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In this paper, a comparison between the improved element-free Galerkin (IEFG) method, based on the
improved moving least square (IMLS) approximation, and the element-free Galerkin (EFG) method, based
on the moving least square (MLS) approximation, is presented. The IMLS approximation is obtained
when an orthogonal basis function with a weight function is used. The IMLS approximation has a greater
computational efficiency than the existing MLS approximation and does not lead to an ill-conditioned
system of equations. The comparison is made for two-dimensional (2D) potential problems and 2D elastic
problems. From these problems, the efficiency of the IEFG method is validated by comparing the results
obtained with the IEFG method and EFG method with those obtained analytically.
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1. INTRODUCTION

Accurate and efficient numerical simulation is usually sought to study engineering problems. These
problems are always solved by traditional computational methods. Unfortunately, these methods
cannot be effectively applied in some complex problems such as large deformation especially when
damaged domains exist, dynamic fracturing or explosion problems. In fact for these problems the
presence of distorted meshes does not enable obtaining correct solution. To deal with this problem,
meshing and remeshing techniques are used, but these techniques are very time consuming. So,
in some of these cases, because the problem is related to the mesh itself, meshless methods have
shown good efficiency [1–5].
In recent years, meshless techniques have attracted the attention of researchers; the main objec-

tive of mesh free methods, when compared with the traditional finite element method, is to reduce
the difficulty of meshing and remeshing the whole structure by simply adding nodes. The differ-
ences between meshless and conventional methods are in how the studied domain is discretized and
how the shape functions are formulated. When these two steps are accomplished, the final discrete
equations are obtained in the same way. There is a variety of mesh free methods, and the smoothed-
particle hydrodynamics method is the first meshless method and it was proposed by Monaghan [6]
and Lucy [7] in 1977. Since that time, many meshless methods had been developed such as the dif-
fuse element method (DEM) proposed by Nayrols [8] and the element-free Galerkin (EFG) method
proposed by Belytschko et al. [9]. Duarte and Oden developed the h-p clouds [10], and Atluri pro-
posed the meshless local Petrov-Galerkin (MLPG) method [11]. The difference between all of these
methods depends on the approximation techniques.
The EFG method, one of the most well-known and applied methods, is based on the MLS

approximation. This method has shown efficiency and good accuracy but it is agreed that it is time
consuming [12]. This large CPU time is mainly caused by the inversion of the so-called moment
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matrix, when the problem is solved. In addition, the use of the EFG method leads sometimes to
an ill-conditioned system of equations and an accurate solution becomes difficult to obtain [13]. To
avoid these difficulties, the IEFG method, based on the IMLS approximation, is presented in [14].
In the IMLS, the orthogonal function system with a weight function is used as the basis function
[15]. These weighted basis functions lead to a diagonal moment matrix which it inverse is directly
calculated. This advantage gives a greater computational speed and efficiency [16].
In this paper, a comparison between the IEFG method and EFG method is presented. To

achieve this comparison, the MLS and IMLS approximations are first presented, and then the
IEFG method is discussed for potential and elastic problems. Finally, numerical 2D potential and
elastic problems are presented to demonstrate the efficiency of the IEFG method in comparison
with the EFG method.

2. MLS APPROXIMATION

2.1. MLS interpolants functions

In the EFG method, the MLS approximation is used to construct the shape functions. For a field
variable u(x) defined in the domain Ω, the approximation of u(x) denoted uh(x) is

uh(x) = m∑
i=1

pi(x)ai(x) = pT (x)a(x), (1)

where p(x) is a vector of monomial basis functions, m is the number of terms in the basis and a(x)
is a vector of coefficients of the basis functions. In general, the basis functions are as follows:

● Linear basis
pT (x) = (1, x1) in 1D,
pT (x) = (1, x1, x2) in 2D.

● Quadratic basis
pT (x) = (1, x1, x21) in 1D,
pT (x) = (1, x1, x2, x21, x1x2, x22) in 2D.

The vector of coefficient a(x) is defined by
aT (x) = (a1(x), a2(x), . . ., am(x)).
The local approximation of the function u(x) as given by Lancaster and Salkauskas [17] is
uh(x,x) = m∑

i=1

pi(x)ai(x) = pT (x)a(x). (2)

In the case of the MLS approximation x can be chosen arbitrary and thus it can be the node po-
sition xI . To obtain the local approximation of u(x), the difference between the local approximation
uh(x,xI) and u(xI) must be minimized by a weighted least square method.
Define a function

J(a,x) = n∑
I

w(x − xI) [uh(x,xI) − u(xI)]2 = n∑
I

w(x − xI)[m∑
i=1

pi(xI)ai(x) − u(xI)]
2

, (3)
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where w(x − xI) is the weight function with a domain of influence, and xI , I = 1,2, . . . , n are the
nodes in the domain of influence that covers x.
Equation (3) can be written as

J(a,x) = (pa(x) − u)T W (x) (pa(x) − u) , (4)

where

uT = (u1, u2, . . . , un) and ui = u(xi), (5)

p =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(x1) p2(x1)
p1(x2) p2(x2) ⋯ pm(x1)

pm(x2)
⋮ ⋱ ⋮

p1(xn) p2(xn) ⋯ pm(xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

W (x) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w (x−x1) 0

0 w (x−x2) ⋯ 0

0

⋮ ⋱ ⋮
0 0 ⋯ w (x−xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The minimization condition requires

∂J(a,x)
∂a

= 0, (8)

which gives the equation system

A(x)a(x) = B(x)u. (9)

Knowing that matrices A(x) and B(x) are given by the following rules:
A(x) = pTW (x)p, (10)

B(x) = pTW (x) (11)

and u is the vector of nodal values, using Eq. (9) we can write

a(x) = A−1B(x)u. (12)

The expression of uh(x) is given by
uh(x) = Φ(x)u = n∑

I

ΦI(x)uI , (13)

where Φ(x) is the vector of the MLS shape functions defined by
Φ(x) = pT (x)A−1(x)B(x). (14)

2.2. The orthogonal basis functions

In the IMLS approximation, to avoid the problem that the equation system (9) is sometimes ill-
conditioned, the basis functions are chosen to be weighted orthogonal.
In the Hilbert space span (p), for the set of point {xi} and the weight functions wi, if the

functions p1(x), p2(x), . . . , pm(x) satisfy the condition (15) below, then the function set is called
a weighted orthogonal function set with a weight function {wi} about point {xi} In the case where



90 I. Debbabi, Z. Sendi, H. BelHadjSalah

p1(x), p2(x), . . . , pm(x) are polynomials the function set p1(x), p2(x), . . . , pm(x) is called a weighted
orthogonal polynomial set with the weight function {wi} about point {xi}.
(pk, pj) = n∑

i=1

wipk(xi)pj(xi) = { 0, k ≠ j
Ak, k = j (k, j = 1,2, . . . ,m) . (15)

Using Eq. (15), Eq. (9) can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, p1) (p1, p2)(p2, p1) (p2, p2) ⋯ (p1, pm)(p2, pm)
⋮ ⋱ ⋮

(pm, p1) (pm, p2) ⋯ (pm, pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(x)
a2(x)
⋮

am(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, u)(p2, u)
⋮

(pm, u)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

If the basis function set is a weighted orthogonal function set, then Eq. (16) has this expression

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, p1) 0

0 (p2, p2) ⋯ 0

0

⋮ ⋱ ⋮
0 0 ⋯ (pm, pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(x)
a2(x)
⋮

am(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p1, u)(p2, u)
⋮

(pm, u)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (17)

ai(x) are then directly obtained from (17):
ai(x) = (pi, u)(pi, pi) , (i = 1,2, . . . ,m). (18)

Then

a(x) = A(x)B(x)u, (19)

where

A(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(p1, p1) 0

0
1

(p2, p2)
⋯

0

0

⋮ ⋱ ⋮
0 0 ⋯ 1

(pm, pm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

A(x), denoted A−1 in the MLS approximation, is a diagonal matrix that cannot lead to an ill-
conditioned system equations. Coefficients a(x) are also directly and simply obtained. The approx-
imation uh(x) has then the following expression:

uh(x) = φ(x)u = n∑
I=1

φI(x)uI , (21)

Φ(x) = pT (x)A(x)B(x). (22)

The Schmidt method can be used to form a weighted orthogonal basis from an arbitrary basis
function p, if the monomial basis function p, for example, is

p = (pi) = (1, x1, x2, x21, x1x2, x22) . (23)

The weighted orthogonal basis function can be defined by

pi = pi −
i−1∑
k=1

(pi, pk)(pk, pk)pk, i = 1,2,3, . . . . (24)

The first derivative of pi denoted pi,x is given by

pi,x = pi,x −
i−1∑
k=1

[(pi, pk),x (pk, pk) − (pi, pk) (pk, pk),x(pk, pk)2 pk + (pi, pk)(pk, pk)pk,x]. (25)
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2.3. Weight function

The weight function is non-zero only over a small neighborhood of a node xI . This neighborhood
is called the domain of influence of node I. The common weight functions used in the literature
are cubic spline function, fourth-order spline function and the exponential weight function. In this
paper, we choose to use the fourth-order spline function given by

w(s) = ⎧⎪⎪⎨⎪⎪⎩
1 − 6s2 + 8s3 − 3s4, ∣s∣ ≤ 1,
0 ∣s∣ ≥ 1, (26)

where s = ∥x − xI∥
d

and ∥x − xI∥ is the distance from a sampling point x to a node xI , and d is the
size of the domain of influence of the I-th node.
In the case of a circular domain d = acdi, where di is the average distance between nodes and ac

is a scaling parameter chosen large enough so that the stiffness matrix can be regular.

3. IEFG METHOD FOR POTENTIAL AND ELASTIC PROBLEMS

3.1. IEFG method for potential problems

In this section, we present the IEFG method for a 2D Poisson equation

∇2u+f(x) = 0, x ∈ Ω, (27)

u(x) = u(x), x ∈ Γu, (28)

∂u(x)
∂n

= q(x), x ∈ Γq, (29)

where Ω is a 2D domain bounded by contour Γ = Γu∪Γq, u(x) is an unknown function, f(x)
is a known function u(x) is a Dirichlet boundary condition and q(x) is a Neumann boundary
condition.
The Galerkin weak form of Eqs. (27)–(29) is

∫
Ω

(∇v∗)T (∇u)dΩ − ∫
Ω

v∗.fdΩ − ∫
Γq

v∗.qdΓq = 0, (30)

in which v∗ is the test function.
From the approximation function (21), Eq. (30) can be written as follows:

[K] .{u}={F} , (31)

where

KIJ = ∫
Ω

φI,x1
φJ,x1

+ φI,x2
φJ,x2

dΩ, (32)

FI = ∫
Ω

φ
T

I fdΩ + ∫
Γq

φ
T

I qdΓq. (33)

In a steady-state heat transfer problem, which is a typical Poisson problem, u is the temperature
field, q is the heat flux function and f is the internal heat generation.
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3.2. Enforcement of essential boundary conditions

The lack of Kronecker delta property in the IEFG and EFG shape functions makes imposing the
essential boundary condition difficult. For this reason, the essential boundary conditions cannot
be imposed directly. Different methods are used to consider boundary conditions like Lagrange
multipliers, coupling with the finite element and the penalty method. The advantages of the penalty
approach are such that the size of the system of equations is constant and the modified stiffness
matrix is still positively defined [18]. For these reasons, we use in this paper the penalty method
to enforce the boundary conditions.
The new Galerkin weak form using the penalty method to introduce essential boundary condi-

tions becomes

∫
Ω

(∇v∗)T (∇u)dΩ − ∫
Ω

v∗.fdΩ − ∫
Γq

v∗.qdΓq + α
2
∫
Γu

(v∗ − v∗)T (u − u)dΓu = 0, (34)

where α is the penalty factor chosen between 104−13*max (diagonal element of the stiffness ma-
trix) [19].
Using Eq. (21), the final system matrix can be written as

([K] + [Kα]){u} = {F} + {Fα} , (35)

where

KIJ = ∫
Ω

(φI,x1
φJ,x1

+ φI,x2
φJ,x2

)dΩ, (36)

FI = ∫
Ω
φIfdΩ+∫

Γq

φiqdΓ, (37)

Kα
IJ = α∫

Γu

φIφJdΓu, (38)

Fα
I = α∫

Γu

φIudΓ. (39)

In the IEFG and EFG methods, the integration is made on elements: in our paper, the domain is
dissociated into quadrilateral elements used only to evaluate integrals. In each element, four Gauss
quadrature points are used.

3.3. IEFG method for elastic problem

Consider the following 2D problem in linear elasticity on the domain Ω that is bounded by the
boundary Γ

∇σ + f = 0, in Ω, (40)

in which σ is the stress tensor and f is the body force.
The corresponding boundary conditions are

u(x) = u(x), x ∈ Γu, (41)

σ.n = q(x), x ∈ Γq, (42)
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where u(x) is the prescribed displacement vector on the boundary Γu, q(x) is the prescribed traction
vector on the boundary Γq, and n is the unit outward normal to the boundary Γ. The principle of
virtual work is

W =Wint −Wext = 0, (43)

where

Wint = ∫
Ω

⟨ε∗⟩ {σ}dΩ, (44)

Wext = ∫
Ω

⟨v∗⟩ {f}dΩ + ∫
Γq

⟨v∗⟩ {q}dΓq, (45)

where ⟨v∗⟩ is a kinematically admissible field and ⟨ε∗⟩ is the associated strain, knowing that
⟨v∗⟩ = {v∗}T and ⟨ε∗⟩ = {ε∗}T .

In elasticity problem, the stress-strain relationship is

{σ} = [H] {ε}. (46)

[H] is defined in plane stress, for example,

[H] = E(1 − ϑ2)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ϑ 0

ϑ 1 0

0 0
1 − ϑ
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (47)

where E is the Young modulus and ϑ is the Poisson ratio. Using Eq. (46) in Eq. (44) the internal
work is given by

Wint = ∫
Ω

⟨ε∗⟩ [H] {ε} dΩ. (48)

The strain can be expressed by

{ε} = [D] {U}, (49)

where

[D] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (50)

⟨U⟩ = ⟨u1 v1 u2 v2 . . . un vn⟩ . (51)

Using Eq. (21) the displacement field can be written as follows:

{U} = [φ] {Un} . (52)



94 I. Debbabi, Z. Sendi, H. BelHadjSalah

And the strain can then be expressed by

{ε} = [D] [φ] {Un} , (53)

where

[φ] = ⎡⎢⎢⎢⎢⎣
φ1 0 φ2 0 . . . φn 0

0 φ1 0 φ2 . . . 0 φn

⎤⎥⎥⎥⎥⎦. (54)

Let us take

[B] = [D] [φ] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
φ1 0 φ2 0 . . . φn 0

0 φ1 0 φ2 . . . 0 φn

⎤⎥⎥⎥⎥⎦. (55)

Using (48), (53) and (55) the internal work is given as follows:

Wint = ∫
Ω

⟨V ∗n ⟩ [B]T [H] [B] {Un}dΩ. (56)

Using (45) and (52) the external work becomes as follows:

Wext = ∫
Ω

⟨V ∗n ⟩ [φ]T {f}dΩ + ∫
Γq

⟨V ∗n ⟩ [φ]T {q}dΓq. (57)

The use of (57), (56) and (43) let us have the following final system to solve:

[K] {Un} = {F}, (58)

where

[K] = ∫
Ω

[B]T [H] [B]dΩ, (59)

{F} = ∫
Ω

[φ]T {f}dΩ + ∫
Γq

[φ]T {q}dΓq. (60)

The enforcement of the boundary conditions is made using the penalty method as discussed previ-
ously for potential problems.

4. NUMERICAL EXAMPLES

4.1. Diffusion equations

Two different examples are selected to demonstrate the precision and the speed of the IEFG method
compared with EFG method. The results of these examples are compared with the analytical
solutions.

4.1.1. Laplace’s equation on a plate

A temperature field on a plate domain Ω, is governed by Laplace’s equation [20]

∇2T (x, y) = 0, ∀x, y ∈ Ω. (61)
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Dimensions and geometry of the domain are shown in Fig. 1.

Fig. 1. Domain dimensions and geometry and node distribution.

The analytical temperature of this problem is given by

T (x, y) = ex sin y. (62)

To impose the boundary conditions for this problem, the analytic solution given by Eq. (62) is
used.
In the numerical procedure, an irregular distribution of nodes is used: the further we go away from

the more density of nodes decreases. Node distribution is shown in Fig. 1. The penalty coefficient
used to obtain the solution is 104 and the dimension of the domain of influence is d = 1.2di, so
ac = 1.2.
The results obtained using the IEFG and EFG methods are presented in many chosen directions.

Indeed, temperature evolution is addressed for x = 0 mm, x = 4 mm and y = 3 mm respectively in
Figs. 2, 4 and 6. The associated relative error evolutions, for x = 0 mm, x = 4 mm and y = 3 mm
are respectively shown in Figs. 3, 5 and 7.
From these curves, it is clear that the IEFG method gives results in good agreement with the

analytic ones relative error is always under 1.6%. In addition, from the relative error’s curves, it
seems that the EFG and IEFG methods have the same rate of precision. But when the compu-
tational speed is evaluated, it is found that the EFG method requires 13660 s (using a PC with

Fig. 2. Temperature evolution along y direction for x = 0 mm
for EFG and IEFG superposed on analytic solution.
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Fig. 3. Relative error evolution along y direction for x = 0 mm
for the EFG and IEFG solutions.

Fig. 4. Temperature evolution along y direction for x = 4 mm
for EFG and IEFG superposed on analytic solution.

Fig. 5. Relative error evolution along y direction for x = 4 mm
for the EFG and IEFG solutions.
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Fig. 6. Temperature evolution along x direction for y = 3 mm
for the EFG and IEFG superposed on analytic solution.

Fig. 7. Relative error evolution along x direction for y = 3 mm
for the EFG and IEFG solutions.

RAM 16 Go Intel Core (TM) i7-3770 processor, and CPU@3.4Ghz), whereas the IEFG needs only
3226 s, and when the IEFG method is used, 76% of the CPU time is saved.

The relative error and the relative error norm, used in the paper, are calculated as follows:

relative error Ri =
RRRRRRRRRRR
ucalci −uanalyi

max(uanaly)
RRRRRRRRRRR,

relative error norm =
⎛⎜⎜⎝
∑i (ucalci − uanalyi )2
∑i u

analy2

i

⎞⎟⎟⎠
1/2

.
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4.1.2. A diffusion equation with non-zero boundary conditions

A temperature field of a rectangular plate is given by this equation [21]:

∇2T = ∂
2T

∂x21
+ ∂

2T

∂x22
= S (x1, x2)x1 ∈ [0,1], x2 ∈ [0,1]. (63)

Knowing that

S (x1, x2) = 5.104 {100 [(1 − x1)2 + x22] − 2} exp{−50 [(1 − x1)2 + x22]}, (64)

the boundary conditions are

T (x1,0) = 100x1 + 500exp [−50(1 − x21)] 0 < x1 < 1, (65)

T (x1,1) = 500exp {−50 [(1 − x21) + 1]} 0 < x1 < 1, (66)

T (0, x2) = 500exp {−50 [(1 + x22)]} 0 < x2 < 1, (67)

T (1, x2) = 100 (1 − x2) + 500exp {−50x22} 0 < x2 < 1, (68)

with the analytic solution

T (x1, x2) = 500exp {−50 [(1−x21) + x22]} + 100 (1 − x2)x1. (69)

For this equation, we present the evolution of the relative error norm obtained with the IEFG and
EFG methods shown in Table 1, computed by varying the number of nodes in an increasing order
of 11× 11, 21× 21 and 31× 31.

Table 1. Relative error norm and CPU time of the EFG and IEFG methods at different number
of nodes.

Nodes
EFG IEFG

Relative error norm CPU time Relative error norm CPU time

11*11 3.41 ⋅ 10−3 109 s 3.4 ⋅ 10−3 29.09 s

21*21 3.712 ⋅ 10−4 3735 s 3.608 ⋅ 10−4 1209 s

31*31 1.707 ⋅ 10−4 53678 s 1.707 ⋅ 10−4 35200 s

From Table 1, it appears that the IEFG and EFG methods have the same precision, about
1.7 ⋅10−4 for a 31× 31 node distribution. The use of the IEFG method reduces the CPU time of the
full analysis by a 73% for a 11× 11 node distribution, and 68% for a 21× 21 node distribution; this
improvement in a CPU time of analysis decreases to 35% for a 31× 31 node distribution.

4.2. Elastic problems

To illustrate the efficiency of the IEFG method for 2D elasticity, two examples are studied. The
problems are solved using regular node distribution.
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4.2.1. Square plate under imposed displacement

This example considers a square plate of [0,1] × [0,1] under symmetric conditions at x = 0 and y = 0.
A 0.1 mm displacement is imposed on the side of this plate where y = 1. The left side is traction-free
(Fig. 8).

Fig. 8. A square plate under imposed displacement.

For this problem, a plane stress condition is assumed, and the material Young modulus E =
200 ⋅ 103 MPa, and the Poisson ratio ϑ = 0.3.
The analytic solution of this problem displacement is given as follows:

Ux = −0.03 ∗ x, (70)

Uy = 0.1 ∗ y. (71)

The normal stress of this problem is constant:

σ11 = 2 ⋅ 104 MPa. (72)

To solve this problem, we used 11× 11 nodes with a domain of influence size d = 0.12 mm. Both
the EFG and IEFG methods give good results as shown in Figs. 9 and 10. For this case the use of

a) b) c)

Fig. 9. Ux displacement obtained with IEFG (a), EFG (b) and analytically (c).

a) b) c)

Fig. 10. Uy displacement obtained with IEFG (a), EFG (b) and analytically (c).
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the IEFG method based on the IMLS approximation guaranties about 70% improvement in a CPU
time of the complete analysis.
The relative errors between IEFG, EFG and analytic Uy (x = 0.5, y) displacement are presented

in Fig. 11. The IEFG and EFG methods have a close rate of error which is under 8 ⋅ 10−5%.

Fig. 11. Relative error for Uy (x = 0.5, y).

4.2.2. Cantilevered beam

This example considers a beam subjected to a parabolic traction on the free end as shown in
Fig. 12 [22].

Fig. 12. Beam subjected to parabolic traction at the free end.

The length of the beam is L = 50 mm and the width of the beam is D = 10 mm. The imposed
load is constant P = 100 N.
We treat the beam as a plane stress problem. The exact solution for this problem is

U1 = −P ∗ x2
6EI

[(6L − 3 ∗ x1) ∗ x1 + (2 + ϑ) ∗ (x22 − D2

4
)], (73)

U2 = P

6EI
[3ϑ ∗ x22 (L − x1) + (4 + 5ϑ) ∗ (D2

∗
x1

4
) + (3L − x1) ∗ x21], (74)

σ1 = −P (L − x1) ∗ x2
I

, (75)

σ2 = 0, (76)
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σ12 = P
2I
(D2

4
− x22), (77)

where I = D
3

12
is the moment of inertia, E = 30 Mpa, and ϑ = 0.3.

For this problem, the penalty factor used is α = 1010. The numerical and exact solutions of

the displacements U1 (x1, D
2
), U2 (x1, D

2
) and stress σ1 (L

2
, x2) are computed for different number

of nodes: 17× 13, 25× 19 and 33× 19. The CPU times of analysis and relative error norm for
displacement and stress are presented in Table 2 for both the EFG and IEFG methods.

Table 2. Relative error norm for stress and displacement obtained with the EFG and IEFG methods.

EFG IEFG

Nodes Relative error norm
CPU time

Relative error norm
CPU time

stress displacement stress displacement

17*13 5.38 ⋅ 10−3 4.09 ⋅ 10−5 510 s 5.453 ⋅ 10−3 4.09 ⋅ 10−5 99 s

25*19 3.6610−3 1.0745 ⋅ 10−5 3912 s 3.732 ⋅ 10−3 1.095 ⋅ 10−5 523 s

33*19 1.910−3 7.401 ⋅ 10−6 8739 s 1.9 ⋅ 10−3 7.398 ⋅ 10−6 960 s

As shown in Figs. 13, 14 and 15, it is clear that the IEFG method gives convergent results as well
as number of nodes increases. The improvement of the CPU time obtained when the IEFG method
is used is about 85% for a 25× 19 node distribution and about 89% for a 33× 19 node distribution.
The relative error norm of displacement decreases from 4.09 ⋅10−5 when a 17× 13 node distribution
is used to 7.39 ⋅ 10−6 when a 33× 19 node distribution is used.

Fig. 13. ux1 displacement (mm) at x2 =D/2 for different number of nodes.

The relative error norm obtained for stress decreases from 5.45 ⋅ 10−3, when a 17× 13 node
distribution is used, to 1.9 ⋅ 10−3 for a 33× 19 node distribution. For this elastic problem, the
increase in the number of nodes does not decrease the improvement in the CPU time of the full
analysis when the IEFG method is used. For the same rate of precision, as shown in Table 2, the
use of the IEFG method allows a CPU time reduction of 85% in comparison with the EFG method.



102 I. Debbabi, Z. Sendi, H. BelHadjSalah

Fig. 14. ux2 displacement (mm) at x2 =D/2 for different number of nodes.

Fig. 15. Stress σ1 (L/2, x2) for different number of nodes.

4.2.3. Cylinder under internal pressure

In this section, a cylinder under internal pressure P is studied. Due to the symmetry of the proposed
problem, we compute only a quarter of the cylinder as shown in Fig. 16.

Fig. 16. A quarter of cylinder under internal pressure.
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The thickness of the cylinder is equal to 1 mm, and the internal pressure P = 1 Pa. The properties
of the material used are E = 2 ⋅ 105 MPa and ϑ = 0.25. Symmetry conditions are imposed for x1 = 0
and for x2 = 0.
The analytic solutions for this problem using polar coordinates (r, θ) are given as follows:
σrr = Pa2(b2 − a2) (1 − b

2

r2
), (78)

σθθ = Pa2(b2 − a2) (1 + b
2

r2
), (79)

σrθ = 0, (80)

ur = Pa2

E (b2 − a2) [(1 − ϑ) r + (1 + ϑ) b
2

r
], (81)

uθ = 0. (82)

For this problem, a distribution of 26× 41 nodes is used, the size of the domain of influence d is
not constant and it depends on a distance between two consecutive nodes di; so in this example
d = 1.8di. Penalty parameter that gives the most accurate results is = 1011.
In the presented examples, the error realized with stresses is higher than the error realized with

displacements. So, for this problem we focused on studying radial and tangential stresses to evaluate
the precision and the speed of the IEFG method when compared to the EFG method. From Figs. 17
and 18 it is clear that the radial stresses for θ = 0, θ = π/4 and θ = π/2 are in good agreement with

Fig. 17. Evolution of the radial stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the IEFG method.

Fig. 18. Evolution of the radial stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the EFG method.
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the analytic stress using both the IEFG method and EFG method. To quantify the relative error in
all these chosen directions, Figs. 19 and 20 present respectively the relative error obtained when the
IEFG method is used and the relative error obtained when the EFG method is used. From these
figures, the relative error curves obtained with the IEFG method are similar to those obtained
using the EFG method. The relative error is still under 2.5% for all values of chosen θ.

The same approach is applied to the tangential stress, which is shown in Figs. 21 and 22 respec-
tively for the IEFG method and the EFG method. From these figures, the effectiveness of the IEFG

Fig. 19. Relative error for radial stress of different directions:
θ = 0, θ = π/4 and θ = π/2 obtained using the IEFG method.

Fig. 20. Relative error for radial stress of different directions:
θ = 0, θ = π/4 and θ = π/2 obtained using the EFG method.

Fig. 21. Evolution of the tangential stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the IEFG method.
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Fig. 22. Evolution of the tangential stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the EFG method.

method to provide a correct tangential stress is proved. In addition, the relative error, presented
in Figs. 23 and 24, associated with these tangential stresses is still under 2.5% for both the IEFG
and EFG methods.

Fig. 23. Relative error of tangential stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the IEFG method.

Fig. 24. Relative error of tangential stress for different directions:
θ = 0, θ = π/4 and θ = π/2 using the EFG method.

For all the above reasons, we can admit that the IEFG have the same precision as the EFG
method. When a CPU time is considered, we find that for the same precision the IEFG method



106 I. Debbabi, Z. Sendi, H. BelHadjSalah

needs 3521 s to give results, and the EFG method needs 25314 s to obtain a solution. Therefore,
the use of the IEFG method allows to save about 86% from the CPU time when compared to the
EFG method.

5. CONCLUSION

This paper proposes a comparison between the EFG method based on the MLS approximation
and the IEFG method based on the IMLS approximation. A comparison is made for 2D potential
problems and three elastic problems. The accuracy of the element-free methods is validated by
comparing them with analytical solutions. The effect of the number of nodes on the convergence
and result quality is examined. The convergence increases when the number of nodes increases. By
using different examples it was demonstrated that the EFG method and the IEFG method have
close or the same rate of precision. However, it is shown that, for the same precision, in case of the
use of the IEFG method, at least 68% of the CPU time of the full analysis can be saved compared
with the CPU time of the full analysis of the EFG method when a potential problem is treated.
The improvement in a CPU time of the full analysis is about 86% with the IEFG method when an
elastic problem is studied. From the studied problems, it is advised to use the IEFG method for
solving 2D potential and elastic problems.
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