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The problem of thermal stresses in a hollow cylinder is considered. The problem is two-dimensional and the
cross-section of the hollow cylinder is approximated as a long and thin rectangle as the ratio of the inner
and outer radiuses is close to one. On the outer boundary of the hollow cylinder the heat source moves
with a constant velocity. In the case of the rectangle the heat source moves on the upper side and the
conditions of equality of temperatures and heat fluxes are assumed on the left and right boundaries. The
stresses are to be found basing on the temperature measured inside the considered region, which means
that an inverse problem is considered. Both for the temperature field and the displacements and stresses
the finite element method is used. Thermal displacement potentials are introduced to find displacements
and stresses. In order to construct the base functions in each element the Trefftz functions are used. For
the temperature field the time-space finite elements are used and for the thermal displacement potentials
the spatial elements are applied. Thanks to the use of the Trefftz functions a low-order approximation has
given a solution very close to the exact one.
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1. INTRODUCTION

In the paper an approximate solution of the inverse problem of thermal stresses is presented. As
the input data the internal temperature responses are used. The aim of this work is to explore the
Trefftz functions [1] in this type of inverse problems.

Unlike other approximate methods the Trefftz method leads to an approximate solution that
satisfies strictly the governing equation and approximately the initial and boundary conditions The
method is flexible regarding the initial and boundary conditions. The conditions may be given
in the discrete or continuous form, and they even may be incomplete. The obtained approximate
solution is continuous with respect to all the variables. Trefftz functions can also be used as shape
functions in FEM – the method is then called FEMT. Using FEMT we can built the time-space
finite elements with base functions depending in continuous way on time and space variables and –
as it is mentioned above – contrary to the classical FEM the obtained solution satisfies the governing
equation. In addition, precision of the approximate solution can be improved not only by increasing
the node number but also by increasing the degree of approximation. An important asset of the
FEMT is the ability to solve inverse problems by using this method.

The concept of functions that satisfy a given differential equation and have to be fitted to
the governing boundary conditions originates from Trefftz [1]. Trefftz functions (T-functions) for
different linear partial differential equations are mainly used to construct an approximate solution
of a given problem (a direct or an inverse one) in a form of linear combination of the functions.
Such a solution satisfies the governing equation; in order to obtain the best fitting to the initial
and boundary conditions a functional describing an inaccuracy of their fulfillment (error functional)
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has to be minimized. In this way coefficients of the linear combination of heat polynomials are
calculated.

A problem of thermal stresses identification based on temperature measured at inner points of a
heated body belongs to the class of inverse problems of thermoelasticity.

T-functions in solving the inverse heat conduction problems have been presented in many papers,
e.g., [2–4, 6–9]. Many examples of using T-function to identify boundary temperature, thermophys-
ical coefficients or heat source density are presented in papers [11–17, 20, 21]. The inverse problems
of elastokinetics and thermoelasticity has been also considered (cf. [10, 22–25] and a review [26]),
but none of them used T-functions to find an approximate solution of the problem.

Because the T-functions fulfill the governing equations they are useful for constructing the base
function in the FEM. In the paper a hollow cylinder with moving heat source along its lateral surface
is considered. In order to find an approximate solution of the problem the Finite Element Method
with T-functions (FEMT) used to construct the base functions is used [3, 17].

2. PROBLEM FORMULATION

Consider a homogeneous isotropic elastic hollow cylinder such that the ratio of its inner and outer
radia is close to 1, i.e., r̄w

r̄z
≈ 1. Assume that on the inner surface of the cylider a heat source

moves in the angular direction with a constant velocity v̄s (see Fig. 1). Additionally, assume that
the heat source has constant density in both angular and radial directions so that the heat flow in
the axial direction may be neglected. Such assumptions allow to consider the problem as a 2D one
in a ring-shaped area (see Fig. 2).

Fig. 1. A hollow circular cylinder

Fig. 2. A circular ring

The assumption r̄w
r̄z
≈ 1 makes it possible to “unroll” the ring and to consider a rectangular

area with height much smaller than length. On both ends of such rectangle the IV kind boundary
conditions have to be satisfied and the heat source is assumed to move along the upper side of the
rectangle periodically with constant velocity (see Fig. 3).

ε−

Fig. 3. The rectangle which models the ring with moving heat sources on its inner side
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The temperature is measured in chosen set of points close to the upper side of the rectangle (on
which the heat source is moving). The lower side of the body is assumed to be thermally insulated.
The problem may be considered now as a 2D one.

As a result of heating a body the thermal stresses arise. The accepted assumptions lead to the
conclusion that the normal stress in the axial direction in the cylinder (in rectangle in the z-axis
direction) σ̄z and the tangential stresses τ̄xz, τ̄yz are zero, which means that the plane stress state
is considered. Moreover, we assume that the boundary of the cylinder (of the rectangle) is free of
stresses.

The problem is formulated and solved in the dimensionless coordinates but all numerical results
are presented dimensionally.

At first the temperature field has to be determined. Then, in the system of displacement equations
that describes the plane stress state the thermal term appears on the right-hand side as a source
term. The problem is described mathematically as follows:

∂2T

∂x2
+

∂2T

∂y2
−

∂T

∂ t
= 0 for (x, y) ∈ Ω, t > 0, (1)

with Ω = {(x, y) : 0 < x < l, 0 < y < b},

(1− ν)
∂2U

∂x2
+

∂2U

∂y2
+ (1 + ν)

∂

∂x

(∂U

∂x
+

∂V

∂y

)

=
∂T

∂x
, (2)

(1− ν)
∂2V

∂x2
+

∂2V

∂y2
+ (1 + ν)

∂

∂y

(∂U

∂x
+

∂V

∂y

)

=
∂T

∂y
for 0 ≤ x ≤ l, 0 ≤ y ≤ b, (3)

T (x, y, 0) = 0, (4)

∂T

∂y
(x, 0, t) = 0, T (0, y, t) = T (l, y, t),

∂T

∂x
(0, y, t) =

∂T

∂x
(l, y, t), (5)

σy(x, 0, t) = 0, τxy(x, 0, t) = 0, σy(x, b, t) = 0, τxy(x, b, t) = 0, (6)

U(0, y, t) = U(l, y, t), V (0, y, t) = V (l, y, t), (7)

σx(0, y, t) = σx(l, y, t), σy(0, y, t) = σy(l, y, t), τxy(0, y, t) = τxy(l, y, t), (8)

T (xp, yp, tp) = Wp, for p = 1, 2, . . . P . (9)

Here, Wp denotes the measured temperature value in (xp, yp, tp), P is the number of points with
measured temperature. The measurements are simulated from the exact solution (11) and disturbed
with a noise with normal distribution not greater than 5% of the exact value. The formula (11)
presents the exact solution of the problem (1), (4), (5), (10) where the condition (10) reads:

∂T

∂y
(x, b, t) =











0 for x− vst ≤ 0,

Q f(x, t) for 0 ≤ x− vst ≤ a,

0 for a ≤ x− vst ≤ l.

(10)

Here, f(x, t) = (2/a)4((x−vst)mod l−a)2
(

(x−vst)mod l
)2
, Q is a dimensionless quantity equal to

the extreme value of density of heat flux (Q > 0), and (x−vst)mod l = (x−vst)/l−Int
(

(x−vst)/l
)

.
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The solution of the problem (1), (4), (5), (10) has the form [18]:

T (x, y, t) =
q0t

bl
+

2

bl

∞
∑

k=1

(−1)kq0 cosαky

α2
k

(1− e−α
2

k
t)

+
2

bl

∞
∑

n=1

qn1 cos γn0
λ2
n

(

cos(λn(x− vst) + γn0)− e−λ
2
nt cos(λnx+ γn0)

)

+
4

bl

∞
∑

n=1

∞
∑

k=1

(−1)kqn1 cos γnk cosαky

λ2
n + a2k

(

cos(λn(x− vst) + γnk)

− e−(λ
2
n+a2

k
) t cos(λnx+ γnk)

)

.

(11)

Here,

cos γnk =
α2
k + λ2

n
√

v2sλ
2
n + (α2

k + λ2
n)

2
, λn =

2π n

l
, αk =

k π

b
, n = 1, 2, 3, . . . , k = 0, 1, 2 . . . ,

q0 =
8Qa

15
, qn1 = −

8Q l3 cosnπ(3a l nπ cos anπ
l

+ (a2n2π2 − 3l2) sin anπ
l
)

a4n5π5
.

The dimensionless quantities are defined as follows:

{x; y; a; b; l} =

{

x̄; ȳ; ā; b̄; l̄
}

d̄
, t =

κ t̄

d̄2
, vs =

v̄s d̄

κ
, T =

T̄ − T̄0

q̄ d̄
λ

, {U ;V } =

{

Ū ; V̄
}

q̄d̄2γ
λ

,

{εx; εy; γxy} =
{ε̄x; ε̄y ; γ̄xy}

q̄d̄γ
λ

, {σx;σy} =
{σ̄x; σ̄y}
q̄d̄γ
λ

2µ
1−ν

, τxy =
τ̄xy

2 q̄d̄γ
λ
µ
,

where (̄ ) denotes a quantity with dimension.

3. TEMPERATURE IDENTIFICATION USING FEMT

In order to find the temperature field in the considered region we use FEMT. To solve the problem
described by Eqs. (1), (4), (5) and (9), the time-space region Ω× < 0, tk > is divided on cuboid
subregions. The area Ω is divided into small rectangles Ωj , j = 1, 2, 3, . . . , J . The time interval
< 0, tk > is divided into subintervals < r∆t, (r + 1)∆t > for r = 0, 1, 2, . . . , R. An approximate
solution of Eq. (1) in each time-space element Ω̄j = Ωj × < t0, t0 +∆t >, t0 = r∆t for fixed r has
the following form:

T̃j(x, y, t) =

N
∑

n=1

Ajnvn(x̂, ŷ, t̂) (12)

where x̂ = x − x0j, ŷ = y − y0j, and t̂ = t − t0j; moreover, (x0j , y0j , t0j) is an arbitrary but fixed
point in Ω̄j, vn(x̂, ŷ, t̂) denotes the T-functions (heat polynomials), and Ajn stands for coefficients
to be found.

To solve the equation (1) a method being a generalization of the one presented in [3] is used.
The equation (1) is solved sequentially in the successive time intervals.

Consider a system of algebraic equations

T̃j(xk, yk, tk) = T̃jk =
N
∑

n=1

Ajnvn(x̂k, ŷk, t̂k), k = 1, 2, . . . N. (13)
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with (xk, yk, tk) standing for coordinates of nodes of the element Ω̄j , j = 1, 2, 3, . . . , J . In the matrix
form it reads

T = vA. (14)

Hence, after inverting the matrix v we obtain

A = v
−1

T = VT, Ajn =

N
∑

k=1

VnkT̃jk, (15)

and finally

T̃j(x, y, t) =

N
∑

n=1

(

N
∑

k=1

VnkT̃jk

)

vn(x̂, ŷ, t̂) =

N
∑

k=1

(

N
∑

n=1

Vnkvn(x̂, ŷ, t̂)

)

T̃jk =

N
∑

k=1

ϕjk(x, y, t) T̃jk. (16)

Here,

ϕjk(x, y, t) =

N
∑

n=1

Vnkvn(x̂, ŷ, t̂) (17)

is a base function for FEMT. The base function fulfills Eq. (1).

Fig. 4. The nodes in the finite time-space element

In Ω̄ = Ω× < t0, t0 + ∆t > a rectangular net with lines parallel to the axes the system of
coordinates is introduced as a result of dividing the sides of the considered rectangle on L1 or L2

parts in OX and OY directions, respectively. In each cuboid element Ω̄j eight nodes are chosen (see
Fig. 4). Hence, in Ω̄ we have 2(L1 + 1)(L2 + 1) nodes. The base functions are linear combination
of the heat polynomials (T-functions), written in local (in an element) system of coordinates as
follows:

1, x̂, ŷ, x̂ ŷ,
ŷ2

2
+ t̂,

x̂ ŷ2

2
+ x̂ t̂,

ŷ3

6
+ ŷ t̂,

x̂ ŷ3

6
+ x̂ ŷ t̂.

Each node has its global number (resulting from numerating all nodes in Ω̄) and a local one
(numeration in an element Ω̄j).

The temperature in each 8-nodal element reads

T̃j(x, y, t) =

lw
∑

k=1

ϕjk(x, y, t) T̃
n for j = 1, 2, . . . , (L1 L2), (18)

where j denotes the element number, lw is the number of nodes in an element, k stands for the node
number in j-th element, n is the node global number (in Ω̄), and T̃ n stands for temperature value
in the n-th node.
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To find the unknown coefficients of the linear combination (18) one minimizes a functional J . The
functional expresses a mean square error of the approximate solution with respect to boundary and
initial conditions as well as the difference between heat fluxes between the neighbouring elements.
The considered initial boundary problem is solved sequentially in the time interval < r∆t, (r +
1)∆t > for r = 0, 1, 2, . . . , R.

The functional J has the following form:

J =
∑

i

∫∫

Di
1

(

T̃li(x, y, t0)− T0r

)2
dx dy +

∑

i

∫∫

D
j
2

(∂T̃li

∂y
(x, 0, t)

)2
dx dt

+
∑

i

∫∫

Di
3

(

T̃li(0, y, t) − T̃ki(l, y, t)
)2

dy dt+
∑

i

∫∫

Dl
3

(∂T̃li

∂y
(0, y, t) −

∂T̃ki

∂y
(l, y, t)

)2
dy dt

+
∑

i

∑

j

∫∫

D
i,j
4

(∂T̃li

∂x
(xj, y, t)−

∂T̃ki

∂x
(xj , y, t)

)2
dy dt

+
∑

i

∑

j

∫∫

D
i,j
5

(∂T̃li

∂y
(x, yj, t)−

∂T̃ki

∂y
(x, yj , t)

)2
dx dt+

∑

p

(

T̃ (xp, yp, tp)−Wp

)2

(19)

with Di standing for a finite element and T0r denoting an initial temperature value in r-th time
interval, r = 0, 1, 2, . . . , R (it is the same as the final value of temperature in the previous time
interval). For r = 0 the initial condition is given by formula (4).

After finding the approximate temperature field in the domain Ω× < 0, tk >, the displacement
equations (2), (3) are considered.

Solving numerically the problem of temperature field we divide the time-space domain onto 400
(L1 = 40, L2 = 10) and 800 (L1 = 80, L2 = 10) 8-nodal cuboid finite elements with nodes in
the vertices. With 400 elements we have 902 nodes in the time-space domain; with 800 elements
the number of nodes is equal to 1782. The points with simulated measurement of temperature are
placed in the nodes on two levels in the distance, respectively, 0.003 m and 0.006 m from the surface
with the moving heat source. The number of the measuring points depends on the number of finite
elements. For 400 elements the number of measuring points is 82; for 800 elements it is equal 162.

Calculations have been made for six first time intervals. The time step is constant and equals
∆t = 0.378 s. The simulated measurements generated from the exact solution are encumbered with
noise with normal distribution, not exceeding 5% of the exact value of temperature. The approximate
and exact solutions are compared at moments at the end of time intervals. The relative error is
calculated according to the formula

rel. error =

√

√

√

√

√

∑L
k=1

(

T̃ (xk, yk, tk)− T (xk, yk, tk)
)2

∑L
k=1 (T (xk, yk, tk))

2
. (20)

Here, T̃ (x, y, t) is the approximate temperature, T (x, y, t) denotes its exact value, L stands for
the number of nodes, (xk, yk, tk) are time-space coordinates of the nodes. The following data have
been accepted for numerical calculations: v̄s = 0.02 m/s, T̄0 = 293 K, λ = 45 W/mK, l̄ = 0.3 m,
b̄ = 0.03 m, ā = 0.09 m, κ = 0.119 · 10−4 m2/s, Q = 13 · 104. The results concerning temperature
field after six time steps are presented in Fig. 5. The inaccuracy of the approximate solution is very
small. In both cases the greatest value of temperature is 308.3 K. The relative error of temperature
in the final moment of time interval is shown in Table 1.
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Fig. 5. Approximate (a) and exact (b) temperature field for t̄ = 2.27 s (for the approximation the domain
was divided onto 800 elements)

Table 1. Relative error of temperature in the final moment of time interval

Relative error [%], Eq. (20)

Time, t̄ [s] 400 elements 800 elements

L = 902 L = 1782

0.378 10.9 10.8

0.756 8.2 8.4

1.134 5.5 5.7

1.512 3.3 3.9

1.89 4.0 3.2

2.268 4.0 3.5

4. THERMAL STRESSES

In order to determine thermal stresses the Lamé method is applied. The displacement system of
equations (2), (3) is separated by using the thermal displacement potential functions [19]. In this
approach the displacement vector is split into two parts as follows:

[U, V, 0] = gradΦ + rotΨ. (21)

Here, Φ = Φ(x, y) and Ψ = [0, 0,Ψ] are the thermal displacement potential functions. Hence,

U =
∂Φ

∂x
+

∂Ψ

∂y
, V =

∂Φ

∂y
−

∂Ψ

∂x
. (22)

As a result for fixed t = τ two Poisson equations are obtained:

∇2Φ(x, y) = h1(x, y, τ) + T (x, y, τ), (23)

∇2Ψ(x, y) = h2(x, y, τ), (24)

with T (x, y, t) standing for temperature. The functions h1(x, y, t), h2(x, y, t) have the following form:

h1(x, y, t) =
1

l
h10(y) +

2

l

∞
∑

n=1

(

h11n(y) cos λn(x− vt) + h12n(y) sin λn(x− vt)
)

, (25)
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h2(x, y, t) =
1

l
h20(y) +

2

l

∞
∑

n=1

(

h21n(y) cos λn(x− vt) + h22n(y) sin λn(x− vt)
)

, (26)

where

h1n1 = A1n1e
λny +B1n1e

−λny, h1n2 = A1n2e
λny +B1n2e

−λny,

h2n1 =
2

v − 1
A1n2e

λny −
2

v − 1
B1n2e

−λny, h2n2 = −
2

v − 1
A1n1e

λny +
2

v − 1
B1n1e

−λny,

h01 = A01, h02 = A02, A01 = 0, A02 = 0,

A1n1 =
1− ebλn

−1 + e2bλn + 2bebλnλn

2(−1 + ν)α1n0

(1 + ν)

−

∞
∑

k=1

(

(−1)kebλn(−1 + e2bλn + 2bλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

+
1− e2bλn − 2be2bλnλn

(1− e2bλn)2 − 4b2e2bλnλ2
n

)

2(−1 + ν)λ2
nα1nk

(1 + ν)(λ2
n + a2k)

,

A1n2 =
1− ebλn

−1 + e2bλn + 2bebλnλn

2(−1 + ν)α2n0

(1 + ν)

−
∞
∑

k=1

(

(−1)kebλn(−1 + e2bλn + 2bλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

+
1− e2bλn − 2be2bλnλn

(1− e2bλn)2 − 4b2e2bλnλ2
n

)

2(−1 + ν)λ2
nα2nk

(1 + ν)(λ2
n + a2k)

,

B1n1 =
ebλn(1− ebλn)

−1 + e2bλn + 2bebλnλn

2(−1 + ν)α1n0

(1 + ν)

+

∞
∑

k=1

(

(−1)kebλn(1− e2bλn − 2be2bλnλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

+
e2bλn(−1 + e2bλn + 2bλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

)

2(−1 + ν)λ2
nα1nk

(1 + ν)(λ2
n + a2k)

,

B1n2 =
ebλn(1− ebλn)

−1 + e2bλn + 2bebλnλn

2(−1 + ν)α2n0

(1 + ν)

+
∞
∑

k=1

(

(−1)kebλn(1− e2bλn − 2be2bλnλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

+
e2bλn(−1 + e2bλn + 2bλn)

(1− e2bλn)2 − 4b2e2bλnλ2
n

)

2(−1 + ν)λ2
nα2nk

(1 + ν)(λ2
n + a2k)

.

After finding the thermal displacement potential functions, Φ and Ψ, the displacements U , V are
determined from the geometric relations:

εx =
∂U

∂x
, εy =

∂V

∂y
, γxy =

1

2

(

∂U

∂y
+

∂V

∂x

)

. (27)

Next, thermal stresses may be found from the Duhamel–Neumann relations:

σx = (1− ν)εx + ν(εx + εy)− T, σy = (1− ν)εy + ν(εx + εy)− T, τxy = γxy. (28)

5. APPROXIMATED DISTRIBUTION OF THERMAL STRESSES

5.1. Base functions for nonhomogeneous equations

Equations (23) and (24) (with conditions resulting from conditions (6) to (8) after using substi-
tution (22)) stand for a quasi-static problem. The time τ plays here a role of a parameter. The
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problem will be solved by using FEMT. The base functions are defined as a linear combination of
T-functions. Functions Φ(x, y) and Ψ(x, y) are to be found whereas functions h1(x, y, τ), h2(x, y, τ)
are given by (25) and (26). In the equation (23) the function T (x, y, τ) describes an approximate
temperature in the domain Ω for t = τ which is obtained from measured temperature values in
some inner points of the time-space region Ω× < 0, τ > (in Sec. 3 the approximate temperature is
denoted T̃j(x, y, t)).

The equations (23) and (24) are nonhomogeneous. The solution of each equation is a sum of a
general solution of the homogeneous equation and a particular solution of the nonhomogeneous one.

The domain Ω is divided into rectangular elements Ωj for j = 1, 2, 3, . . . J . In each element Ωj

approximate solutions of the equations (23) and (24) read

Φ̃j(x, y) =

N
∑

n=1

Ajnvn(x̂, ŷ) + Φ̃sz
j (x, y), (29)

Ψ̃j(x, y) =

N
∑

n=1

Bjnvn(x̂, ŷ) + Ψ̃sz
j (x, y), (30)

where x̂ = x − x0j , ŷ = y − y0j , and (x0j , y0j) is an arbitrary but fixed point belonging to Ωj ;
vn(x̂, ŷ) stands for harmonic polynomial (T-function for harmonic equation); Ajn, Bjn are unknown

coefficients to be found; Φ̃sz
j (x, y) and Ψ̃sz

j (x, y) stand for particular solutions. The way of finding

Φ̃sz
j (x, y) and Ψ̃sz

j (x, y) will be presented in Sec. 5.3.

In Ωj the nodes with coordinates (xk, yk) are chosen. Assuming that values Φ̃jn and Ψ̃jn are
known in the nodes we solve the system of algebraic equations (k = 1, 2, . . . N):

Φ̃jk − Φ̃sz
jk =

N
∑

n=1

Ajnvn(x̂k, ŷk), (31)

Ψjk − Ψ̃sz
jk =

N
∑

n=1

Bjnvn(x̂k, ŷk), (32)

to find Ajn and Bjn. Here, Φ̃sz
jk = Φ̃sz

j (xk, yk), Ψ̃
sz
jk = Ψ̃sz

j (xk, yk). In the matrix form they read

vA = Φ̃− Φ̃
sz
, (33)

vB = Ψ̃− Ψ̃
sz
, (34)

With V = v
−1 we obtain

A = v
−1

(

Φ̃− Φ̃
sz)

= V
(

Φ̃− Φ̃
sz)

, Ajn =
N
∑

k=1

Vnk

(

Φ̃jk − Φ̃sz
jk

)

, (35)

B = v
−1

(

Ψ̃− Ψ̃
sz)

= V
(

Ψ̃− Ψ̃
sz)

Bjn =

N
∑

k=1

Vnk

(

Ψ̃jk − Ψ̃sz
jk

)

. (36)

Substituting (35) to (29) we arrive to the following form of the function Φ̃j in j-th element:

Φ̃j(x, y) =

N
∑

n=1

(

N
∑

k=1

Vnk(Φ̃jk − Φ̃sz
jk)

)

vn(x̂, ŷ) + Φ̃sz
j (x, y)

=
N
∑

k=1

(

N
∑

n=1

Vnkvn(x̂, ŷ)

)

(Φ̃jk − Φ̃sz
jk) + Φ̃sz

j (x, y)

=

N
∑

k=1

ϕjk(x, y) (Φ̃jk − Φ̃sz
jk) + Φ̃sz

j (x, y),

(37)
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with ϕjk (the base functions) defined as follows:

ϕjk(x, y) =

N
∑

n=1

Vnkvn(x̂, ŷ). (38)

Similarly, substituting (36) to (30) we obtain Ψ̃j:

Ψ̃j(x, y) =

N
∑

k=1

ϕjk(x, y) (Ψ̃jk − Ψ̃sz
jk) + Ψ̃sz

j (x, y). (39)

5.2. The problem of thermal stresses

To solve approximately the Poisson equations (23) and (24) in Ω a rectangular mesh is introduced.
The lines of the mesh are parallel to the axes of the system of coordinates. The sides of the considered
rectangle are divided into L1 parts (the one parallel to OX) and L2 parts (the one parallel to OY ).
In each rectangular element Ωj a set of eight nodes is chosen (see Fig. 6).

Fig. 6. Eight nodes chosen in an element

Hence, in the domain Ω we have (L1 + 1)(3L2 + 1) nodes. The base functions, ϕjk, are then a
linear combination of the following harmonic polynomials:

vh1 (x̂, ŷ) = 1, v2(x̂, ŷ) = x̂, v3(x̂, ŷ) = ŷ, v4(x̂, ŷ) = x̂ ŷ,

v5(x̂, ŷ) =
x̂2

2
−

ŷ2

2
, v6(x̂, ŷ) =

x̂3

6
−

x̂ ŷ2

2
, v7(x̂, ŷ) =

x̂2ŷ

2
−

ŷ3

6
, v8(x̂, ŷ) =

x̂3ŷ

6
−

x̂ŷ3

6
.

To find Φ̃jk, Ψ̃jk (unknown values of functions Φ̃j, Ψ̃j in k-th node of the j-th element) it is
more convenient to use global node numeration. The relations (37) and (39) take then for j =
1, 2, . . . (L1 L2), k = 1, 2, . . . , 8, and n = 1, 2, . . . , (L1 + 1)(3L2 + 1) the following form:

Φ̃j(x, y) =
8

∑

k=1

ϕjk(x, y) (Φ̃
n − Φ̃n

sz) + Φ̃sz
j (x, y), (40)

Ψ̃j(x, y) =

8
∑

k=1

ϕjk(x, y) (Ψ̃
n − Ψ̃n

sz) + Ψ̃sz
j (x, y). (41)

Subscripts j, k and n in (40) and (41) denote the element number, the node number in the j-th
element and the node number in Ω, respectively. Moreover, Φ̃n and Ψ̃n denote the function Φ̃ and
Ψ̃ values in the n-th node, respectively, Φ̃sz

j (x, y) and Ψ̃sz
j (x, y) stand for the particular solutions
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of the equations (23) and (24) in the j-th element, respectively, and Φ̃n
sz and Ψ̃n

sz describe values of
the particular solutions in the n-th node.

The searched values Φ̃n, Ψ̃n, i.e., Φ̃, Ψ̃, approximating values in the n-th node, are found as a
result of solving a system of algebraic equations being a result of minimizing the following functional:

J = WPΦ +WPPΦ +WPΨ +WPPΨ +WB0 σy +WB0 τxy +WBbσy
+WBb τxy

+WZΦX +WZPΦX +WZΦY +WZPΦY +WZΨX +WZPΨX +WZΨY +WZPΨY .
(42)

The components of the functional describe inaccuracy of the solution with respect to values of
thermal potential functions and their derivatives on both sides of the element borders and inaccuracy
of fulfilling the boundary conditions. The component WPΦ is expressed as follows:

WPΦ =

L2
∑

n=1

n
L2

b
∫

n−1

L2
b

(

Φ̃(n−1)L1+1(0, y) − Φ̃nL1
(l, y

)2
dy. (43)

The rest of components have a similar form.
In the numerical example the Poisson equations have been solved with the use of 400 (L1 = 40,

L2 = 10) and 800 (L1 = 80, L2 = 10) rectangular 8-nodal elements. In the case of 400 elements we
have 1271 nodes in Ω, for 800 elements the number of nodes enlarges to 2511.

For an approximate solution a relative error was calculated:

rel. error =

√

√

√

√

√

∑L
k=1

(

f̃(xk, yk)− f(xk, yk)
)2

∑L
k=1

(

f(xk, yk)
)2 . (44)

Here, f̃(x, y) stands for the approximate solution, f(x, y) is the exact solution, L denotes the number
of nodes, and (xk, yk) describes the coordinates of the k-th node.

5.3. Particular solution of a Poisson equation

The problem formulated in the form of equations (23) and (24) is a quasi-static one. Time t is here
a parameter. Approximate particular solutions of the equations are then searched for fixed t = τ in
the domain Ω.

The way of finding an approximate solution of a nonhomogeneous equation in the time-space
domain is presented in the paper [5]. The approximate form of the particular solutions is described
as a linear combination of the biharmonic functions:

Φ̃sz
j (x, y) =

N
∑

n=1

Ajnvn(x̂, ŷ), (45)

Ψ̃sz
j (x, y) =

N
∑

n=1

Bjnvn(x̂, ŷ). (46)

Here, x̂ = x − x0j and ŷ = y − y0j , (x0j , y0j) is an arbitrary but fixed point in Ωj, vn(x̂, ŷ) denote
the n-th biharmonic functions [3, 5], Ajn and Bjn stand for the unknown coefficients.

In the elements Ωj the number of nodes is equal to the number of T-functions used. The base
functions ϕjk are constructed in the same way as in Sec. 3. The approximate particular solutions
are then expressed as linear combinations of the base functions:

Φ̃sz
j (x, y) =

N
∑

k=1

ϕjk(x, y) Φ̃
n
sz, (47)



262 K. Grysa, A. Maciąg, B. Maciejewska

Ψ̃sz
j (x, y) =

N
∑

k=1

ϕjk(x, y) Ψ̃
n
sz. (48)

Subscripts j, k and n in Eqs. (47) and (48) denote the element number, the node number in the
j-th element and the node number in Ω, respectively. Moreover, Φ̃n

sz and Ψ̃n
sz describe the unknown

values of the particular solutions in the n-th node.
In order to find the unknowns, the following two functionals are minimized:

JΦ = WΦ +WZΦX +WZPΦX +WZΦY +WZPΦY , (49)

JΨ = ZΨ +WZΨX +WZPΨX +WZΨY +WZPΨY . (50)

Components of the functionals have similar meaning to those used in building the functional J in
the formula (42). They are expressed as follows:

WΦ =

L2
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

n
L2

b
∫

n−1

L2
b

(

∂2Φsz
m+(n−1)L1

∂ x2
+

∂2Φsz
m+(n−1)L1

∂ y2
−

(

h1(x, y) + T (x, y, τ)
)

)2

dy dx,

WZΦX =

L2
∑

n=1

L1−1
∑

m=1

n
L2

b
∫

n−1

L2
b

(

Φsz
m+(n−1)L1

(m

L1
l, y

)

− Φsz
m+1+(n−1)L1

(m

L1
l, y

)

)2

dy,

WZΦY =

L2−1
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

(

Φsz
m+(n−1)L1

(

x,
n

L2
b
)

− Φsz
m+nL1

(

x,
n

L2
b
)

)2

dx,

WZPΦY =

L2−1
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

(

∂Φsz
m+(n−1)L1

∂y

(

x,
n

L2
b
)

−
∂Φsz

m+nL1

∂y

(

x,
n

L2
b
)

)2

dx,

WΨ =

L2
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

n
L2

b
∫

n−1

L2
b

(

∂2Ψsz
m+(n−1)L1

∂ x2
+

∂2Ψsz
m+(n−1)L1

∂ y2
− h2(x, y)

)2

dy dx,

WZΨX =

L2
∑

n=1

L1−1
∑

m=1

n
L2

b
∫

n−1

L2
b

(

Ψsz
m+(n−1)L1

(m

L1
l, y

)

−Ψsz
m+1+(n−1)L1

(m

L1
l, y

)

)2

dy,

WZPΨX =

L2
∑

n=1

L1−1
∑

m=1

n
L2

b
∫

n−1

L2
b

(

∂Ψsz
m+(n−1)L1

∂x

(m

L1
l, y

)

−
∂Ψsz

m+1+(n−1)L1

∂x

(m

L1
l, y

)

)

dy,

WZΨY =

L2−1
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

(

Ψsz
m+(n−1)L1

(

x,
n

L2
b
)

−Ψsz
m+nL1

(

x,
n

L2
b
)

)2

dx,
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WZPΨY =

L2−1
∑

n=1

L1
∑

m=1

m
L1

l
∫

m−1

L1
l

(

∂Ψsz
m+(n−1)L1

∂y

(

x,
n

L2
b
)

−
∂Ψsz

m+nL1

∂y

(

x,
n

L2
b
)

)2

dx.

The unknown coefficients Φn
sz and Ψn

sz are the solutions of two systems of algebraic equations
being a result of minimizing the functionals JΦ and JΨ. The approximate particular solutions are
then used in Sec. 5.1 to find the approximate solutions of equations (23) and (24).

In the considered problem the domain Ω has again been divided into 400 (L1 = 40, L2 = 10)
and 800 (L1 = 80, L2 = 10) rectangular 8-nodal elements. The base functions are built as a linear
combination of the following eight biharmonic functions:

v1(x̂, ŷ) = 1, v2(x̂, ŷ) = x̂, v3(x̂, ŷ) = ŷ, v4(x̂, ŷ) = x̂ ŷ,

v5(x̂, ŷ) =
x̂2 + ŷ2

4
, v6(x̂, ŷ) =

x̂3

12
+

x̂ ŷ2

4
, v7(x̂, ŷ) =

x̂2ŷ

4
+

ŷ3

12
, v8(x̂, ŷ) =

x̂ ŷ3

12
+

x̂3ŷ

12
.

6. NUMERICAL EXAMPLE

In the numerical example the following data are used: v̄s = 0.02 m

s
, τ = 2.27 s, T̄0 = 293 K,

l̄ = 0.3 m, b̄ = 0.03 m, ā = 0.09 m, κ = 0.119 · 10−4 m2

s
, λ = 45 W

mK
, Q = 13 · 104, ν = 0.3,

µ = 81 · 106 kN

m2 , αt = 12 · 10−6 1
K
. Graphs presented in Figs. 7(a), 8(a) and 9(a) are generated for

the case of 800 elements (L1 = 80, L2 = 10). The exact values of stresses are shown in Figs. 7(b),
8(b) and 9(b).

When comparing Figs. 7(a) and 7(b), one can notice a good consistence of both graphs (see also
Table 2). The approximate values of stresses σx (parallel to the longer side of the rectangle) change
in the range from minus 20000 kN

m2 to plus 4000 kN

m2 . The greatest absolute value of the stress is
situated just under the acting heat source and represents compressive stress.

In the case of stresses σy, perpendicular to the longer side of the rectangle, the results of the
approximate solution are much worse than those obtained for σx (see Table 2). In the case of 800

Table 2. Relative error values for the stresses σx, σy, and τxy

Relative error [%], Eq. (44)

Stresses 400 elements 800 elements

L = 1271 L = 2511

σx 4.53 3.95

σy 40 26

τxy 35.3 12.1

(a) (b)

σx

0

y

0.03

-20000

4000

x

0.3

σx

0

0.1

0.2

0

0.01

0.02

0.03

-20000

4000

0

0.1

Fig. 7. Approximate (a) and exact (b) distribution of the normal stresses σx [ kN

m2 ]
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(a) (b)

σy

0

0.1

0.2x

0

0.01

0.02

0.03

y

-200

0

200

400

0

0.1

0.3

x

σy

0

0.3

x
0

0.03

y

-200

0

200

400

0

Fig. 8. Approximate (a) and exact (b) distribution of the normal stresses σy [ kN

m2 ]

(a) (b)

τxy

0

0.1

0.2

0.3

x

0

0.01

0.02

0.03

y
-900

0

1000

0

0.1

0.2

0.3

x

τxy

0

0.3

x

0

0.03

y

-900

0

1000

0

0.3

Fig. 9. Approximate (a) and exact (b) distribution of the tangential stresses τxy [ kN

m2 ]

elements the relative error is equal to 26%. It is probably a result of the considered mesh (80
elements in the directions OX and only 10 elements in the direction OY ). However, the character
and extreme values of the stresses are almost the same on both graphs presented in Fig. 8. A big
relative error is probably caused by the “waving” of the obtained approximate solution. Because the
values of these stresses are small comparing to σx, the results seems to be acceptable.

In the case of tangential stresses one can notice an acceptable consistence of both graphs (see
also Table 2). The character and extreme values of the stresses are almost the same on both graphs,
which is well presented on the contour graphs.

7. FINAL REMARKS

Because of the limitations of hardware used for calculation the considered region was divided into
the simplest 8-nodal cuboid or rectangular elements with nodes at the corners. The base functions
then consist of eight components and therefore we have a low degree approximation which is better
for numerical conditioning of the problem. However, it is possible to introduce a different set of
nodes and different shapes of the finite elements.

The presented example shows that the T-functions for heat conduction and for harmonic equa-
tions are suitable to construct the time-space (or spatial) shape functions in the FEMT in order
to identify the temperature and thermal stresses in the considered domain based on the values of
temperature measured inside the body when it is heated by a moving heat source. The presented
analysis concerns a rectangular body but it is obvious that such approach can be applied to bodies
of more complicated shape.
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We conducted many numerical experiments with different numbers of finite elements in the time-
space (and spatial) region, up to 800. The obtained approximate solution seems to be acceptable or
at least promising. However, for the heat source moving along the boundary with velocity greater
than the one considered in the paper it is absolutely necessary to introduce greater number of the
time-space (and spatial, respectively) elements. Similarly, the smaller size of the moving heat source
is (independently of its velocity) the denser division of the region ought to be applied to obtain a
satisfactory solution.
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