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The paper presents the method of algebraic vorticity moments. It may be used to solve problems of viscous
liquid motion in 2-D and 3-D cases. Its essence lies in the integration of a set of ordinary differential

equations. The unknown functions of those equations defined as ﬁ f £ wz™y"™ dzdy allow to find the

vorticity field and next the velocity. We also show a number of 2-D numerical examples.

1. INTRODUCTION

The motion of viscous liquid can be investigated by the application of vortex method. This method
is based on the vorticity equation (Helmholtz equation) whose 2-D and 3-D forms are essentially
different. Nevertheless, it is important to formulate the general vortex method covering both 2-D
and 3-D cases. The algebraic moments method appears to serve that purpose.

The substance of the moments method is to reduce the original problem to Cauchy’s formulation
for a set of ordinary differential equations. It was initially applied to the investigation of nonviscous
liquid motion [1, 2]. A certain number of vortices were assumed to exist. They moved and interacted
with each other. But the liquid was accepted as nonviscous. The method was also generalized to
the case of viscous fluid and unbounded vorticity support [3]. In the present paper the number of
vortices is chosen arbitrarily. Each is mainly concentrated in the area close to the centre, but the
support of each is in the whole plane/space. The total vorticity is assumed to be the sum of many
contributions, each of them defining one evolving vortex. This approach seems to be more natural
when considering viscous fluid motion.

2. FORMULATION OF THE PROBLEM

The plane motion of viscous fluid in the infinite plane can be described by the following system of
equations:

E:VAL«), AY = —w, (1)

supplemented by the initial value of vorticity field w. The motion vanishes in infinity and the initial
value of vorticity field is assumed to be known and given.
Let us assume w as a sum of certain contributions wj ,

w=w1+w2+w3+... (2)

1The paper has been presented at Japan—Central Europe Joint Workshop on Advanced Computing in Engineering,
Pultusk, Poland, September 26-29, 1994.
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The system of equations

Ow; ow; Ow;

—8_t+u8—z+v-%:VAwi’ (3)

Ay = —w;, p=t1+P2t+P3t+... (4)
o0y _ oy

U—'a—y, v=— aw (5)

yields the system (1). The 3-D case can be formulated as follows:
Ow;

o + (v Vw; — (w; - V)v = vAw;, (6)
NV =y, Neawe = U, (7
v=vi+vet+vi+t... (8)

3. THE MOMENTS AND MOMENT EQUATIONS

Let the vorticity contribution w; be a function of time and coordinates: w; = w;i(t, ¢ — i,y — ¥;)-
The point z;(t) , yi(t) is the i-th vortex centroid. It means that

[ wittemgdedn = [ (e, mndedn=o0. ©)
E2 E2
The moments of vorticity are defined by the following expression
Filigy) A —1——/ wi(t,z — z;,y — y;)z"y" dzdy (10)
; m!n! JEg, : \
m,n 1 m._n
T = W/ wi(t, &, m)Emn" dgdn. (11)

The Steiner’s relations allow to write

m—k, n—p

mn) Z; Yi (k.p)
ZZ m kl(n p)!‘]i/i g (12)

k=0p=0

Also, it is possible to find the i-th vortex moments in relation to a-th vortex centroid coordinate
system,

(m n) .- (1‘, o5 za ( ya)n-p (k,p)

Taking into account the total vorticity definition one can find the moments of total vorticity w at
any coordinates,

Thingl Z A " (14)

The global coordinate system is assumed to be an inertial system of coordinates. Taking the
time derivative of I;(™™ one can write

mm 1 A ct =
1dt =i 3 /E2 [ ey + w; (m:z: Lymy + nz™y™! )] dzdy. (15)
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The substitution of % = vAw; and integration by parts lead to the following formula,

dIi(mn) 1 m—2,n m, n—2
cr@pibe /E2 w; [1/ (m(m— 1)z™*y" + n(n — 1)z™y )

+mz™ 1y u + nz™y" ! ]dxdy. (16)

Also, the substitution z = z; — £, y = y; — 1 and shifting of indices bring the result

dI_(m,n) m n m’FyP{ (m—k—2,n—p) (m—kn—p—2)
P = ZZ 1 J1 v Jii ! + J; : =P
T AT (75 b )
1 e, T n—= m— n—p—
t (m—k)i(n—p)! /192 wi [(m—k)E™ " 1g"Pu 4 (n—p)g™Fn P o) dédn}. (17)
The same derivative can be obtained by differentiation of (12),
(m—k,n—p)
drz; (m,n) m n (m ¥ hof (m—RRLR D) dJi/i
dt EZ [ s s finirov 1o TRoT@sTT vkt (18)
(m,n)

Comparing both formulas for d—‘dt— we receive the set of moment equations:

dJ(m n) m=1,.000 " 4. m,n—1
w1 .. = . (m=2.n) . (m,n-2) / . € n (u' ml) £mn (’l) yl)
= R TR i [ Yl i | By (10

It is easy to see that
Jt(;)lo) It(0 0) JS}O) = const (20)

and, from the definition of local coordinates,

I = JO g, (21)

Moreover, the motion equations of vortex centroids result from their definitions:
(0,0) _ : J©o) _ .
Jl/t /E2 w;udzdy, Ui J i/ /E2 w;vdzdy . (22)

The system (19-22) defines the moments and locations of vortex centroids. It is possible to obtain
the 3-D analogy of this system. Firstly, we write the moments of one of vorticity components, for
example the moments of wy, ,

(m, n,p)
Jyt/t mlnlpl

[, it €mOFmner dedndc. (23)

Then, the Steiner’s formula analogous to Eq. (12) can be written. Following the specified method
of calculation one can write:

Jﬁzo) = const, (24)

T Jl(loi';)zfo) = ./E (WyiVg — wgivy) dzdydz, (25)
3

< AODD

Yi Jl(l ifi ) =0, (26)

% J(Oj"o) & /E (wyiv; — wyivy) dedydz, (27)
3
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dJ(a,/ﬁ,'v) Ligls 04,884 75
Yy o e a, ~ a8y~
dt [JZ“/l +J yifi +Jy,/, ]
a=1p8¢y
+ .. ey (02 = %) = ey dedndc
apf-1ry
[ oy (e = ) — i) ddndc. (28)
3 g -

It is seen, that the set of moment equations valid for 3-D case does not differ essentially from that
for 2-D case.

4. VORTICITY AND MOMENTS OF VORTICITY

There is a fundamental problem: to determine the vorticity field having all of its moments. Kan-
torovitch [6] investigated this problem in the following context: find an element of Banach space if
the set of functionals calculated at it is given.

It is possible to solve the problem of vorticity field in a more natural way. At first, we observe
that the asymptotic behaviour of initially singular Gaussian vortex with vorticity is given as

1 —r2 99
g vt P\ |- (29)

This means, that the Gaussian function may be introduced as a factor describing the vorticity
distribution. Thus, we assume that

o, 1 —p4 T Y
e o () i)

where f(t,&,7) is a smooth function at any time in the whole plane. It should satisfy some restric-
tions. The minimum of them is

J €1, /E F2(t,€,m) dédn < co.

Following that, we express f as a series of Hermite functions,
[0 oJNNe o]
Ft6m) =37 3 frp(t)HR(E)Hp(n) - (31)
k=0 p=0
The Hermite functions Hy are defined by Hermite polynomials H:

1 _a? k
Hi(z) = —e™ 7 Hi(z), Hi(z) = (—1)k€””2d—k“—’_a82 ; we = 2tk (32)
Kk dz

They form an orthonormal set of functions and define a basis of Ly(E) space. It is easy to see, that

o

e~ Hy(e) = (U gpe ™ (33)

Using these formulas, we rewrite w in the form

o* or 2

g 0 a0 - fkp e -
= = ; zz;)(_l)k+ = 8(7%;)” e it , (34)

Kk Mp a(m)
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The vorticity should be defined as a weakly differentiable function. This requirement is fulfilled
when the set of coefficients { fi,} satisfies the following condition,

iif;?p(Hk)(Hp):ff <o0o. (35)

k=0 p=0

Moreover, it makes sense to define the vorticity as a bounded function. Doing that we write

if}lﬂcpl =fo < o0. (36)

k=0 p=0

Now, it is possible to obtain

1F1 <30 ol Mkl Mol < fo (37)

k=0 p=0

as a result of the property [Hx| < 1, [4]. Coming back to the vorticity definition (34) we introduce
a linear differential operator £

L & ok or
L= -1 btp_fo dot) oo s 38
SR el S (38)
The vorticity w will be shortly denoted as follows:
] i
w= mﬁ € vt ; (39)

Now, the moments can be calculated. We express them as combinations of frp. Following the
definition we write

m+4n B 1 +oo ak 2 ]. +oo 37’ 2
J(m,n):4t }:}:&_/ mi_1\k Y -z _/ m(_1\P —y .
p) k=0 p=0 HkHp m! J_w L amke e (LI AN E-1) aype dy

(40)
Integration by parts yields
Jonn) = {4yt TR ) (41)
m n

j(m,n) =l Z me—kbn—p fkp ) (42)

k=0p=0 Pktp

1 [tos E dk 52
bm—k = miw il)m(—].) me dz ) (43)
T

b2k = 4%‘/—/;- , b2k+1 =0, b—(k+1) =1 k= 0, 15 255% (44)

It is necessary to find the reverse relations. We do that in the following way. The set of coefficients
{bx} defines an analytic function B,

o) - e2iX
BTSN dae™ 2 \/7—r_exp( ) . (45)

m=0 4

1
One can see that /7e"% < |B| < \/7ei. It means that B~1 exists, is bounded and can be written
in the form of a Fourier series,

B (X)= i dremX, (46)
=0

dgm = m , d2'm+1 = 0, d—(m+1) = 0, m = O, 1,2 ‘e (47)
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Now, we define another function F,

F(X,Y) = ZZ S rx49v) (48)

k=0 p=0 ,Uzk,U«p

The expression (44) shows that there exists a product

ix,Y) =Y ¥ jkmeitX+2¥) = B(X)B(Y)F(X,Y). (49)
k=0 p=0
The reverse formula F = B~1(X)B~(Y)j(X,Y) defines the reverse transformation j S 3
fkp ; 4 -(m,n)
= Z Z dk_mdp—n] y L) (50)

ll'kﬂp m=0n=

which is also an algebraic convolution. It allows to find the vorticity when the system of moments
is given. We note, that relation (44), Steiner’s formula and transformation (50) allow to express
the i-th vorticity, which was connected with i-th local coordinates, in any o- th coordinate system.
It means, that the total vorticity w = wy + wz + ... can also be expressed in any local coordinate
system.

The 3-D case appears to be more complicated. The reason for that ensues from the following
fact,

Owy Owy  Ow,

V.w=82+8y+8z:0’ (51)

The vorticity vector w satisfies this condition if it is proposed in the form

oo o0 o0

wz:(4ut)2 ( Ez;mz—:ofaﬂ" (x/—> H"“(x/z_u?) "“( Vt>
-

where the set of coefficients

;ﬁ,y is described by optional three-indices arrays A, B, C,

© Ha
faﬂ’y == [2Aaﬁ7 — Bapy — Caﬁ'y] )

Ha+1
PN o ooy SRR} (A - (53)
afy — g+ afy afy apfyl s
¢ p
iy = —— [~ Aapy = Bapy +2Cap] -
Hy+1

It may be seen that a “vector” operator L is defined. It contains the set of coefficients
{f‘fﬁ,y, zﬁw’ fjﬁ,y} and appropriate derivatives. Using it, we write

1 72
~Le™ v . (54)
(4z/t)

w =

Note, that the set of moments {Jaﬁm’n’p), Jém’n’p), ng’n’p)} which fulfills the restriction

Jim—l,n,p) +J§m,n—l,p) +J§m,n,p—1) = (55)
allows to find the arrays A, B, and C.
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5. THE VELOCITY FIELD

The velocity field in 2-D motion can be found in the following way:

T 2
AYp=—-w= —mﬁe v ) (56)
_ By 0V
%= 3y’ T < (57)

Now, we substitute 9 = Lo and observe, that the operators £ and Laplacian A commute. Making
use of this property we obtain

15 ce?i
Aty = —me*"' ;
_ 4ut -_— 1
Yo = 2/ ds, (58)

¥ = Lyo

Determination of 1/)0 leads to the following formulas:

\/ v / e (\/m ) (\/ys )
u = E E e” =5 H H — ] ds,
" 2VAt (= ity “\Vavt) " \ Vi

fx k (rs)2 s Ys (59)
= —F_ [ P~ H ( ) H <—> ds.
\/41/ kz;pz_% Kk tp / i Vvt = Vvt
It is possible to obtain the following estimation,
max (. o} < 2. (60)
Here, the simple estimation was applied, [4],
1l _ (=92 ( T8 )
H = |— 8ut H A 1% 61
Mkl - kT (61)

Moreover, both components of velocity are L class functions. This corollary, however, results from
an additional condition

/ w|t=0 dzdy =/ wdzdy =0. (62)
E2 E2 -

We have
1 o0 o0 (o ¢] (o]
/E u?dzdy = mzz Z Z Jrpfmn /14 \/1+n/ / sFHP M g mn(8, 2) dsdz, (63)
2 k=0 p=0 m=0n=0

_ 2422 2
gkpmn(saz) = = e Hk(z)Hp+1(y)Hm(z)Hn+1(y) dzdy, (64)
2
and next, after using the inequality |Hx| < 1, we get
k+p m+n
k+”zm+”/ ~(+2) dpdy dsde| < const/ / S maee = — dsdz. (65)
E; 84+ z

From the restriction involving the total charge of vorticity we see that foo = 0, which means that
both ¥+ p > 0 and m + n > 0. It also means that the part of series components can be estimated
as

VItpVitk // SRS g, o YOI ha) / 0st+7(8) sin™*"(8) d6 < 1 (66)

2422 k+p+m+n
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which assures the final estimation
ulllol? < const - £2.. (67)
The 3-D velocity field can be found in a similar way. The following equations are fulfilled,
VXv=w; Vw=0. (68)

Substituting v = V x B, V - B, we obtain

— ¥ = _(rs 2
AB =ALBy=-w= —mﬁe e . (69)

This allows to calculate

Ba = 4ut 70
. 2\/:17 447

B = [B;. (71)

The operator L was introduced earlier. It is determined entirely by the set of coefficients

{F26y, Fiprs Fign}

6. THE INTEGRAL TERMS

The moment equations (19) contain terms similar to —— [, g, wuE™n™ dédn. The velocity is bounded
and estimated by &- Besides, the vorticity was earlier written as the product of function f and
an exponential function. We write

1 g
| e dean| < 2@ [ = e, meman) aedn
m!n! |JE,
2 2
DO ) 2 g, e | e (72)
L, L,
In view of
_2 1 [(2m -1
le=F iy, = xhy 22D
and one of “binomial” inequalities [5]
(2m—1)!!=1-3-5-...(2m—1).<( 3/4 )% (13)
2mm]! 2maihd ~“\2m+1
it is possible to ascertain that
5. / wu™n" dfdn‘ < const max|u|(4ut) ”fllLZ (74)
m!n! |/E, - Vminl[(2m + 1)(2n + 1))+

Moreover, it is possible to prove, that %’—’,ﬂ is an Lo-class function. Doing that, we use the inequality

m!
V2tm

which results from the maximum of the estimated function and Stirling’s formula.

e pPm <
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7. NUMERICAL CALCULATIONS

A number of calculations have been done. The results are shown in Figs. 1-4. The figures present
the time evolution of several vortices. An initial condition for each vortex is
I2l 2

w(0,z,y) = Ce~ (55,

The first three examples were calculated for two vortices, for Reynolds numbers equal to 800, 400
and 450, respectively, while the fourth example — for three vortices and for Reynolds number
2 < . .
equal to 1225. In each case Reynolds number was defined as Re = % , where v denotes viscosity
coefficient, w is defined as a maximum of initial vorticity, and d is given as a distance between
vortices in the first three examples (Figs. 1-3). In the fourth case, d is given as a distance between
the “large” vortex and the centre of vorticity of both “small” vortices. It is important to note that
limit Reynolds number Rey, exists for each initial condition. For Reynolds numbers greater than
Rey, the system of equations (19) is not stable.

Each figure presents distribution of vorticity. One color means that vorticity is greater than
known value a; and less than a;;; . Minimum value of vorticity is equal to 0 and maximum is equal
to 1.

Numerical calculations were made in order to solve a set of equations for moments j(™"). The
moments are defined by the formula

i(m,n)

1
J = —— [ w(t,s,2)s™2"dsdz
mlin! Jg,

where s = ﬁ A —\/% . Link between j(™™) and J(mn) ig given by (41). The system of equations

for (™) follows from the system of equations for J(™") and from the relation (41). Integrals (72)
which appear in the system of equations (19) may be calculated implicitly or numerically with the
use of quadratures. In the first case we obtain

1 O o0 o0 o0

m'n! Jg wiuz™y" dedy = Z Z Z Z ankp']*(j{m*]i(k;’p) (75)
n! /g,

a=0 =0 k=0 p=0

Fig. 1. The time evolution of two vortices via moments of vorticity, Re = 800
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Max

Fig. 2. The time evolution of two vortices via moments of vorticity, Re = 400

Fig. 3. The time evolution of two vortices via moments of vorticity, Re = 450
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Fig. 4. The time evolution of three vortices via moments of vorticity, Re = 1225

and the system (19) becomes an ordinary differential bilinear system of equations with a universal
six-indices array R being constant. We note that there exist analytic formulas for elements of R.
In the second case we obtain

1 N N zzzyn
wET oy dkdyE Yy 3 Ay Ay U] gy gy - (76)
E, m.n.

In!
m!in! oo S

The first method is not effective for numerical calculations with computers equipped with small
memory. In such a case the second method is more efficient regarding available computer memory
and time of calculations.

8. PERSPECTIVES AND LIMITATIONS

The considerations presented in this paper are rather fundamental. On that account we will deliver
our opinion on limitations and perspectives of the presented theory. Firstly, as it is easy to notice,
we emphasize that the numerical results were received by application of theoretical formulas. This
method of calculation is not very efficient. It seems to us, that intrinsic improvement will be brought
by a different vorticity recovering procedure. It is evident that two vorticity distributions which
result in the same system of moments are equivalent. It is possible to obtain better formulas for
vorticity field in a point of numerical efficiency. The formulas for velocity field will also be different.
This modification allows to calculate more advanced examples.

The flow problem with boundaries seems to be more complicated for treatment. F irst, the
non-vortex part of velocity field has to be introduced. Next, the boundary integral equation for the
density of boundary vortex layer must be formulated and solved.

The 3-D case, from the theoretical point of view is similar to the 2-D case with the exception that
one additional algebraic constraint is present (the vorticity field is divergence free). The numerical
calculations will be presented when the more efficient vorticity recovery procedure is implemented.
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