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A four-noded stiffened plate element has been developed which has all the advantages and efficiency of an
isoparametric element to model arbitrary shaped plates, but without the disadvantage of the shear-locking
problem inherent in the isoparametric element. Another unique feature is that the arbitrary placement of
the stiffener inside the plate element is without any restriction of its orientation. The boundary conditions
have been incorporated in a general manner so as to accommodate the curved as well as the straight-edged
boundaries. The element has been used for stability analysis of arbitrary shaped stiffened plates.
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Novelty: In this work, a plate bending element is proposed, which can model any arbitrary shape as
efficiently as an isoparametric element. As it does not include the shear deformation, thin plate problems
can be considered without any numerical difficulties as observed in isoparametric elements. This element
is generalized to accommodate any arbitrary shapes of the plate geometry. The mesh divisions for plates
with irregular boundaries using the finite element method are sometimes difficult. However, this element
eliminates such complexities as the mesh divisions are done in the mapped square plate. The stiffener is
modeled so that it can be of any shape, dispositions and be arbitrarily placed on the plate.

1. INTRODUCTION

Stiffened plates of various geometrical configurations are one of the important structural elements
in many engineering applications. The buckling analysis of such structures becomes inevitable as
they are frequently subjected to inplane-loads. The static and dynamic studies of stiffened plates
abound in literature, however stability analyses of stiffened plates of arbitrary forms are rare.
Mizusawa et al. [12] were the first to analyze skew stiffined plates for buckling using the Rayleigh-

Ritz method with B-spline as the coordinate functions. They studied the effect of various stiffness
parameters of the stiffener on the buckling load. Brown and Yettram [7] proposed a conjugate
load/displacement method of analysis for the determination of the elastic buckling loads of stiff-
ened plates under various loading and support conditions. They highlighted the significance of the
torsional rigidity of the stiffeners to the overall behavior of the complete structure. This method
demands the placement of the stiffeners to be oriented parallel to the x or y-coordinate axes. They
analyzed only rectangular stiffened plates for buckling. Shen et al. [19] presented a semi-analytical
approach using the Rayleigh-Ritz method with B-spline as coordinate functions to analyze the
stability behavior of rectangular stiffened plates. The finite element method was first employed
by Mukhopadhyay and Mukherjee [14] for skew stiffened plate buckling. They presented buckling
results for square and skew stiffened plates and studied the effect of stiffener rigidity, torsional
stiffness and eccentricity of the stiffener on the buckling load. Although an isoparametric quadratic
plate bending element as used in their formulation can accommodate irregular plate shapes, they
did not present any results for plates having curved boundaries. An extensive review on the stability
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of stiffened plates was carried out by Bedair [6], and he also presented a numerical method for the
prediction of the buckling load of multi-stiffened plates under uniform compression following the
philosophy of plate idealization. In his analysis he employed the sequential quadratic programming
to the strain energy components of the plate and the stiffener elements in terms of the out-of-plane
and in-plane displacement functions. He also presented a number of examples pertaining to the
straight-edged orthogonally stiffened plates. However, this method lacks the ability to analyze the
curved boundary stiffened plates buckling.

Rikards et al. [21] presented a buckling analysis of stiffened plates and shells using a triangular
finite element based on the first-order shear deformation theory. Buckling analysis of laminated
stiffened plates using a layerwise (zigzag) finite element formulation was discussed by Guo et al. [10].
The plate and stiffeners were modeled using degenerated shell and 3D beam elements respectively.
Srivastava et al. [24] used a nine-noded isoparametric quadratic element to investigate buckling
loads of stiffened plates under different aspect ratios, boundary conditions and partial edge loadings.
Peng et al. [17, 18] studied the buckling analysis of rectangular stiffened plates which are studied by
using the element-free and meshless Galerkin method with the first-order shear deformation theory.
Mittelstedt [11] analyzed stiffened orthotropic composite plates using a closed form analytical
method. A meshfree method was used by Tamijani and Kapania [26] for buckling analysis of curved
stiffened plates. They employed the first-order shear deformation theory to model the finite elements
and applied the penalty method to satisfy the boundary conditions. Fenner and Watson [9] studied
the buckling response of stiffened plates due to variation in the cross-sectional geometry of the line
junctions between the component plates that form the cross section of the stiffened panel. Singh
and Chakrabarti [23] discussed the buckling analysis of laminated composites based on the higher
order zig-zag theory using a nine-noded C0 continuous isoparametric finite element. Ramkumar
and Kang [20] investigated the buckling analysis of thin-walled box type structures using finite
element software ANSYS. Coburn et al. [8] presented an analytical method using the Rayleigh Ritz
approach for analysis of stiffened variable angle tow panels. Shi et al. [22] used the first deformation
theory by to model both plate and beam element for analysis of curved stiffened plates. Patel and
Sheikh [16] studied the buckling behavior of laminated composite stiffened plate under partial edge
loading. They used eight-noded isoparametric shell element and three-noded curved beam element
to model plate and stiffeners respectively.

A new four-noded bare plate bending element for the free vibration and buckling analysis of
arbitrary shaped plates has already been presented by the authors in [4, 15]. The same element
was modified to include the inplane-displacements so as to enable the stiffened plate analysis. It
was successfully employed by the authors for the free vibration analysis of stiffened plates [3]. In
this paper, the same stiffened plate bending element was used to extend the work for analyzing
the buckling of the arbitrary stiffened plates. The isoparametric element based on the Mindlin
plate theory suffers shear locking and spurious mechanism when used for thin plates. The present
formulation is based on the Kirchoff thin plate theory and is thus free from such disadvantages.
Use of this element buckling analysis of the circular stiffened plates was carried out for the first
time. The efficiency of the element is shown by comparing the buckling results of various stiffened
plates configurations with those presented by others.

2. PROPOSED ANALYSIS

2.1. Coordinate transformation

The arbitrary shape of the whole plate is mapped onto a master plate of square region [−1,+1] in
the s − t plane (Fig. 1) with the help of the relation [28] given by:

x = 12∑
i=1

Ni(s, t)xi, y = 12∑
i=1

Ni(s, t)yi, (1)
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where (xi, yi) are the coordinates of the i-th node on the boundary of the plate in the x − y plane
and Ni(s, t) are the corresponding cubic serendipity shape functions. The master plate in the s − t
plane, which is square instead of arbitrary, is divided into a number of rectangular elements. For
each rectangular element in the s − t plane, twelve number of suitable nodes of its periphery are
chosen and their (x, y) coordinates are determined by using Eq. (1), which is based on the mapping
of the whole arbitrary plate to the master plate (Fig. 1). Then with the (x, y) coordinates of the
twelve nodes on the boundary of each rectangular element being known, each element is mapped
to a master element of square region [−1,+1] in the ξ − η plane as shown in Fig. 2 in a similar
way as the original plate is mapped onto the master plate in the s − t plane using the same cubic
serendipity functions given in Eq. (1), but now the variables changed from (s, t) to (ξ − η).

Fig. 1. Mapping of original arbitrarily shaped plate to master plate.

Fig. 2. Mapping of the element from s − t to ξ − η plane.

2.2. Displacement function

As the element is in the ξ − η plane, the shape functions as well as the nodal parameters for the
displacements and slopes are expressed in terms of the coordinates ξ and η instead of the x and y
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coordinates of the parent ACM (Adini and Clough [1], Melosh [2]) element. Thus, the displacement
field can be written as

{f} = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u

v

w

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[Nu]
[Nv]
[Nw]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
{δp}, (2)

[Nu] = [N1
u 0 0 0 0 N2

u 0 0 0 0 N3
u 0 0 0 0 N4

u 0 0 0 0], (3)

[Nv] = [0 N1
v 0 0 0 0 N2

v 0 0 0 0 N3
v 0 0 0 0 N4

v 0 0 0], (4)

[Nw] = [0 0 N1
w N1

θξ
N1

θη
0 0 N2

wN
2
θξ

N2
θη

0 0 N3
w N3

θξ
N3

θη
0 0 N4

w N4
θξ

N4
θη
], (5)

{δp} = [u1 v1 w1 (∂w
∂ξ
)
1

(∂w
∂η
)
1

...... u4 v4 w4 (∂w
∂ξ
)
4

(∂w
∂η
)
4

]T . (6)

The shape functions for the displacement fields corresponding to a particular node, say the jth
node can be expressed [28] as

● for the inplane-displacements:

N j
u = N j

v = 1

4
(1 + ξ0)(1 + η0), (7)

● and for the out of plane displacements:

[N j
w, N

j
θξ
, N

j
θη
] = 1

8
[(ξ0 + 1) (η0 + 1) (2 + ξ0 + η0 − ξ2 − η2) , ξj (ξ0 + 1)2 (ξ0 − 1) (η0 + 1) ,

ηj (ξ0 + 1) (η0 + 1)2 (η0 − 1)] , (8)
where ξ0 = ξξj, η0 = ηηj .

2.3. Stiffness matrix of the plate element

The stress-strain relation of the plate element is obtained as

{σ} = [D]{ε} = {[D]a [D]f}{ε}, (9)

where

{σ} = {Fx Fy Fxy Mx My Mxy}T . (10)

When isotropic material is considered:

[D]a = Eh

1 − ν2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 ν 0

ν 1 0

0 0
1 − ν

2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(11)

and

[D]f = h2

12
[D]a. (12)
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The generalized strains are given by

{ε} = {∂u
∂x

∂v

∂y
(∂u
∂y
+
∂v

∂x
) −∂2w

∂x2
−
∂2w

∂y2
2
∂2w

∂x∂y
}T . (13)

By using the interpolation functions of u, v and w given in Eq. (2) and making use of the relation-
ships of the first and second order derivatives between the (x, y) and (ξ, η) coordinate systems [5],
the strain can be expressed in terms of nodal displacements as

{ε} = [B]δ. (14)

The stiffness matrix of the plate element is given by

[K]e = ∫∫ [B]T [D] [B] ∣J ∣dξ dη, (15)

where

[J] =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (16)

2.4. Stiffness matrix of the stiffener element

The stiffener is modeled as a separate element and the formulation of its stiffness matrix is carried
out by considering the axial force, bending moment and torsional moment. As a general case, a
curved stiffener having eccentricity with respect to the mid-plane of the plate and placed anywhere
within the plate element is considered. Since the stiffener is curved, its axis direction changes from
point to point, hence a local (x′, y′) axis is considered along the tangent to the stiffener at the
Gaussian integration point making an angle α with the global (x, y) axis as shown in Fig. 3. The
generalized stress-strain relationship of an eccentric stiffener in the local (x′, y′) axis at the Gauss
point can be expressed as

{σs} = [Ds]{εs}, (17)

where

{σs} = {Fs Ms Ts}T , (18)

Fig. 3. Coordinate axes at any point of a curved stiffener.
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{εs} = {∂u′
∂x′

−
∂2w′

∂x′2
−

∂2w′

∂x′ ∂y′
}T , (19)

[Ds] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣
EAs ESs 0

ESs EIs 0

0 0 GJs

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (20)

Expressing Eq. (19) in global (x, y) axis system,
[εs] = [Ts]{εs}, (21)

where

[Ts] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos
2α sin

2 α
1

2
sin 2α 0 0 0

0 0 0 cos
2 α sin

2 α −
1

2
sin 2α

0 0 0 −
1

2
sin 2α

1

2
sin 2α −

1

2
cos 2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

{εs} = {∂u
∂x

∂v

∂y
(∂u
∂y
+
∂v

∂x
) −∂2w

∂x2
−
∂2w

∂y2
2
∂2w

∂x ∂y
}T . (23)

As the strain vector is expressed in terms of displacements at the mid-plane of the plate, the dis-
placement shape function used is the same as that of the plate element, which yields the stiffness
matrix of the stiffener in terms of the nodal parameters of the plate element. By this process, the
compatibility between the plate and the stiffener element is retained and any additional incorpo-
ration of degrees of freedom for the stiffener element is avoided. Hence, using the interpolation
functions of Eq. (7) and (8), Eq. (23) can be written as

{εs} = {ε} = [B]{δ}. (24)

Hence,

{εs} = [Ts][B]{δ} = [Bs]{δ}. (25)

The stiffness of the stiffener element is expressed in terms of nodal degrees of freedom of that of
the plate element and thus contributes to the stiffness of the actual plate element. The stiffness
matrix of the stiffener element can be expressed as

[Ks]e = ∫ [Bs]T [Ds][Bs]dl = ∫ [Bs]T [Ds][Bs]∣Jst∣dλ, (26)

where l is taken along the stiffener axis in x − y plane and λ is in the direction of the stiffener axis
in the ξ − η plane and the Jacobian ∣Jst∣ is given by
∣Jst∣ = dl

dλ
, (27)

which is calculated by the ratio of the actual length to the length on the mapped domain considering
any segment of the stiffener.
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2.5. Geometric stiffness matrix of the plate element

Buckling or the loss of stability when the load reaches a certain critical value, is caused by geomet-
rically nonlinear effects. The geometric stiffness arises from a coupling between the linear elastic
stresses and the nonlinear terms in the strain-displacement relations. So, for the analysis of the
buckling behavior, the action of the in-plane loads causing bending strains is considered, by which
the stiffness matrix is modified by another matrix known as the geometric stiffness matrix.
The expression for the strain at the mid-plane of the plate can be written as

{ε} = {εpE} + {εpG}, (28)

where {εpE} and {εpG} are the elastic and the geometric plate strain [23] respectively, and are
given by

{εpE} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂u

∂y
+
∂v

∂x

∂w

∂x

∂w

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(29)

and

{εpG} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∂w

∂x

2

+
1

2

∂u

∂x

2

+
1

2

∂v

∂x

2

1

2

∂w

∂y

2

+
1

2

∂u

∂y

2

+
1

2

∂v

∂y

2

∂w

∂x

∂w

∂y
+
∂u

∂x

∂u

∂y
+
∂v

∂x

∂v

∂y

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (30)

The geometric stiffness matrix [14, 25] of the plate element can be obtained as

[KpG]e = ∫∫ [BpG]T [σ][BpG]dxdy = ∫∫ [BpG]T [σ][BpG]∣J ∣dξ dη, (31)

[σ] = h/2

∫
−h/2

[HpG]T [σp][HpG]dz, (32)

[BpG] = [TpG][BpG], (33)
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[BpG] = [(∂Nw

∂ξ
) (∂Nw

∂η
) (∂2Nw

∂ξ2
) (∂2Nw

∂η2
) (∂2Nw

∂ξη
)]T , (34)

[T pG] = ⎡⎢⎢⎢⎢⎣
[TF3] 0

[TF1] [TF2]
⎤⎥⎥⎥⎥⎦ , (35)

[T F1] = −[J2]−1[J1][J]−1, (36)

[T F2] = −[J2]−1, (37)

[T F3] = [J]−1, (38)

[J1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2x

∂ξ2
∂2y

∂ξ2

∂2x

∂η2
∂2y

∂η2

∂2x

∂ξη

∂2y

∂ξη

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (39)

[J2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(∂x
∂ξ
)2 −(∂y

∂ξ
)2 ∂x

∂ξ

∂y

∂ξ

−(∂x
∂η
)2 −(∂y

∂η
)2 ∂x

∂η

∂y

∂η

−(∂x
∂ξ

∂x

∂η
) −(∂y

∂ξ

∂y

∂η
) 1

2
(∂x
∂ξ

∂y

∂η
+
∂x

∂η

∂y

∂ξ
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (40)

The matrix [TpG] is the transformation matrix which relates the strain vector in the x−y coordinate
to that in the ξ − η coordinate system [5] as

{εpG(x, y)} = [TpG]{εpG(ξ, η)}, (41)

where

{εpG(x, y)} = [∂w
∂x

∂w

∂y
−
∂2w

∂x2
−
∂2w

∂y2
2
∂2w

∂x∂y
]T , (42)

{εpG(ξ, η)} = [∂w
∂ξ

∂w

∂η
−
∂2w

∂ξ2
−
∂2w

∂η2
2
∂2w

∂ξ ∂η
]T . (43)

The stress matrix for the plate element is given by

[σp] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σx τxy 0 0 0

τxy σy 0 0 0

0 0 σx 0 τxy
0 0 0 σy τxy
0 0 τxy τxy (σx + σy)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (44)
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[HpG] =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 1 0 0 0

0 0 z 0 0

0 0 0 z 0

0 0 0 0 −
1

2
z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (45)

2.6. Geometric stiffness matrix of the stiffener element

The geometric stiffness matrix of the stiffener element can be expressed as

[KsG]e = ∫∫ [BsG]T [σ][BsG]dxdy = ∫∫ [BsG]T [σ][BsG]∣Jst∣dξ dη, (46)

where

[BsG] = [TsG1][TpG][BpG], (47)

[σs] = [σxAs 0

0 σxIs
] , (48)

[TsG1] = [cosα sinα 0 0 0

0 0 − cos
2 α − sin

2 α sinα cosα
] . (49)

2.7. Boundary conditions for the stiffened plate

As a general case, the stiffness matrix for a curved boundary supported by elastic springs contin-
uously spread in the directions of possible displacements and rotations along the boundary line
is formulated, from which the specific boundary conditions can be obtained by incorporating the
appropriate value of the spring constants. Considering a local axis system x1 −y1 at a point P on a
curved boundary along the direction normal to the boundary at that point as shown in the Fig. 4,
the displacement components along it can be found. Let the angle made by the local axis x1 − y1
with the global axis x− y be β. Hence, the relationship between the two axes can be established as
given below

{x
y
} = [cosβ − sinβ

sinβ cosβ
]{x1

y1
} . (50)

Fig. 4. Co-ordinate axes at any point of an elastically restrained curved boundary.
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The relationship between the in-plane displacements in the local and the global coordinates at
point p is given by

⎧⎪⎪⎨⎪⎪⎩
u1

v1

⎫⎪⎪⎬⎪⎪⎭ =
⎡⎢⎢⎢⎢⎣
cosβ sinβ

− sinβ cosβ

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
u

v

⎫⎪⎪⎬⎪⎪⎭ , (51)

where u1 and v1 are the displacements along the direction of x1 and y1 respectively. The displace-
ments at P which may be restrained can be expressed as

{fbp} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

w

θn

θt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

w

∂w

∂x1

∂w

∂y1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (52)

where θn and θt represent the slopes which are normal and transverse to the boundaries respectively.
Substituting from Eqs. (50) and (51), Eq. (52) can be written as

{fbp} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosβ sinβ 0 0 0

− sinβ cosβ 0 0 0

0 0 1 0 0

0 0 0 cosβ sinβ

0 0 0 − sinβ cosβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u

v

w

∂w

∂x

∂w

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (53)

Expressing Eq. (53) in terms of the shape functions:

{fbp} = [Nbp]{δp}, (54)

where

[Nbp] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosβ sinβ 0 0 0

− sinβ cosβ 0 0 0

0 0 1 0 0

0 0 0 cosβ sinβ

0 0 0 − sinβ cosβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Nu]
[Nv]
[Nw]
∂[Nw]
∂x

∂[Nw]
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (55)

The reaction components per unit length along the boundary line due to the spring constants
corresponding to the possible boundary displacements given in Eq. (52) can be expressed as
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{fkp} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fku

fkv

fkw

fkα

fkβ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kuu1

kvv1

kww

kαθn

kβθt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (56)

where ku, kv ,kw, kα and kβ are the spring constants or restraints coefficients corresponding to the
direction of u1, v1, w, θn and θt respectively

{fkp} = [Nkp]{δp}, (57)

where

[Nkp] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ku cosβ ku sinβ 0 0 0

−kv sinβ kv cosβ 0 0 0

0 0 kw 0 0

0 0 0 kα cosβ kα sinβ

0 0 0 −kβ sinβ kβ cosβ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Nu]
[Nv]
[Nw]
∂[Nw]
∂x

∂[Nw]
∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (58)

Following the procedure similar to the case of the bare plate [4] the stiffness of the boundary for
the stiffened plate can be expressed as

[Kbp] = ∫ [Nbp]T [Nkp]∣Jb∣dλ1, (59)

where λ1 is the direction of the boundary line in the ξ − η plane and Jacobian Jb = ds1/dλ1. The

Jacobian is the ratio of the actual length to the length of the mapped domain at any segment of
the boundary length. The boundary stiffness is added to the global stiffness matrix.

3. NUMERICAL EXAMPLES

Stability analysis for the stiffened plates with various configurations and boundary conditions is
carried out and the buckling parameters are tabulated and compared with the published results of
other investigators wherever possible. The results are presented in tabular form which are obtained
with a mesh division of 16 × 16 for the whole plate unless otherwise mentioned. The boundary
conditions are indicated in the tables by means of letters C and S, denoting clamped and simply
supported edges respectively, which start from the left edge of the plate and proceeds in a counter
clockwise direction. Thus, CSCS denotes the boundary conditions having the left and right edge
clamped and the other opposite edges simply supported. The plate element is shown by the solid
line, while stiffener element is shown as dashed line.

3.1. Buckling of square stiffened plates

A number of square stiffened plates, shown in Fig. 5, with a concentric central stiffener, were
analyzed for various stiffener sizes and flexural rigidities, and the buckling parameters are presented



192 S. Panda, M. Barik

Fig. 5. Square stiffened plate.

in Table 1 for plates with different boundary conditions. The ratio of the cross-sectional area of
the stiffener to that of the plate (As/bt) varied from 0.05 to 0.20 and the ratio of the bending
stiffness of the stiffener to that of the plate (EIs/bD) varied from 5 to 25. The torsional inertia
of the stiffener was neglected in the analysis. The results are compared with the semi-analytic
finite difference results [13] and the agreement is satisfactory enough. It is observed, that under
uniaxial compression, with an increase in the ratio of bending stiffness or area ratio, the buckling
parameter is constant for the clamped boundary and there is slight increase in the mixed boundary
condition.

Table 1. Buckling parameter k = λb2/π2D for square plate with a central concentric stiffener subjected
to uniaxial and uniform compression in the stiffener direction (ν = 0.3).

EIs/bD (As/bt)
Boundary condition

CCCC CSSC

Present [13] Present [13]

5

0.05 24.25 25.46 17.35 17.32

0.10 24.25 25.46 17.15 17.05

0.20 24.25 25.46 16.41 16.27

10

0.05 24.25 – 17.94 –

0.10 24.25 – 17.93 –

0.20 24.25 – 17.90 –

15

0.05 24.25 25.46 18.03 18.36

0.10 24.25 25.46 18.03 18.36

0.20 24.25 25.46 18.02 18.34

20

0.05 24.25 25.46 18.070 –

0.10 24.25 25.46 18.068 –

0.20 24.25 25.46 18.064 –

25

0.05 24.25 – 18.09 18.46

0.10 24.25 – 18.09 18.46

0.20 24.25 – 18.09 18.46
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3.2. Buckling of simply supported rectangular stiffened plates

A series of simply supported rectangular stiffened plates with a concentric central stiffener, shown
in Fig. 6, were analyzed for various proportions of the plate and of the stiffener and the buckling
parameters are presented along with those of other investigators in Table 2. The ratio of the cross-
sectional area of the stiffener to that of the plate (As/bt) varied from 0.05 to 0.20, and the ratio of the
bending stiffness of the stiffener to that of the plate (EIs/bD) varied from 5 to 20. The torsional
inertia of the stiffener was neglected in the analysis. To analyze this problem, Mukhopadhyay
[13] used the semi-analytic finite difference method whereas Mukhopadhyay and Abhijit [14] used
the finite element method. Good agreement of the results was obtained when compared with the
results of Timoshenko and Gere [27] and those of others. The buckling parameter k = λb2/π2D for
uniformly compressed all edges simply supported the square stiffened plate with varying stiffness

Fig. 6. Rectangular stiffened plate.

Table 2. Buckling parameter k = λb2/π2D for uniformly compressed all edges simply supported rectangular
stiffened plates (ν = 0.3).

EIs/bD (As/bt)
Aspect Ratio (a/b)

1 2

Present [27] [14] Present [27] [13]

5

0.05 11.84 12.0 11.72 7.93 7.96 7.93

0.10 11.02 11.1 10.93 7.27 7.29 7.28

0.20 9.64 9.72 9.70 6.24 6.24 6.24

10

0.05 15.73 16.0 16.00 10.16 10.20 10.16

0.10 15.73 16.0 16.00 9.33 9.35 9.33

0.20 15.49 15.8 15.44 8.02 8.03 8.02

15

0.05 15.73 16.0 16.00 12.36 12.4 –

0.10 15.73 16.0 16.00 11.36 11.4 –

0.20 15.73 16.0 16.00 9.77 9.80 –

20

0.05 15.73 16.0 – 14.52 14.6 –

0.10 15.73 16.0 – 13.36 13.4 –

0.20 15.73 16.0 – 11.51 11.6 –
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and eccentricities is presented in Table 3. It is found that under biaxial compression, with an
increase in ratio of bending stiffness or area ratio, the buckling parameter decreases for simply
supported boundary condition. It is observed that there is a decrease in buckling parameter with
an increase of aspect ratio.

Table 3. Buckling parameter k = λb2/π2D for uniformly compressed all edges simply supported square
stiffened plate with varying stiffness and eccentricities (ν = 0.3).

EIs/bD
e/t 2.5 5.0 10.0

Present [14] Present [14] Present [14]

0.0 7.908 7.930 11.7708 11.72 15.03 16

1.25 7.713 7.756 11.5399 11.54 15.03 16

2.50 7.581 7.234 11.4384 11.08 15.03 16

4.00 7.054 7.003 11.1566 10.11 15.03 16

3.3. Buckling of rectangular stiffened plates with different boundary conditions

Rectangular stiffened plates with a concentric central stiffener were analyzed for two aspect ratios
of the plate and for different proportions and rigidities of the stiffener, and the buckling parameters
are presented in Table 4. As before, the ratio of the cross-sectional area of the stiffener to that of the
plate (As/bt) varied from 0.05 to 0.20 and the ratio of the bending stiffness of the stiffener to that
of the plate (EIs/bD) varied from 5 to 20. The torsional inertia of the stiffener was neglected in the
analysis. These results are presented for the first time. It is found that under uniaxial compression,
with an increase in ratio of bending stiffness or area ratio, the buckling parameter is constant with
an increase of aspect ratio.

Table 4. Buckling parameter k = λb2/π2D for square plate with a central concentric stiffener subjected
to uniaxial and uniform compression in the stiffener direction (ν = 0.3).

EIs/bD (As/bt)
Boundary Condition

CSCS SCSC

1 2 1 2

5

0.05 18.98 13.54 21.77 18.03

0.10 18.98 12.61 21.40 16.41

0.20 18.98 11.03 16.47 13.85

10

0.05 18.98 16.64 21.76 21.18

0.10 18.98 16.64 21.76 21.25

0.20 18.98 16.66 21.76 19.63

15

0.05 18.98 16.66 21.76 21.17

0.10 18.98 16.66 21.76 21.16

0.20 18.98 16.66 21.76 21.26

20

0.05 18.98 16.66 21.76 21.15

0.10 18.98 16.66 21.76 21.15

0.20 18.98 16.66 21.76 21.22



Flexural stability analysis of stiffened plates using the finite element method 195

3.4. Buckling of skew stiffened plates with different boundary conditions

Skew stiffened plates with a concentric central stiffener shown in Fig. 7, and having different bound-
ary conditions were analyzed for different skew angles and the buckling parameters are presented
in Table 5. The present results agree well with the finite element results of [14] and those of [12]
who analyzed the problem using B-spline functions. It is observed that with an increase in skew
angle, the buckling parameter increases.

Fig. 7. Skew stiffened plate.

Table 5. Buckling parameter k = λb2/π2D for skew stiffened plate
(Aspect Ratio = 1.0, EIs/bD = 10.0, GJs/bD = 0.0, As/bt = 0.1, ν = 0.3).

Boundary condition Skew angle Present [12] [14]

All edges simply supported

0 16.00 16.00 16.00

30 19.96 20.28 20.90

45 27.68 28.68 29.89

All edges clamped

0 24.24 24.89 30.8

30 32.41 33.74 36.9

45 47.97 51.62 56.3

3.5. Buckling of uniformly compressed diametrically stiffened circular plates

The buckling loads for all the edges simply supported (SS) and clamped (CC) circular plates
with concentric stiffeners along the diameters shown in Figs. 8 and 9 are computed with varying
flexural and torsional stiffness parameters of the stiffener and the results are presented in the form
of buckling parameter k = (Nr)cra2/D where (Nr)cr is the critical compressive force uniformly
distributed around the edge of the plate, a is the radius of the circular plate and D is the flexural
rigidity of the plate. The results are presented in Table 6. These results are presented for the first
time. It is observed that with an increase in the ratio of bending stiffness, the buckling parameter
increases. It is found that there is a slight increase in the buckling parameter with an increase in
torsional stiffness ratio.
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Fig. 8. Single stiffened circular plate.

Fig. 9. Cross-stiffened circular plate.

Table 6. Buckling parameter k = (Nr)cra
2/D for uniformly compressed circular plates with concen-

tric stiffeners along the diameter with varying flexural and torsional stiffness parameters of the stiffener
(As/at = 0.1, ν = 0.3).

EIs

aD

GJs

aD

k

Single stiffener Cross stiffeners Unstiffened

SS CC SS CC SS CC

5

0.0 4.20 14.72 4.20 14.72

4.20 14.71

2.5 7.09 26.64 10.79 44.34

5.0 9.66 26.65 16.67 44.35

7.5 11.92 26.65 22.21 44.35

10 13.19 26.65 27.22 44.35

15

0.0 4.20 14.72 4.20 14.72

2.5 4.27 14.97 4.63 16.28

5.0 4.27 14.97 4.63 16.29
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4. CONCLUSIONS

Despite the huge wealth of plate elements available in literature, there is hardly a common successful
element to address the problem relating to thin plates having arbitrary plate geometries. This has
prompted the present investigation to propose elements for different kinds of analysis of plates. In
this paper, stability analysis of stiffened plates of various configurations was carried out using a new
stiffened-plate bending element. The element has the efficiency of an isoparametric element, in that
a single conventional rectangular element is capable of accommodating arbitrary shapes of plates
having straight, skew or curved boundaries. The formulation for the stiffener element is generalized
in such a manner that the stiffener can be placed anywhere on the plate with any orientation or
disposition. The results obtained in the analysis were compared with the published ones and found
to agree well. Also, some new results have been presented. It was found that with an increase in
bending stiffness, the buckling parameter increases for uniform cross section while it decreases more
for the aspect ratio.
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