or
enthalpy, transferred by convection and diffusion in a small but finite control-volume Q; confined
by the surface I'x, has the following integral form,
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which states that the change rate of ® is influenced both by convective-diffusive flux through the
boundary I'; and sources occurring in the domain Q. This equation is a basic one for setting up
nodal equations for the control-volume based FEM (CVFEM) (2,4,31]. For an infinitesimally small
control-volume the above balance equation assumes a local conservative form
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00 08 o ( o8
pat ”"’az. Oz; Uaxj

1

) =19 fori 7 =-1.2.3. (4)

An integral weak formulation is obtained here by weighting the residual Rq of the above partial
differential equation and the residual R of the boundary conditions (resulting from an element-wise
interpolation of unknowns) in the whole domain through the weighting functions W defined in a
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local element basis [36]. Thus, a set of nodal equations for the Petrov-Galerkin FEM (PGFEM) is
established
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To obtain a discrete form of Eq. (1) or Eq. (5) two consecutive discretization steps are carried
out. Firstly, the FEM discretization is defined by the piece-wise independent interpolations of the
domain geometry, velocity components and the field quantity sought,
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Next, a set of ordinary differential equations for the semi-discrete FEM model thus obtained, which
can be written in a concise matrix form

d{®
¥, kiku(e) =R (7)
where
C - capacity (mass) matrix,
K - diffusion matrix,

K, — convection matrix,

R - r.h.s. vector resulting from internal sources and natural boundary conditions,

is integrated in time by means of the one-step implicit finite difference scheme [29],
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where the scheme impliciteness parameter 0 < © < 1.
This leads to a set of algebraic equations of a fully discrete FEM model, which can be written
in the following matrix form, common for both the CVFEM and PGFEM,

[C + OAYK + Ky)]{#}"" = [C - (1 - 0)AK + Ku)|{2}" + R, (9)

where R = At [OR™! + (1 - O)R"].

The way chosen for spatial approximation of a time derivative of the field quantity sought
determines the form of the capacity matrix, which in turn significantly influences the accuracy and
stability of FEM solutions to transient convection-diffusion problems.

When a spatial approximation of a time derivative of ® is assumed in accordance with the FEM
interpolation technique
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the so-called consistent capacity (mass) model, further labelled as C-model,
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is obtained for the CVFEM and PGFEM, respectively.
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On the other hand, averaging spatial changes of the time derivative over a control-volume or
with special lumping techniques [17,36] leads to the lumped capacity (mass) model,
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further labelled as L-model, for the CVFEM and PGFEM, respectively.

3. BEHAVIOURAL ERROR ANALYSIS

The commonly used error analysis for a discrete model gives an estimation of the truncation er-
ror, referring to the inaccuracy caused by ignoring high order terms in an infinite Taylor series
expansion of an unknown. This error, which is due to the finite step sizes of both spatial and
temporal discretizations, vanishes when the grid increments Az; and At tend to zero. This is,
however, a rather dubious consolation if one takes into account the fact that a complex mathe-
matical description of fluid flow and heat transfer problems, given by a set of coupled nonlinear
partial differential equations, usually forces the use of grids of rather moderate density. Otherwise,
the computational economy of a numerical analysis is not retained. Unfortunately, finite sizes of
space-time discretization steps can cause unacceptable quantitative and frequently even qualitative
errors of an approximate solution, unless a proper numerical model is developed. To make up such
FEM models, the behavioural error analysis, originated by S.P. Roache in the FDM context [30],
is used here. This means that the quality of the numerical analogue is judged in terms of how the
physical features of the convection-diffusion transport phenomenon are reflected within a FE grid
[7,10]. In fact, for engineers and physicists such appraisal seems to be the most convincing way of
verifying the correctness of a numerical model employed.

Certain comments and conclusions drawn from this error analysis are given further to show
simple and time-saving means of setting up proper FEM models on a coarse mesh.

3.1. Conservative property of FEM models

The conservative property, which arises directly from the conservation principle for a scalar field
quantity, is one of the most meaningful and desired features of a credible numerical analogue. If
a discrete model possesses this property, the field quantity sought is correctly balanced within a
considered domain and/or within its subdomains, irrespective of the discretization pattern and grid
density used [30].

It is shown above that the FEM nodal equations can be established in two different ways,
either by means of the weighted residual approach to the governing PDE (GFEM or PGFEM)
or by setting up the integral balance equation for the scalar quantity within the control-volume
surrounding each nodal point (CVFEM). This gives reason to distinguish two different forms of the
conservative property for the FE analogues, namely the global and local ones [7, 10].

The Global Conservative Property (GCP) is obtained if a FEM solution satisfies the integral
balance equation (Eq. (1)) within the whole region €, irrespective of the discretization pattern, the
element shape, weighting and interpolating functions used. Furthermore, when Eq. (1) is applied to
each control volume ; bounded by imaginary and/or real boundary Ty, the Local Conservative
Property (LCP) is achieved.

The weighted residual technique consists in a global minimization of the PDE residual within
the whole domain Q (Eq. (5)). Therefore, its individual nodal equation cannot, in general, be
considered as the local balance equation. Therefore, only the global form of the conservative prop-
erty can be associated with this model [7,10]. The sufficient condition for the GCP requires the
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weak formulation given in Eq. (5) to be established on the basis of the conservative form of PDE
(Eq. (2)) and the sum of all weighting functions Wi to be equal to unity at any point of the
considered domain [10].

On the other hand, the CVFEM provides a numerical analogue inherently possessing the LCP,
and in consequence also the GCP, owing to the fact that its nodal equation is obtained by setting
up the local integral balance of ® within the control-volume €y, confined by the boundary T'k
running inside those elements which share the common node k.

Although not indispensable, the LCP is desirable for it frequently offers better accuracy and less
stringent stability requirements of the FEM solution in comparison with the ones obtained from only
globally conservative weighted residual FEM models. This is shown in [3, 5, 10], where accuracy of
the GFEM and CVFEM solutions is compared for the selected steady-state and transient diffusion
problems.

In the FEM analysis of convection-dominated problems, the correctness of both mass and con-
vected scalar quantity balances should be taken into account simultaneously [10]. Otherwise, poor
interpolation of a solenoidal velocity field over a coarse low-order FE grid can cause a mass balance
error which might significantly influence the accuracy of the FEM solution for the scalar quantity
sought.

To reduce this inaccuracy, the PGFEM (GFEM) nodal equations can be established on the
basis of the non-conservative form of PDE (Eq. (4)). This somewhat confusing conclusion can be
explained as follows [10]. As the FEM interpolation of a velocity field (given in Eq. (6)2) does not
generally satisfy the incompressibility condition at any point of an element domain,
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a redundant mass occurs within an infinitesimally small volume
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Comparing the above integral with the sum of the element convection integrals for the PGFEM
based on the conservative form of PDE (Eq. (2)),
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one can conclude that the integral (12) coincides with the second one on the right-hand side of
Eq. (13). The second integral exists in the above conservative formulation but it does not appear
in the non-conservative model and thus the impact of the mass balance error on the FEM solution
for ® is reduced in the formulation based on Eq. (4).

In the CVFEM, the same effect is achieved when the local integral balance of ® within the
control volume is set up for a corrected amount of mass comprised in this subdomain [10], i.e.
when a redundant amount of the field quantity resulting from redundant mass coming through the
boundary I'y,

Am=/F plPualnidl. = | AEx = </ p[Pruini dI‘) @, (14)
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is subtracted from the nodal balance equation (1).
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The FEM models thus obtained are not likely to satisfy the conservative property but they
can provide more accurate results because the impact of inaccuracy in the approximation of the
continuity condition over a FE grid on the calculated field quantity is significantly reduced. In
consequence, an acceptable accuracy of the FEM solution can often be achieved on a coarser mesh
as it is shown in [10] for a steady-state convection problem. This, in turn, leads to considerable
savings in both computer storage and CPU time [10].

3.2. Discrete maximum principle

One of the most important properties of the diffusive transport phenomenon is the maximum
principle, which imposes physical limits on the extreme values of the unknown. For instance, when
heat conduction with no heat source is considered, the principle states that both the maximum
and the minimum values of temperature can only occur on a domain boundary or at an initial
time. If a numerical model does not preserve this principle within a division grid, its solution may
exhibit strong spatial and temporal oscillations and it may even take values which are outside of
a physically justified range [3,7,21,28]. To avoid this error in the FEM analysis one should select
a space-time discretization pattern in a way which ensures the fulfilment of the Ciarlet matrix
criterion defined in the FDM context in [12], which imposes inequality relations for individual
terms of the capacity and diffusion matrices [7]. These relations put restrictions on the grid Fourier
number, on the ratio of spatial division steps and on the parameter © of the time marching scheme
(given in Eq. (8)). Their thorough examination leads to the conclusion that they are less stringent
for the CVFEM than for the GFEM. Furthermore, the L-model of the capacity matrix has only
the upper bound for the grid Fourier number whereas the C-model possesses both lower and upper
limits [7, 28)].

Convection is a one-way transport phenomenon, i.e. the convected scalar quantity travels only
in the direction of the velocity vector, downwind to the flow. Unfortunately, the classical FDM and
FEM models do not necessarily obey this physically meaningful requirement unless the discretiza-
tion grid is sufficiently dense. This can cause considerable spatial oscillations of the numerical
solution, called wiggles [7,11,21], particularly in the case where a strong gradient of the trans-
ported variable occurs along streamlines. In consequence, the FEM solution often takes values
which are outside of physically justified limits. This can also be viewed as a violation of the max-
imum principle in the convective-diffusive transport of the scalar field quantity [21]. To suppress
wiggles either a very dense FE grid should be used or special upwind techniques, similar to those
commonly incorporated in the FDM models (e.g. [24]), should be developed. In the PGFEM, the
convective motion upwind to the flow is eliminated with the use of high order unsymmetric poly-
nomial weighting functions (e.g. [11]). This way cannot be used, however, in the CVFEM where
the weighting technique is not exploited. The effect of upwinding can be obtained here by devel-
oping a flow-oriented form of the interpolation function for the field quantity ®, i.e. a form which
depends on both the direction and intensity of convection. Although several such techniques have
been proposed in the literature for triangular [2] and rectangular [4,20,31] FE grids, there is no
general way to obtain consistent approximations of all terms in the balance equation (Eq. (1)).
Therefore, when choosing an upwinding technique in the control-volume FEM formulation one
should take into account some characteristic features of the problem considered, like the scale
of expected flow recirculations, contributions of the source terms and direction of the convective
transport [4,31].

It is a common way to use the upwind procedures, developed for a steady-state problem, in
numerical modelling of transient convection dominated flows, in the hope that they also perform
quite well in this case. Unfortunately, this is not necessarily true due to the considerable dispersion
error which may occur when approximation of the temporal term in the balance equation (Eq. (1)
or Eq. (2)) is not properly defined. The source of this error and some remedies available are further
discussed in the subsequent paragraph.
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3.3. Numerical dispersion — Fourier mode analysis

Fourier mode analysis, commonly used in the von Neumann stability method, also provides a con-

venient tool for the examination of the behaviour of FEM solutions on a coarse mesh. It is based on

the Fourier series representation of both the continuous solution and its numerical counterpart. By

virtue of the linearity assumption Fourier modes are mutually independent. Therefore, the analysis

can focus on one wave only, taken from a discrete spectrum of modes based on a discretization grid.
For any initial wave

Po(Z) = ¢ exp (fkujuj) ; (15)

where ¢ = /=1 and k.; is a component of the wave number vector k, , the following form of the
Fourier mode for a continuous model is assumed,

®(z,t) = Bo(Z) exp [(—,B - w{) t] : _ (16)

and making use of Eq. (2) with § = 0, the damping and dispersion relations for a continuous model
are obtained:

ﬂ = /\ijkuikuja (17)

The first relation (Eq. (17)) is a parabolic function of the components of the wave number vector
ky , whereas the second one is a linear function of this vector with a constant phase speed c.

2
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These relations are further compared with those for discrete models which are relevant here.
For a two-dimensional semi-discrete model in a regular grid the nodal FEM equation can be
written in a general operator form

d®;;
A () = Adey) (20)
where

A — spatial shifting operator for temporal derivative,

A — spatial shifting operator for convection and diffusion terms,

and the Fourier mode takes the form

O, (iAzy, jAZ2,t) = ¢ exp [(kuliAarl + kusz.’Ezﬁ] exp [(—ﬂ - CJ;) t] —
®(21i,22;,1) exp { [(B - ) + (w - @)i] t} (21)

where
®(21i,z25,t) — the continuous solution at (z1i, z2;,1),

B — damping parameter for semi-discrete model,

€

— wave frequency for semi-discrete model.

The expression exp[(8 — )] is a measure of additional dissipation, whereas the expression (w — &)t
determines the phase-shift error resulting from the FEM spatial discretization. In Figs. 1 and 2 the
damping parameter and the phase speed are compared for a continuous model and semi-discrete
FEM models on a bilinear square grid for different dimensionless wave numbers k,; = ky, = k.
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Their thorough analysis reveals that long waves are represented more accurately, whereas short
waves are underdiffused in the lumped capacity models and overdiffused in the consistent capacity
models. Insufficient damping is undesirable for a convection problem, where short waves are too
slowly convected and their contribution to the overall solution accuracy is visible. Fortunately, it is
not observed for a diffusion problem, where the wave amplitude decays with time with an exponent
proportional to the square of the wave number. Moreover, all Fourier modes of the continuous
solution are advected at constant speed whereas different Fourier waves of the semi-discrete FEM
model spread apart. This phenomenon is referred to as the dispersion error. The size of this error
is primarily dependent on the capacity model chosen in calculations. Indeed, the lumped models
(L-models) induce a much greater dispersion error than the consistent capacity models (C-models).

For the fully discrete FEM models, obtained by marching in time, with the help of the one-step
implicit finite difference scheme (Eq. (8)), the nodal equation can be written in the general operator
form

e+l _ pn

Ay <—’—&t—1> = Ag(O®]M + (1 - 0)37; (22)
and the Fourier mode takes the form

PA(iATy, jAZy, t + AL) = Bp(iAz1, AL, t) G (23)
where

G = f(Fo,Cr) — complex amplification factor,

Fo= &t XJ: —AA—;]—? — Fourier grid number, (24)

Ur =108 2}: ZL;] — Courant grid number, (25)

BAt = —In|G| - numerical damping per time step, (26)

@At = —arg|G| - phase shift per time step. (27)

Here the damping parameter and the phase shift are subject to both spatial and temporal approx-
imations. The temporal approximation augments the numerical dispersion error [6,9]. It is visible
in Fig. 3, where exemplifying results of the Fourier mode analysis for the CVFEM solution are
given on a square bilinear grid. More results drawn from this analysis for both the CVFEM and
the GFEM methods as well as for the consistent and lumped capacity models are given elsewhere
(e.g. [9]).

The phase shift error can be significantly reduced on a coarse mesh with the use of the
Taylor-Galerkin FEM [16], in which a more accurate time integration technique is obtained by ap-
plying higher (i.e. second and third) terms in the Taylor series expansion of the time derivative 2 8t
This idea, originated with Lax and Wendroff in the FDM analysis [22], can also be adopted to
the control-volume formulation of the FEM. This leads to the following nodal balance equation of
Taylor-CVFEM (6, 7],

Qn-l»l — P
p———dQ +/ pu;[@®™"! + (1 — 0)@"|n; dT
Qp At Tk
At 0" t! oe"
- ?(1—29)/“;){1“11] [GTx]_ + (1 O) ]}nidl"
ﬁ 2 it 9 n+1 LAV 3 | n
(1 3@+3@)/kauzu]azj(<1> — &™), dT _/Qki(s ~ 5™ de, (28)

where an additional, weighted in time, diffusion flux appears. It gives the necessary streamline-up-
winding. Moreover, it stabilizes the solution and reduces its dispersion error. The latter conclusion
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Fig. 4. Comparison of phase speed error for FEM analogues with consistent capacity matrix model

comes from the Fourier mode analysis, whose results are given in Fig. 4 in the form of a comparison
of a relative phase speed ¢/c for various fully discrete FEM models. The competitive accuracy
of Taylor-GFEM and Taylor-CVFEM solutions in comparison to the GFEM and CVFEM ones is
confirmed in [6, 7], where the comparative analysis of the solutions obtained is given for a benchmark
problem of pure advection of a cone in a rotating fluid.
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4. SOLUTION PROCEDURE — OPERATOR SPLITTING TECHNIQUE

The complete behavioural error analysis shows that accuracy and computational efficiency of FEM
models strongly depend on the intensity of convection and diffusion and thus on the type of PDE
analysed. Hence, there is no general FEM model equally accurate and efficient for both convection
dominated and diffusion dominated problems. Therefore, for a successful numerical simulation on a
coarse grid, different criteria should be taken into account and different discretization models should
be applied for each case independently. Indeed, for diffusion-type problems the analysis of conditions
under which the conservation and maximum principles are satisfied as well as of requirements for a
stable and non-oscillating solution leads to the choice of the control-volume formulation of the FEM
and the lumped capacity model (L-model). On the other hand, for a convection dominated problem
where wiggles, spurious crosswind diffusion, mass balance error and numerical dispersion should
be eliminated (or at least reduced) both the control-volume based and the weighted residual based
FEMs are a good choice providing the consistent capacity model (C-model) and the Lax-Wendroff
method for the more accurate time integration are applied.

To practically utilize these results in fluid flow and heat transfer problems, where a couple
convection-diffusion transport generally occurs, an operator splitting method can be used, where
operators of discrete balance equations for momentum and energy are split according to physical
processes and the contribution from each of these processes is calculated separately. This makes it
possible to take the optimum spatial and temporal discretization and the most efficient solvers for
a final set of FEM algebraic equations, independently for convection and diffusion. Therefore, the
iterative process is constructed at each time step where:

e To decompose the continuity and momentum equations the Chorin’s fractional step method [14]
is applied, where at first the linearized momentum equations with disregarded pressure terms
are solved consecutively for each velocity component. Then the provisional velocity field thus
obtained is corrected by taking into account the pressure contribution through the enforcement
of the incompressibility condition. The set of algebraic equations resulting from the FEM model
for the Poisson-like equation for pressure is solved with the conjugate gradient method with
SOR preconditioning [1].

e Balance equations for momentum and energy (or enthalpy) are solved in two consecutive steps.
At first, the unsteady convection problem is calculated with the use of the Taylor-CVFEM or
Taylor-GFEM along with the LTDMA [24] or approximate factorization [16] solvers. Next, nodal
values of velocity or temperature thus obtained are used as the initial ones for the unsteady
diffusion problem which is solved with the use of the CVFEM or GFEM with the lumped capacity
model and with the use of the conjugate gradient method with SOR preconditioning [1].

The accuracy and efficiency of this algorithm have been verified by solving two benchmark prob-
lems commonly used in comparing alternative numerical models, i.e. lid-driven cavity flow and
free convection in a channel of a square cross-section. The transient calculation is started from
initial conditions of zero velocity and continued until the steady-state regime is reached. Wiggles
and crosswind diffusion are avoided here by means of the Taylor-GFEM or the Taylor-CVFEM,
where additional diffusive flux (e.g. Eq. (28)) gives the necessary streamline upwinding. The mixed
velocity pressure formulation is used in the algorithm to avoid FEM solutions containing spurious
pressure modes. The 9/4 element taken in calculations, in which the velocity is interpolated with the
biquadratic Lagrange polynomial whereas the pressure field only by the bilinear one, satisfies the
inf-sup condition of Brezzi and Babuska [18]. Recently, however, some authors (e.g. [25]) reported
that the equal-order interpolation of the velocity and pressure fields also gives the correct FEM
solutions in the time-splitting algorithm due to the strict enforcement of the continuity constraint
at every stage of the iterative process [25]. Therefore, to compare both interpolation techniques in
the presented algorithm, the benchmark problems have also been solved with the use of bilinear
interpolation for both velocity and pressure.
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Fig. 5. Streamlines and pressure contours for driven cavity flow with Re = 10°
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Fig. 7. Streamlines and pressure contours for free convection in a square enclosure with Ra = 10°
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Test 1 — Lid-driven cavity flow

To verify the performance of the splitting-up algorithm for a recirculation flow as well as to compare
the equal-order and unequal-order FEM interpolations of velocity and pressure fields, the problem
of flow in a closed cavity (0 < 2y < 1, 0 < z3 < 1) driven by the lid movement is considered.
The lid moves with the unit velocity (u; = 1.0) in its own plane. The non-slip boundary condition
is assumed on the remaining walls. The flow is completely determined by the Reynolds number,
defined for the lid velocity, i.e. Re = pu; L/u, where L is the unit length of the lid. A non-uniform
grid of 900 bilinear elements, with both velocity and pressure approximated with bilinear Lagrange
polynomials, or a non-uniform grid of 225 biquadratic elements, with the velocity field interpolated
with the biquadratic Lagrange polynomials whereas the pressure field only with the bilinear ones,
were used in the case of Re = 10%. The pressure reference point is assumed in the middle of the
cavity bottom wall. The results obtained are given in Fig. 5 in terms of streamlines and pressure
contours as well as in Fig. 6, where velocity components along the vertical and the horizontal centre
lines of the cavity are compared for the equal-order (4/4 element) and unequal-order (9/4 element)
interpolations and for various Reynolds numbers. The solutions of both of these interpolations are
free from wiggles and spurious pressure modes and they differ only slightly from each other (Fig. 6)
in terms of the velocity components obtained, at least for the analysed range of the Reynolds
number. They also fit fairly well the results reported elsewhere [25, 26].

Test 2 — Free convection in a square enclosure

To check the accuracy and efficiency of the algorithm presented in the case of coupled fluid flow and
heat transfer, the laminar free convection in a square enclosure has been solved for various Rayleigh
numbers. The domain analysed is confined by (0 < z; < 1,0 < z5 < 1). The lower and upper walls
are assumed to be adiabatic whereas u; = uz = 0 on both vertical walls, which are kept at a uniform
temperature, i.e. ® = 0.5 and ® = —0.5 for the left-side wall and the right-side one, respectively.
The domain is covered with an irregular grid (denser near the walls) of 25x 25 biquadratic elements.
Exemplifying results obtained are presented in Figs. 7 and 8, where steady-state distributions of
streamlines, pressure contours and isothermal lines are given for the Rayleigh number Ra = 10°.
The computed solution is in agreement with the results published elsewhere [25, 26, 33].

|

Fig. 8. Isothermal lines for free convection in a square enclosure with Ra = 10°
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5. CONCLUSIONS AND FINAL REMARKS

The question of cost effectiveness of FEM solutions is still the main interest in numerical modelling
of practical, multidimensional fluid flow and heat transfer problems. It is commonly known that fi-
nite difference methods are superior in terms of computer storage and CPU time requirements when
compared with the FEM analysis. This is especially true for a regular geometry domain but not
necessarily true in the case of a curvilinear multidimensional domain, when the finite difference grid
should be much denser than the finite element grid. Moreover, the competitive computational effi-
ciency of FDM calculations results mainly from the use of the segregated velocity-pressure solution
technique instead of the computationally inefficient simultaneous solution procedure, commonly
applied in the early FEM analysis of incompressible fluid flows. Fortunately, this segregated solu-
tion technique, in which mass and momentum balance equations are decoupled in a discrete model,
has recently been applied successfully in the FEM context. Moreover, the computational efficiency
of FEM calculations can be significantly improved with the use of the splitting-up technique, in
which operators of the discrete balance equations for momentum and energy are split according to
physical processes and the contribution from each of these processes, i.e. convection and diffusion,
is calculated separately. Indeed, the results obtained with the help of this technique that have re-
cently been published are encouraging. The considerable saving of storage and execution time of
the time splitting algorithm, reported in [25, 26, 27], results from solving the equations of motion
sequentially as well as from the use of the segregated technique in which the velocity and pressure
fields are separated at each iterative step.

In this study the splitting-up algorithm along with Chorin’s fractional step method has been ap-
plied as a means of incorporating the optimum discretization models and the optimum solvers inde-
pendently for convection and diffusion. The need for decoupling convection and diffusion operators
in FEM models arises from conclusions drawn from the behavioural error analysis, in which the con-
ditions are studied for a proper representation of major physical features of the convective-diffusive
transport phenomenon on a coarse finite element grid. This shows that there is no general FEM
model equally accurate and efficient for both convection dominated and diffusion dominated prob-
lems. Therefore, it seems that for a successful numerical simulation on a coarse grid different criteria
should be taken into account and different discretization models applied for each case independently.

The accuracy and efficiency of the algorithm presented here have been verified by solving two per-
tinent benchmark problems. The results obtained for the lid driven cavity flow and free convection
in a square enclosure show that solutions of both equal- and unequal-order FEM interpolations are
free from wiggles and spurious pressure modes and they fit fairly well the results reported elsewhere.

Furthermore, it is also shown here that behavioural error analysis and Fourier mode analysis,
which makes it possible to describe the behaviour of a discrete model on a coarse grid, provide a
simple tool for setting up FEM models of acceptable accuracy on a coarse mesh and thus calculations
are more cost-effective due to a much lesser number of nodal unknowns.
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