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This paper presents an approach of one- and two-dimensional random field simulation methods using
a correlated random vector and the Karhunen-Loève expansion. Comparison of the authors’ analytical
solution of the Fredholm integral equation of the second kind with the numerical solution using the finite
element method and the inverse vector iteration technique is presented. Numerical approach and sample
realizations of one- and two-dimensional random fields are presented using described techniques as well
as generated probability distribution functions for chosen point of the analysed domain.
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1. INTRODUCTION

In the structure of real materials, the values of physical and mechanical parameters and thus the
state functions can change randomly between points. These values of parameters are determined
based on the results of experimental studies with the support of statistical analysis. In the case of
physical properties of engineering materials used in practice, this analysis is usually carried out with
one random variable. On the basis of the statistical population obtained from sampling at specified
points, the central trend (expected value) and the measure of dispersion (usually the standard de-
viation) are determined. This description may not be sufficient, because these characteristics also
change in space. The stochastic process α(t, ω) being a continuous or discrete function assigning to
the time argument t a random variable α(ω) can be used as a more appropriate model. Random
fields can be used to describe real nature of parameters in geotechnics [7] (soil analysis), civil engi-
neering and material engineering [8] (concrete, wood, composites analysis), mechanical engineering
(machinery parts analysis) and many others [5, 11, 13].

A random field is a function of an infinite number of random variables [10]. On the random
fields there are performed some mathematical operations, aimed at obtaining the solution of the
problem under consideration. Some operations, however, lead to significant numerical difficulties,
often making it impossible to get a solution. To obtain a numerically useful form of the process
α(x,ω), the so-called canonical expansion is used, consisting in presenting the process as a sum
of the expected value and cross-uncorrelated random variables. One of the many forms of such
representation found in the literature is the Karhunen-Loève expansion (KL). Another common



48 M. Poński, I. Pokorska

approach which can be used is a correlated random vector (CRV) [3]. In this method, a continuous
covariance function is presented in the matrix form of the desired dimension. Then, the resulting
vector is obtained as a product of a random uncorrelated vector and a lower triangular matrix
obtained from the Cholesky decomposition of the covariance matrix. This paper presents a coher-
ent description of the analytical solution of the Fredholm integral equation of the second kind and
presents a numerical solution using the finite element method and the inverse vector iteration tech-
nique. Sample realizations of one- and two-dimensional random fields are presented using described
techniques as well as generated probability distribution functions for the chosen point. It is also
shown that four-dimensional covariance matrix used to simulate a two-dimensional random field
that can be interpreted as a two-dimensional block matrix, which allows using the one-dimensional
approach straightforward.

2. THE KARHUNEN-LOÈVE EXPANSION

Generalization of the stochastic process notion in case of a random, multidimensional function of
coordinates is a random field [9], which can be defined as follow:

A random field α(x,ω) [9] where (x ∈ D ⊂ R, ω ∈ Ω) we call a function, in which each point x
assigns a random variable α(ω) defined in a fixed probability space (Ω,Z,P). Here, Ω is the set of
elementary events, Z is the σ-algebra and P ∶ Z→ [0,1] is a probability measure.

In order to describe a random field, the expected value is most commonly used:

E (α(x,ω)) = ∫
Ω

α(x,ω)dP (1)

and covariance function

C(x, t) = ∫
Ω

(α(x,ω) −E (α(x,ω))) (α(t, ω) −E (α(t, ω)))dP. (2)

In this paper, the Gaussian probability space will be adopted, where Ω ∈ (−∞,∞).
A computationally useful representation of the process α(x,ω) can be presented with a KL [4–6]:

α(x,ω) = ξ0E (α(x,ω)) +
∞

∑
i=1

ξi(ω)
√
λifi(x). (3)

This expansion is optimal in the Fourier sense because it minimizes the mean square error resulting
from truncating to the first M terms:

α(x,ω) ≈ ξ0E (α(x)) +
M

∑
i=1

ξi(ω)
√
λifi(x). (4)

In Eqs (3) and (4) ξ(ω) is a Gaussian random variable with zero mean and standard deviation equal
to one (ξ0 = 1). Constants λ and functions f(x) are respectively the eigenvalues and eigenfunctions,
obtained from the solution of the Fredholm second kind integral equation with the covariance
function as the kernel [4, 12]:

∫
D

C(x1, x2)fi(x2)dx2 = λifi(x1). (5)

To solve Eq. (5), it is necessary to define the covariance function C(x1, x2). Obtaining a solution
of this equation in a closed form is possible only for selected covariance functions, which can be
found in [7]. One of the most common functions, among others, used in [2, 4, 6] is the function
(Fig. 1):

C(x1, x2) = σ2
α ⋅ e

−∣x1−x2 ∣
b , (6)

where σ2
α is the coefficient of variance, and b is a correlation length.
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Fig. 1. Covariance function plot according to Eq. (6). σα = 1.

3. CORRELATED RANDOM VECTOR APPROACH

Suppose that the stochastic process is approximated by the vector of random variables, namely

α (x,ω)
approx.
ÐÐÐÐ→ α (ω) x ∈ ⟨−a, a⟩ . (7)

Therefore, the covariance function C (x1, x2), x1, x2 ∈ ⟨−a, a⟩ takes the form of the following matrix:

C = Ci,j = C (−a + i∆x1,−a + j∆x2) , (8)

where

∆x1 = ∆x2 =
2a

p
, (9)

where p is the number of division. The random vector is described by the relation

αvec = LN, (10)

where N(px1), is a vector, of which elements are random variables with a normal distribution with
µ = 0 and σ = 1, while L(pxp) = Chol (C(pxp)) is a lower triangular Cholesky matrix determined by
the formula [3]:

C = LLT . (11)

A similar procedure can be performed for a two-dimensional field

α(x, y,ω)
approx.
ÐÐÐÐ→ α (ω) , x ∈ ⟨−a, a⟩ , y ∈ ⟨−a, a⟩ , (12)

where the four-dimensional covariance function

C(x1, x2, y1, y2), x1, x2, y1, y2 ∈ ⟨−a, a⟩ (13)

can be presented in the form

C = Ci+k(p+1),j+m(p+1) = C(−a +m∆x1,−a + k∆x2,−a + j∆y1,−a + i∆y2) (14)

or in the matrix notation

C =
⎡⎢⎢⎢⎢⎢⎣

Ĉ0,0 ⋯ Ĉ0,m

⋮ ⋱ ⋮
Ĉk,0 ⋯ Ĉk,m

⎤⎥⎥⎥⎥⎥⎦
, (15)

where

∆x1 = ∆x2 = ∆y1 = ∆y2 =
2a

p
. (16)

In this case, the random vector is described by the relation

α = αi,j = (αvec)j+i(p+1) , (17)

where Eq. (10) is used, but the vector N
(p2x1) and matrix L

(p2xp2) = Chol (C(p2xp2)) have different
dimensions.
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4. ANALYTICAL AND NUMERICAL SOLUTION OF THE FREDHOLM SECOND KIND
EQUATION

In order to determine eigenvalues and eigenvalues for a given covariance function, a solution of the
Fredholm second kind integral Eq. (5) should be found. This equation can be transformed into the
Lalescu-Picard equation, i.e.,

λf(x) = σ2 ⎛
⎝
e−cx

x

∫
−a

ectf(t)dt + ecx
a

∫
x

e−ctf(t)dt
⎞
⎠
, x ∈ ⟨−a, a⟩ c = 1

b
. (18)

By substituting

G(x) =
x

∫
−a

ectf(t)dt, H(x) =
a

∫
x

e−ctf(t)dt and g(x) = ecx, h(x) = e−cx,

Eq. (18) can be presented in a concise form:

λf(x) = σ2 (h(x)G(x) + g(x)H(x)) . (19)

Using the derivative of Eq. (19) relative to x:

λf ′(x) = σ2 (h′(x)G(x) + g′(x)H(x)) (20)

and Eq. (19), a system of equations can be built, which must be solved for H(x) and G(x). After
substituting the obtained relations to the second derivative of Eq. (19) with respect to x, the
second-order differential equation, written in the matrix form, is obtained:

λ

RRRRRRRRRRRRRRR

⎡⎢⎢⎢⎢⎢⎣

f(x) g(x) h(x)
f ′(x) g′(x) h′(x)
f ′′(x) g′′(x) h′′(x)

⎤⎥⎥⎥⎥⎥⎦

RRRRRRRRRRRRRRR

− σ2 (∣[ g(x) h(x)
g′(x) h′(x) ]∣)

2

f(x) = 0. (21)

After appropriate transformations Eq. (21) takes the form:

f ′′(x) + ω2f(x) = 0, (22)

where

ω2 = 2cσ2

λ
− c2. (23)

The general solution of Eq. (22) has the form:

f(x) = a1 cos(ωx) + a2 sin(ωx). (24)

In order to determine the parameters a1 and a2 Eqs (22) and (24) as well as condition −a ≤ x ≤ a
should be used. From the above, a system of equations is obtained:

[ c − ω tan(ωa) ω + c tan(ωa)
c − ω tan(ωa) − (ω + c tan(ωa)) ] [ a1

a2
] = [ 0

0
]. (25)

Non-trivial solutions for the above homogeneous system exist if the determinant of the coefficient
matrix is equal to zero, e.g.,

∣[ c − ω tan(ωa) ω + c tan(ωa)
c − ω tan(ωa) − (ω + c tan(ωa)) ]∣ = 0. (26)
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As a result, two transcendental equations are obtained whose elements are the searched values ω.
Using the transformed Eq. (23)

λi =
2cσ2

ω2
i + c2

, (27)

eigenvalues λ can be determined. By normalizing the system of equations (25) with respect to the
parameters a1 and a2 the i-th solution of the specific differential Eq. (22) can be obtained for i-th
eigenvalue, e.g.,

fi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ωi cos(aωi − ωix) + c sin(aωi − ωix)
ωi cos(aωi) + c sin(aωi)

for even i,

c sin(aωi + ωix) − ωi cos(aωi + ωix)
ωi sin(aωi) − c cos(aωi)

for odd i.

(28)

For a two-dimensional random field, the Fredholm second kind equation takes the form:

∫
D

C(x1, x2, y1, y2)fn(x, y)dy = λnfn(x, y). (29)

The covariance kernel can be represented as the product of two functions

C(x1, x2, y1, y2) = Cx(x1, x2)Cy(y1, y2), (30)

where

Cx(x1, x2) = σx ⋅ e−
∣x1−x2 ∣
bx (31)

and

Cy(y1, y2) = σy ⋅ e
−
∣y1−y2 ∣
by . (32)

In Eqs (31) and (32), σx i σy are the square roots of the coefficients of variance, and bx and by are
the correlation lengths. Assuming that the eigenfunctions can be represented in the form

fn(x, y) = fi(x)fj(y) (33)

and eigenvalues in the form

λn = λiλj , (34)

the KL for a two-dimensional random field takes the form:

α(x, y,ω) = ξ0E (α(x, y)) +
M

∑
j=1

M

∑
i=1

ξi,j(ω)
√
λiλjfi(x)fj(y). (35)

In Eq. (35) eigenvalues and eigenfunctions from the one-dimensional solution of the Eq. (5) can
be used.

The basis for the numerical solution using the finite element method is the discretisation of
eigenfunctions:

fk(x) = fTk h(x), (36)
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where fk is a vector of coefficients, and h(x) = [N e
1(x),N e

2(x),N e
3(x)]

T is a vector of shape functions.
The following quadratic shape functions were adopted in this work:

N e
1(x) =

(x − xj)(x − xk)
(xi − xj)(xi − xk)

,

N e
2(x) =

(x − xi)(x − xk)
(xj − xi)(xj − xk)

,

N e
3(x) =

(x − xi)(x − xj)
(xk − xi)(xk − xj)

.

By substituting function (36) into the integral Eq. (5) and taking into account that λ = δi,jλi it
can be written:

Kf = λMf , (37)

where

K =K3i+n,3j+m =
(−a+(j+1)∆x2)

∫
(−a+j∆x2)

(−a+(j+1)∆x1)

∫
(−a+j∆x1)

C(x1, x2)hn(x2)hm(x1)dx1dx2,

∆x1 = ∆x2 =
2a

d
,

(38)

M =M3i+n,3j+m =
(−a+(j+1)∆x1)

∫
(−a+j∆x1)

hn(x1)hm(x1)dx1,

∆x1 =
2a

d
.

(39)

In this work, the inverse vector iteration method was used to solve the eigenproblem (37), the
description of which can be found in a large number of publications [1]. A comparison of eigen-
values and eigenvalues obtained from the analytical and numerical methods, for two values of the
correlation length, b = 0.1 and b = 1.0 (Figs 2–6), is shown below. The analysed domain was divided

Fig. 2. Eigenfunctions 1 to 3 according to Eqs (28) and (36). Correlation length b = 1.0.
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Fig. 3. Eigenfunctions 4 to 6 according to Eqs (28) and (36). Correlation length b = 1.0.

Fig. 4. Eigenfunctions 1 to 3 according to Eqs (28) and (36). Correlation length b = 0.1.

Fig. 5. Eigenfunctions 4 to 6 according to Eqs (28) and (36). Correlation length b = 0.1.

into 44 finite elements (p = 44) of equal length. The analysis shows that near the functions roots
(Figs 2–5) the numerical solution becomes unstable.

The instability increases with the degree of eigenfunctions, and with a reduction in the num-
ber of finite elements. In the case of the eigenvalue, a very good agreement of results was found.
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Fig. 6. Eigenvalues of the process from the numerical and analytical solution.

Fig. 7. Eigenfunctions 1 to 3 according to Eq. (36) and solution of R.G. Ghanem and P.D. Spanos [4].
Correlation length b = 0.1.

Fig. 8. Eigenfunctions 4 to 6 according to Eq. (36) and solution of R.G. Ghanem and P.D. Spanos [4].
Correlation length b = 0.1.

The relative error of the numerical and analytic solution of this value is shown in Fig. 6. In re-
search related to the stochastic analysis of mechanics problems, the solution given in the work of
R.G. Ghanem and P.D. Spanos [4] is often used. A comparison of the numerical solution with the
analytical solution from [4] is presented in Figs 7 and 8.
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5. NUMERICAL SIMULATION OF ONE- AND TWO-DIMENSIONAL RANDOM FIELDS

In this section, the results of random field simulations are shown. To perform these simulations, the
crude Monte Carlo method was used. In this method, in each realization vector is sampled using
Eq. (10). The solution was obtained based on a specific number of realizations n = 5000 of the
vector N. For computation, an appropriate matrix C should be determined. Contour plots of this
matrix for one- and two-dimensional case are shown below with the coefficient of variance equal to
one (Figs 9 and 10).

Fig. 9. Contour plot of function (6).

Fig. 10. Contour plot of function (30).

Example realizations of one- and two-dimensional random fields using the analytical and nu-
merical approach are presented below (Figs 11–13).

To verify the obtained random fields, data from one chosen point was used to build probability
distribution. Both analytical and numerical approach give appropriate results which were compared
with normal distribution function (mean and standard deviation was calculated from the obtained
data). For samples near the expected value, there is a bigger dispersion in both methods. For the KL
with decreasing number of expansion terms M mean value becomes larger and standard deviation
lower than values obtained with the CRV method.
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Fig. 11. Example realization of one-dimensional random field using the analytical approach (continuous
line) and the numerical approach (dotted line).

Fig. 12. Example realization of two-dimensional random field using the analytical approach.

Fig. 13. Example realization of two-dimensional random field using the numerical approach.
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6. CONCLUSIONS

This paper presents the analytical and numerical solution of the Fredholm second kind integral
equation. The analytical solution has been performed using the transformation to the Lalescu-
Picard equation, and the numerical solution using the finite element method and the inverse vector
iteration technique. The analytical solution is in very good agreement with the numerical solution,
in contrast to the analytical solution given by R.G. Ghanem and P.D. Spanos [4] (Figs 7 and 8).
The analysis shows that near the eigenfunctions roots (Figs 2–5) the numerical solution becomes
unstable. This instability increases with the eigenfunctions degree and with decreasing number of
finite elements. This may be related to the occurrence of singular points in the covariance function
for correlated random variables. Similarly, for the probability distributions of both methods near
the expected value, there is a larger dispersion of samples (Figs 14 and 15).

Fig. 14. Probability distribution obtained from the Monte Carlo simulations for a chosen point
(one-dimensional case) using the CRV and the KL. Comparison with the normal distribution function.

Fig. 15. Probability distribution obtained from the Monte Carlo simulations for a chosen point
(two-dimensional case) using the CRV and the KL. Comparison with the normal distribution function.
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