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The relationships between the system matrices of the displacement-based, a primal-mixed,
a dual-mixed and a consistent primal-dual mixed finite element model for geometrically
nonlinear shear-deformable beams are investigated. Employing Galerkin-type weak formu-
lations with the lowest possible order, constant and linear, polynomial approximations,
the tangent stiffness matrices and the load vectors of the elements are derived and com-
pared to each other in their explicit forms. The main difference between the standard
and the dual-mixed element can be characterized by a geometry-, material- and mesh-
dependent constant that can serve not only as a locking indicator but also to transform
the displacement-based element into a shear-locking-free dual-mixed beam element. The
numerical performances of the four different elements are compared to each other through
two simple model problems. The superior performance of the mixed, and especially the
dual-mixed, beam elements in the nonlinear case is demonstrated, not only for the deflec-
tion, but also for the force and moment computations.
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1. Introduction

The standard displacement-based finite element formulation for slender beams
has long been known for its poor performance when low-order polynomial ap-
proximation for the kinematical variables is applied. The numerical over-stiffening
phenomenon is usually called locking. During the last few decades, several suc-
cessful strategies and formulations have been developed to overcome and elimi-
nate the different type of locking problems, not only for beams but also for plates
and shells [2, 5–7, 13, 16, 19, 23].
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The main directions in formulating locking-free beam elements are (i) the
reduced-selective integration technique, (ii) the use of special interpolation func-
tions that satisfy the homogeneous equilibrium equations, (iii) the application of
higher-order polynomial interpolations, and (iv) the application of mixed vari-
ational principles. These strategies are not perfectly independent of each other,
as there are several cases when the elements obtained by different formulations
are pointed out to be equivalent, see, e.g., [20]. Beside the Galerkin-type weak
formulations, other weighted residual methods, such as least-squares finite ele-
ment methods [10, 17] and isogeometric collocation methods [1, 14] have been
developed for elliptic boundary value problems as well. A very profound and
excellent overview on beam theories and the related finite element formulations
have recently been given by [15].

Mixed formulations and models approximate both the primary and secondary
variables simultaneously. Depending on the weak forms chosen for the field equa-
tions, primal-mixed and dual-mixed finite element models can be constructed
[6, 20, 22]. Considering the mixed approach, a large variety of variational formu-
lations and finite element models have been developed for modeling structural
members such as beams, plates and shells [3, 7, 18, 20, 25, 26]. A comparison
of the least-squares and weak-form Galerkin finite element models for standard
and primal-mixed formulations of shear-deformable beams is given by [11].

The primal-mixed variational formulations and finite element models are
based on the continuous displacement and discontinuous surface traction ap-
proximations and they are more popular than the dual-mixed formulations and
elements relying on the continuous surface traction and discontinuous displace-
ment approximations. It is believed and proved for some cases, however, that
dual-mixed finite elements give better rates of convergence for the stress (force)
variables than the primal-mixed elements [12, 24]. This property can probably
be traced back to the fact, that dual-mixed elements can guarantee the conti-
nuity of the surface tractions and, thus, their local equilibrium at the element
interfaces.

The traction continuity for the dual-mixed elements is usually enforced by
applying the λ-multiplier technique (often called hybridization, see, e.g., [6])
and, although these multipliers are displacement-like variables, they usually cor-
respond to non-conforming displacements. This fact makes it rather difficult to
explicitly compare the primal- and dual-mixed elements and their system matri-
ces. For beams, and one-dimensional problems in general, the explicit comparison
of the element matrices of the mixed formulations is possible, however, as the
λ-multipliers are the nodal displacements of the elements.

The main goal of this paper is to investigate and compare the displacement-
based, a primal-mixed, a dual-mixed and a consistent primal-dual mixed formula-
tions for nonlinear shear-deformable beams, assuming von Kármán-type geomet-
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ric nonlinearity. Galerkin-type weak formulations with the lowest possible order
of polynomial approximation are chosen for each case. After a brief overview of
the strong and weak formulations of the beam model in Sec. 2, the derivation
of the tangent stiffness matrices and the load vectors of the four different finite
element models is summarized in Sec. 3. The finite element matrices, obtained
by applying the computer algebra system MapleTM, are compared to each other
in their explicit forms and the relationships between them are given. The numer-
ical performance of the elements based on the four different weak formulations
is compared to each other in Sec. 4 through two simple model problems. The
relative errors and their asymptotic rates of convergence are investigated and
compared, not only for the displacement, but also for the primarily important
stress variables.

2. Geometrically nonlinear beam model

A prismatic beam of length L and cross-section area A is considered in
a Cartesian xyz coordinate frame. We assume that (i) the coordinate x is mea-
sured along the axis of the beam, (ii) the xz plane is a symmetry-plane for
the beam, (iii) the local coordinate axes y and z are the principal axes of the
cross-sections, (iv) the material of the beam is linearly elastic and isotropic, and
(v) the beam is loaded in the xz plane with coupled axial- and shear-bending
deformations.

2.1. Strong forms of the governing equations

In the framework of the first-order shear-deformation beam theory applied
in this paper (see, e.g., [21]), the displacement field of the 3D beam is approxi-
mated as

ux(x, z) = u(x) + φ(x)z, (1)

uz(x, z) = w(x), (2)

where u(x) and w(x) are the displacements of the axis of the beam in axial and
transverse directions, respectively, and φ(x) is the small rotation (i.e., cosφ ≈ 1,
sinφ ≈ φ) of the plane cross-section around the axis y. The non-zero strain
components of the beam are

εx(x, z) = ε(x) + κ(x)z, (3)

2εxz(x, z) = γ(x), (4)
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where, assuming von Kármán-type nonlinearity,

ε(x) = u,x +
1

2
w,2x , (5)

γ(x) = w,x + φ, (6)

κ(x) = φ,x (7)

are the axial strain, the transverse shear strain and the curvature, respectively
(a comma followed by an index x in the subscript denotes differentiation with
respect to x). Relations (5)–(7) are the nonlinear kinematic equations of the
beam.

The 3D stress-strain relations for the beam are given by

σx(x, z) = Eεx = Eε(x) + Eκ(x)z, (8)

σxz(x, z) = 2Gεxz = Gγ(x), (9)

where E and G are the constant elasticity and shear modulus, respectively.
Introducing the axial and shear forces, as well as the bending moment, as

N(x) =

�

A

σx dA, Q(x) = ks

�

A

σxz dA, M(x) =

�

A

zσx dA, (10)

the stress-strain relations of the beam model are

N(x) = EAε(x), (11)

Q(x) = ksGAγ(x), (12)

M(x) = EI κ(x), (13)

where ks is the constant shear correction factor and I =

�

A

z2 dA. Note that Q(x)

is perpendicular to the deformed axis of the beam. The shear force perpendicular
to the undeformed axis x is given by

V (x) = Q+ w,xN. (14)

From the point of view of mixed formulations, it is an important fact that the
constitutive relations (11)–(13) are invertible, i.e., the strain components can
uniquely be expressed in terms of forces and moment.
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The equilibrium equations of the beam model are

N,x +fx = 0, (15)

(Q+ w,xN),x +fz = 0, (16)

M,x−Q+my = 0, (17)

where fx(x), fz(x) and my(x) are distributed external loads. For thin beams, the
moment load my(x) is usually neglected, as we do in the subsequent analysis.

Displacement and stress boundary conditions can be prescribed for the vari-
ables u, w, φ and N , V , M , respectively, at both ends (at x = 0 and x = L) of
the beam, by paying attention to the fact that {u,N}, {w, V } and {φ,M} are
work-conjugate variables.

2.2. Weak forms of the governing equations

2.2.1. Kinematic equations. The first weak forms of the kinematic equations
(5)–(7) of the beam model are

δRK1 =

L�

0

δN

(
ε− u,x−

1

2
w,2x

)
dx = 0, (18)

δRK2 =

L�

0

δQ(γ − w,x−φ) dx = 0, (19)

δRK3 =

L�

0

δM(κ− φ,x ) dx = 0, (20)

where δN(x), δQ(x) and δM(x) are arbitrary test functions (virtual forces and
moment). The second weak forms of the kinematic equations are obtained from
(18)–(20) by applying the divergence theorem:

δRK4 =

L�

0

[
δN

(
ε− 1

2
w,2x

)
+ δN,x u

]
dx− [δN u]L0 = 0, (21)

δRK5 =

L�

0

(δQγ + δQ,xw − δQφ) dx− [δQw]L0 = 0, (22)

δRK6 =

L�

0

(δM κ+ δM,x φ) dx− [δM φ]L0 = 0. (23)
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2.2.2. Equilibrium equations. The first weak forms of the equilibrium equa-
tions (15)–(17) are

δRE1 =

L�

0

δu (N,x +fx) dx = 0, (24)

δRE2 =

L�

0

δw (V,x +fz) dx = 0, (25)

δRE3 =

L�

0

δφ (M,x−Q) dx = 0, (26)

where δu(x), δw(x), and δφ(x) are arbitrary test functions (virtual displacements
and rotation). The second weak forms of the equilibrium equations are obtained
from (24)–(26) by applying the divergence theorem:

δRE4 =

L�

0

(−δu,xN + δu fx) dx+ [δuN ]L0 = 0, (27)

δRE5 =

L�

0

(−δw,x V + δw fz) dx+ [δw V ]L0 = 0, (28)

δRE6 =

L�

0

(−δφ,xM − δφQ) dx+ [δφM ]L0 = 0. (29)

Depending on the selection of the above weak forms, several types of varia-
tional formulation and finite element model can be constructed. A list and the
properties of possible formulations for the linear case are given in [4]. Although
these formulations are theoretically equivalent, the quality of the finite element
solutions can be very different, especially when the low-order approximation is
used, and largely depends on whether the governing equations are being taken
into account in their strong, in their first or second weak forms.

In addition to the ’classical’ primal-mixed and dual-mixed formulations, there
exist other possibilities, as well, to construct mixed models for the present beam
problem. They can be obtained by mixing the weak forms of the governing
equations in such a way that one of the kinematic equations is considered in
its first weak form, the others in their second weak forms, the corresponding
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equilibrium equations are taken into account in their second and first weak forms,
respectively. These formulations are called primal-dual mixed ones. Out of the
six possibilities, a consistent primal-dual mixed formulation and the related finite
element model are presented in Subsec. 3.4.

3. Finite element models

The derivation of the element tangent stiffness matrices and load vectors
in their explicit forms will be presented briefly in this section, considering the
displacement-based, a primal-mixed, a dual-mixed and a consistent primal-dual
mixed variational formulations. The constitutive equations are taken into ac-
count in their strong forms. Bubnov–Galerkin-type approximations of the lowest
possible order will be applied for each unknown field and the corresponding test
functions. All the results of the symbolic computations presented in this section
have been performed using the computer algebra system MapleTM.

The finite element matrices will be derived for one beam element denoted
by e. The mapping between the master element ê := {ξ | − 1 ≤ ξ ≤ 1} and the
actual beam element e := {x |x1 ≤ x ≤ x2}, with nodal coordinates x1 < x2, is
given by

x = x(ξ) = x1H1(ξ) + x2H2(ξ), (30)

where

H1(ξ) =
1

2
(1− ξ) and H2(ξ) =

1

2
(1 + ξ) (31)

are the standard linear interpolation functions. The Jacobian of the mapping
(30) is J = h/2 with the element length h = x2 − x1.

In order to derive the element matrices, the nonlinear multivariate variational
equations given in Subsec. 2.2 should be linearized. Applying the usual incre-
mental procedure (see, e.g., [2, 21]), a general variable denoted by t+∆tq(x) at
time t+ ∆t is additively decomposed as

t+∆tq(x) = tq(x) + q(x), (32)

where tq(x) at time t is assumed to be known and q(x) is its unknown increment.
For notational simplicity, the increment of a quantity is denoted, according to
(32), by its original symbol, without any additional sign or index.

3.1. The standard displacement-based formulation

The simplest and most popular formulation is based on the second weak
forms of the equilibrium Eqs (27)–(29), and can be found in several textbooks
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and papers. By inserting the constitutive Eqs (12) and (13) in (27)–(29) and
taking into account the kinematic Eqs (5)–(7) in their strong forms, the linearized
second weak forms of the equilibrium equations for one beam element can be
written as

x2�

x1

−δu,xEA(u,x + tw,xw,x ) dx+ δFE4 = 0, (33)

x2�

x1

−δw,x
[
ksGA (w,x +φ) + EA tw,x (u,x + tw,xw,x )

+ tNw,x
]

dx+ δFE5 = 0, (34)

x2�

x1

[
−δφ,xEI φ,x −δφ ksGA(w,x +φ)

]
dx+ δFE6 = 0, (35)

where

δFE4 =

x2�

x1

(−δu,x tN + δu t+∆tfx) dx+
[
δu t+∆tN

]x2
x1
, (36)

δFE5 =

x2�

x1

(−δw,x tV + δw t+∆tfz) dx+
[
δw t+∆tV

]x2
x1
, (37)

δFE6 =

x2�

x1

(−δφ,x tM − δφ tQ) dx+
[
δφ t+∆tM

]x2
x1

(38)

are the differences between the external virtual work at time t + ∆t and the
internal virtual work at time t. In view of (5)–(7) and (11)–(14), the stress
variables at time t can be computed from the known kinematic variables tu(x),
tw(x) and tφ(x) as

tN = EA tε = EA

(
tu,x +

1

2
tw,2x

)
, (39)

tQ = ksGA
tγ = ksGA( tw,x + tφ), (40)

tV = tQ+ tw,x
tN, (41)

tM = EI tφ,x . (42)



Primal- and dual-mixed finite element models. . . 293

The lowest possible order of C0-continuous approximation for the indepen-
dent increments u(x), w(x) and φ(x) over element e is linear:

u[ξ(x)] = u1H1(ξ) + u2H2(ξ), (43)

w[ξ(x)] = w1H1(ξ) + w2H2(ξ), (44)

φ[ξ(x)] = φ1H1(ξ) + φ2H2(ξ), (45)

where ui = u(xi), wi = w(xi) and φi = φ(xi), i = 1, 2 are the nodal displacement
and rotation increments. Introducing the matrix of nodal increments

[u]T = [u1 u2 w1 w2 φ1 φ2] (46)

and approximating the test functions δu(x), δw(x) and δφ(x) by linear functions
as well, the linearized variational Eqs (33)–(35) lead to the matrix equation[

KST
]

[u] = [FST], (47)

where[
KST

]
=
[
KST

m

]
+
[
KST

s

]
+
[
KST

b

]
(48)

is the standard tangent stiffness matrix of the beam element, indicated by the
letters ST in the superscript, with the membrane, shear and bending parts

[
KST

m

]
=
EA

h



1 −1 tw,x − tw,x 0 0

−1 1 − tw,x
tw,x 0 0

tw,x − tw,x
tε+ tw,2x − tε− tw,2x 0 0

− tw,x
tw,x − tε− tw,2x

tε+ tw,2x 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (49)

[
KST

s

]
=
ksGA

h



0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 −1 −h/2 −h/2

0 0 −1 1 h/2 h/2

0 0 −h/2 h/2 h2/3 h2/6

0 0 −h/2 h/2 h2/6 h2/3


, (50)
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[
KST

b

]
=
EI

h



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 −1

0 0 0 0 −1 1


. (51)

The components of the membrane tangent stiffness matrix (49) at time t can be
computed from the nodal displacement values as

tε = tu,x +
1

2
tw,2x ,

tu,x =
1

h
( tu2− tu1), tw,x =

1

h
( tw2− tw1). (52)

The components of the load vector [FST] of the standard element are given by

[
FST

]
1
=
h

2

+1�

−1

t+∆tfxH1(ξ) dξ + tN + t+∆tÑ1, (53)

[
FST

]
2
=
h

2

+1�

−1

t+∆tfxH2(ξ) dξ − tN + t+∆tÑ2, (54)

[
FST

]
3
=
h

2

+1�

−1

t+∆tfzH1(ξ) dξ+ksGA ( tw,x + tφ ) + tw,x
tN + t+∆tṼ1, (55)

[
FST

]
4
=
h

2

+1�

−1

t+∆tfzH2(ξ) dξ−ksGA ( tw,x + tφ )− tw,x
tN + t+∆tṼ2, (56)

[
FST

]
5
=
ksGA

2

[
tw1 − tw2 −

h

3
(2 tφ1 + tφ2)

]
+ EI tφ,x + t+∆tM̃1, (57)

[
FST

]
6
=
ksGA

2

[
tw1 − tw2 −

h

3
( tφ1 + 2 tφ2)

]
− EI tφ,x + t+∆tM̃2, (58)

where
tφ,x =

1

h
( tφ2 − tφ1), tφ =

1

2
( tφ1 + tφ2), (59)

and t+∆tÑi, t+∆tṼi, t+∆tM̃i, i = 1, 2 are known external loads (forces and
moments) at the nodes at time t+∆t. Equations (49)–(51) show that the coupling
terms between the axial and the shear-bending deformations appear only in the
membrane part of the tangent stiffness matrix. The bending and shear tangent
stiffnesses are the same as those of the linear beammodel. Note that this standard
element with equal linear interpolations (43)–(45) for the kinematic variables
exhibit only shear locking, the membrane locking is avoided [21].
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3.2. Primal-mixed formulation

In the primal-mixed formulation, the equilibrium equations are considered
in their second weak forms (33)–(35), just like in the standard displacement-
based formulation, the kinematic equations are, however, taken into account in
their first weak forms (18)–(20). This allows independent approximations for the
stress variables N(x), Q(x) and M(x). The corresponding linearized variational
equations for one element are

x2�

x1

δN
[
(EA)−1N − u,x− tw,xw,x

]
dx+ δFK1 = 0, (60)

x2�

x1

δQ
[
(ksGA)−1Q− w,x−φ

]
dx+ δFK2 = 0, (61)

x2�

x1

δM
[
(EI)−1M − φ,x

]
dx+ δFK3 = 0, (62)

x2�

x1

−δu,xN dx+ δFE4 = 0, (63)

x2�

x1

−δw,x
(
Q+ tw,xN + tNw,x

)
dx+ δFE5 = 0, (64)

x2�

x1

(−δφ,xM − δφ Q) dx+ δFE6 = 0, (65)

where

δFK1 =

x2�

x1

δN

(
tε− tu,x−

1

2
tw,2x

)
dx, (66)

δFK2 =

x2�

x1

δQ
(
tγ − tw,x− tφ

)
dx, (67)

δFK3 =

x2�

x1

δM
(
tκ− tφ,x

)
dx, (68)

and δFE4 , δFE5 , δFE6 are given by Eqs (36)–(38).



296 E. Bertóti

As the kinematic boundary conditions are essential, the primal-mixed for-
mulation requires C0-continuous approximation for the increments u(x), w(x)
and φ(x), and their lowest possible order of approximation is linear. The dy-
namic boundary conditions are natural and, therefore, the lowest possible order
of approximation for the increments N(x), Q(x) and M(x) is constant:

u[ξ(x)] = u1H1(ξ) + u2H2(ξ), N(x) = N0, (69)

w[ξ(x)] = w1H1(ξ) + w2H2(ξ), Q(x) = Q0, (70)

φ[ξ(x)] = φ1H1(ξ) + φ2H2(ξ), M(x) = M0, (71)

where ui = u(xi), wi = w(xi), φi = φ(xi), i = 1, 2 are the nodal increments. By
applying the Bubnov–Galerkin method and eliminating the stress incrementsN0,
Q0, M0 at element level, variational Eqs (60)–(65) lead to the matrix equation[

KPM
]

[u] = [FPM], (72)

where [u] is the matrix of the nodal unknowns defined by (46) and[
KPM

]
=
[
KPM

m

]
+
[
KPM

s

]
+
[
KPM

b

]
(73)

is the tangent stiffness matrix of the nonlinear primal-mixed beam element, in-
dicated by the letters PM in the superscript, with membrane, shear and bending
parts:[

KPM
m

]
=
[
KST

m

]
, (74)

[
KPM

s

]
=
ksGA

h



0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

0 0

0 0

−h/2 −h/2

h/2 h/2

0 0 −h/2 h/2

0 0 −h/2 h/2

h2/4 h2/4

h2/4 h2/4


, (75)

[
KPM

b

]
=
[
KST

b

]
. (76)

According to (74) and (79), the membrane and bending parts of the tangent
stiffness matrix of the primal-mixed element are the same as those of the standard
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element, given by (49) and (51). The components of the load vector
[
FPM

]
can

be written as[
FPM

]
i

=
[
FST

]
i
, i = 1, 2, 3, 4, (77)

[
FPM

]
5

=
ksGA

2

(
tw1 − tw2 − h tφ

)
+ EI tφ,x + t+∆tM̃1, (78)

[
FPM

]
6

=
ksGA

2

(
tw1 − tw2 − h tφ

)
− EI tφ,x + t+∆tM̃2, (79)

where
[
FST

]
i
, i = 1, ..., 4 in (77) are the load vector components (53)–(56) of

the standard element and tφ is the element average rotation at time t, defined
by (59)2.

It can be seen that only the shear part (75) of the tangent stiffness matrix
and the load vector components (78) and (79) differ from those of the stan-
dard displacement element given by (50) and (53)–(58). The places of differ-
ence are indicated by frames in (75), (78) and (79). As it is well known, the
rather small difference between

[
KST

s

]
and

[
KPM

s

]
leads to a significant improve-

ment in the performance of the primal-mixed element, with respect to the stan-
dard one.

3.3. Dual-mixed formulation

In the dual-mixed formulation, the equilibrium equations are taken into ac-
count in their first weak forms (24)–(26), whereas the kinematic equations are
considered in their second weak forms (21)–(23). As the dynamic boundary con-
ditions are essential in this case, C0-continuous approximation is required for
the forces and moment. The kinematic boundary conditions are natural, which
means that the displacements and the rotation can be approximated discon-
tinuously.

The element tangent stiffness matrix and the load vector for this formulation
will be derived by applying the λ-multiplier technique – a method often called
hybridization [6, 22]. The key point in the derivation is that the approximations
of the increments of the kinematic variables in the element domain are taken to
be independent from their approximated nodal values

ui = u(xi), wi = w(xi), φi = φ(xi), i = 1, 2, (80)

and the same applies to the corresponding test functions with nodal values δui,
δwi, δφi, i = 1, 2. These latter play the role of Lagrangian multipliers ensuring
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the continuity of the stress variables N(x), V (x) and M(x) at the nodes. At
time t+ ∆t the Lagrangian-multiplier terms for element e can be given by

−
[
δu t+∆tN

]x2
x1

= δu1
t+∆tN1 − δu2

t+∆tN2 = 0, (81)

−
[
δw t+∆tV

]x2
x1

= δw1
t+∆tV1 − δw2

t+∆tV2 = 0, (82)

−
[
δφ t+∆tM

]x2
x1

= δφ1
t+∆tM1 − δφ2

t+∆tM2 = 0. (83)

Taking into account the above considerations, the linearized second weak
forms of the kinematic Eqs (21)–(23) and the linearized first weak forms of the
equilibrium Eqs (24)–(26) for one element can be written as

x2�

x1

[
δN(EA)−1N + δN,x u− δN tw,xw,x

]
dx− [δNu]x2x1 + δFK4 = 0, (84)

x2�

x1

[
δQ (ksGA)−1Q+ δQ,xw − δQφ

]
dx− [δQw]x2x1 + δFK5 = 0, (85)

x2�

x1

[
δM(EI)−1M + δM,x φ

]
dx− [δMφ ]x2x1 + δFK6 = 0, (86)

x2�

x1

δuN,x dx−
[
δuN

]x2
x1

+ δFE1 = 0, (87)

x2�

x1

[
δwQ,x− δw,x ( tw,xN + tNw,x )

]
dx−

[
δwQ

]x2
x1

+ δFE2 = 0, (88)

x2�

x1

δφ (M,x−Q) dx−
[
δφM

]x2
x1

+ δFE3 = 0, (89)

where

δFK4 =

x2�

x1

[
δN
(
tε− 1

2
tw,2x

)
+ δN,x

tu
]

dx− [δN tu]x2x1 , (90)
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δFK5 =

x2�

x1

(
δQ tγ + δQ,x

tw − δQ tφ
)

dx− [δQ tw]x2x1 , (91)

δFK6 =

x2�

x1

(
δM tκ+ δM,x

tφ
)

dx− [δM tφ]x2x1 , (92)

δFE1 =

x2�

x1

δu
(
tN,x + t+∆tfx

)
dx−

[
δu tN

]x2
x1
, (93)

δFE2 =

x2�

x1

δw
(
tV,x + t+∆tfz

)
dx−

[
δw tV

]x2
x1
, (94)

δFE3 =

x2�

x1

δφ
(
tM,x− tQ

)
dx−

[
δφ tM

]x2
x1
. (95)

Note that the zero-valued Eqs (81)–(83) have been added to (87)–(89). The
lowest possible order of approximation for the increments u(x), w(x) and φ(x)
in the element domain is constant, and that for the increments N(x), Q(x) and
M(x) is linear:

u(x) = u0, N [ξ(x)] = N1H1(ξ) +N2H2(ξ), (96)

w(x) = w0, Q [ξ(x)] = Q1H1(ξ) +Q2H2(ξ), (97)

φ(x) = φ0, M [ξ(x)] = M1H1(ξ) +M2H2(ξ). (98)

The matrices of the unknowns, the element increments u0, w0, φ0 and the nodal
stress increments Ni = N(xi), Qi = Q(xi), Mi = M(xi), i = 1, 2, appearing in
(96)–(98), are given by

[ue]T = [u0 w0 φ0], [s]T = [N1 N2 Q1 Q2 M1 M2], (99)

and the matrix [u] of the unknown nodal displacement increments (80) of the
element is given by (46). As w(x) is approximated by a constant function in
the element domain, according to (97)1, its derivative w,x, of which computation
is required by the weak forms (84) and (88), is obtained from the independently
approximated nodal values w1 and w2 by w,x = h−1(w2 − w1), and δw,x is
computed similarly.
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Using variational equations (84)–(89) and applying the Bubnov–Galerkin
method, all the variables in (99) can be eliminated at the element level and,
as ui, wi and φi, i = 1, 2 are the nodal displacement and rotation increments,
the tangent stiffness matrix and the load vector of the dual-mixed element can be
derived and compared explicitly to those of the displacement-based and primal-
mixed elements. After performing all the (symbolic) computations, the following
matrix equation is obtained[

KDM
]

[u] = [FDM], (100)

where[
KDM

]
=
[
KDM

m

]
+
[
KDM

b

]
+
[
KDM

s

]
(101)

is the tangent stiffness matrix of the nonlinear dual-mixed beam element, indi-
cated by the letters DM in the superscript. Its membrane, shear and bending
parts are given by:

[
KDM

m

]
=
EA

h



1 −1 tw,x − tw,x 0 0

−1 1 − tw,x
tw,x 0 0

tw,x − tw,x
tε+ tw,2x − tε− tw,2x 0 0

− tw,x
tw,x − tε− tw,2x

tε+ tw,2x 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (102)

[
KDM

s

]
=

1

Cs

[
KPM

s

]
, (103)

[
KDM

b

]
=
[
KPM

b

]
=
[
KST

b

]
, (104)

where

tε = (EA)−1 1

2
( tN1 + tN2) (105)

is the average axial strain of the element at time t, computed from the nodal
values of the axial force, tN1 and tN2. The constant multiplier Cs, which appears
in (103) and represents the difference between the shear parts of the primal-mixed
and the dual-mixed elements, is given by

Cs = 1 +
ks

12

G

E

h2

r2
g

, with lim
h/rg→0

Cs = 1, (106)
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where rg =
√
I/A is the radius of gyration of the cross-section. It is seen from

(106) that Cs depends on the element size h, the geometry of the cross-section
(ks, A, I), as well as the material of the beam (E, G). For isotropic materials,
E/G = 2(1 + ν), which means that Cs depends on the material through its
Poisson ratio only.

The components of the load vector of the dual-mixed element, appearing on
the right-hand side of (101), are obtained as:

[
FDM

]
1

=
h

4

+1�

−1

t+∆tfx dξ + tN + t+∆tÑ1, (107)

[
FDM

]
2

=
h

4

+1�

−1

t+∆tfx dξ − tN + t+∆tÑ1, (108)

[
FDM

]
3

=
h

4

+1�

−1

t+∆tfz dξ +
1

Cs
ksGA ( tw,x + tφ ) + tw,x

tN + t+∆tṼ1, (109)

[
FDM

]
4

=
h

4

+1�

−1

t+∆tfz dξ − 1

Cs
ksGA ( tw,x + tφ )− tw,x

tN + t+∆tṼ2, (110)

[
FDM

]
5

=
1

Cs

{
ksGA

2

[
tw1− tw2−

h

3
(2 tφ1+ tφ2)

]
+EI tφ,x

}
+ t+∆tM̃1, (111)

[
FDM

]
6

=
1

Cs

{
ksGA

2

[
tw1− tw2−

h

3
( tφ1+ 2 tφ2)

]
−EI tφ,x

}
+ t+∆tM̃2, (112)

where tφ is the element average rotation at time t, defined by (59)2, whereas
t+∆tÑi, t+∆tQ̃i and t+∆tM̃i, i = 1, 2 are known external loads at the nodes. The
coupling terms between the axial and the shear-bending deformations appear,
again, only in the membrane part of the tangent stiffness matrices. The bending
and shear parts remain unchanged during the incremental solution procedure,
i.e., the sum of the bending and shear stiffness matrices,

[
KDM

s

]
+
[
KDM

b

]
gives

the exact stiffness matrix of the linear dual-mixed beam element derived in [4].
Its relationship with the matrices of the standard displacement based element
can be written as[

KDM
s

]
+
[
KDM

b

]
=

1

Cs

([
KST

s

]
+
[
KST

b

])
, (113)
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where Cs is given by (106). Relation (113) provides an explanation for, and
a justification of, the residual bending flexibility correction concept (see, e.g.,
[8, 9, 26]) as well, according to the discussion given in [4].

3.4. A consistent primal-dual mixed formulation

In view of the strong forms of the kinematic equation (5), a consistent finite
element approximation would require that the polynomial degree of the displace-
ment w(x) be higher by one than that of the rotation φ(x) and, in view of the
equilibrium equation (17), the same applies to the bending moment M(x) and
shear force Q(x). In this sense, the three finite element models, considered in the
previous sections, are not consistent, since both w(x) and φ(x), as well as M(x)
and Q(x) are approximated by the same degree of polynomials.

A consistent approximation of the lowest possible order, i.e., constant for
φ(x), N(x) and Q(x) and linear for u(x), w(x) and M(x), can easily be derived
for the present beam model by mixing, as already mentioned in Subsec. 2.2,
the weak forms (18)–(29) of the governing equations in such a way that two
out of the three kinematic equations are considered in their first weak forms,
and the third one in its second weak form. The equilibrium equations should
then be taken into account accordingly. Among the possible formulations of this
type, a consistent primal-dual mixed weak formulation is given by the following
variational equations:

x2�

x1

δN
[
(EA)−1N − u,x− tw,xw,x

]
dx+ δFK1 = 0, (114)

x2�

x1

δQ
[
(ksGA)−1Q− w,x−φ

]
dx+ δFK2 = 0, (115)

x2�

x1

[
δM(EI)−1M + δM,x φ

]
dx− [δM φ ]x2x1 + δFK6 = 0, (116)

x2�

x1

−δu,xN dx+ δFE4
= 0, (117)

x2�

x1

−δw,x
(
Q+ tw,xN + tNw,x

)
dx+ δFE5 = 0, (118)
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x2�

x1

δφ (M,x−Q) dx−
[
δφM

]x2
x1

+ δFE3 = 0, (119)

where the terms δFK1 , δFK2 , δFK6 and δFE4 , δFE5 , δFE3 are given by Eqs (66),
(67) and (92), as well as (36), (37) and (95), respectively. Equations (114)–(119)
represent special combinations of the variational equations of the primal-mixed
and dual-mixed formulations in Subsec. 3.2 and 3.3. As the kinematic boundary
condition for u(x), w(x) and the dynamic boundary condition for M(x) are
now essential, C0-continuous approximation is required for these variables. The
boundary conditions for φ(x), N(x) and Q(x) are natural, and they can be
approximated discontinuously. The lowest possible order of approximation for
the unknown increments is as follows:

u[ξ(x)] = u1H1(ξ) + u2H2(ξ), N(x) = N0, (120)

w[ξ(x)] = w1H1(ξ) + w2H2(ξ), Q(x) = Q0, (121)

M [ξ(x)] = M1H1(ξ) +M2H2(ξ), φ(x) = φ0. (122)

In order to ensure the continuity ofM(x) at the nodes, the nodal Lagrangian
multipliers δφ1 and δφ2 will be introduced for element e. The corresponding
variational equation is given by (83) and is already included in (119). The ap-
proximations in (120)–(122) are consistent with the strong form of the kinematic
equation (6) and the equilibrium equation (17) in the sense that the polyno-
mial degree of w(x) is higher by one than φ(x), and the same applies to M(x)
and Q(x).

The element tangent stiffness matrix for the present formulation can be ob-
tained by eliminating the unknown increments φ0, N0, Q0 andM1,M2. The final
matrix equation, obtained for the nodal increments [u]T = [u1 u2 w1 w2 φ1 φ2],
can be written as([

KPM
m

]
+
[
KDM

s

]
+
[
KDM

b

])
[ u ] = [FST], (123)

where, according to the indices in the superscripts, the element tangent stiffness
matrix is the sum of the primal-mixed membrane stiffness, (74), and the dual-
mixed shear and bending stiffnesses, (103) and (104), respectively. The element
load vector is equivalent to that of the displacement-based element given by
(53)–(58). Taking into account the relations (74) and (113), matrix equation
(123) can be written in terms of the standard element matrices alone:{[

KST
m

]
+

1

Cs

([
KST

s

]
+
[
KST

b

])}
[u] = [FST]. (124)
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This result indicates that using the geometry-, material- and mesh-dependent
multiplier Cs defined in (106), the standard beam element can be transformed
into a consistent, shear locking-free mixed element. The multiplier 1 ≤ Cs <∞
can also be considered as a reliable shear locking indicator [4]: the higher the
value of Cs, the more serious the shear locking is. An absolutely locking-free
behavior of the standard beam element would belong to Cs = 1, it could, how-
ever, be attained only when the length h of the element is zero (for a given
cross-section), or when the cross-section’s radius of gyration rg is infinity (for
fixed h).

4. Numerical comparisons

The results and comparisons for the finite element matrices presented in
Sec. 3 are supplemented here by numerical results. The solutions for two model
problems will be investigated and compared: a pinned-pinned and a clamped-
clamped beam subjected to uniform transverse load fz(x) := f0 (see Fig. 1).
The beam of length L has a rectangular cross-section with thickness d in the
z-direction and unit thickness in the y-direction. The material parameters are
taken to be the same as used by several papers and textbooks, see, e.g., [21]:
E = 3·107 psi, ν = 0.25; ks = 5/6. Only half the length of the beam is discretized
with symmetry conditions prescribed at x = L/2. The nonlinear finite element
solutions have been obtained using a research code written in MapleTM and
applying the Newton–Raphson iteration procedure. The code is based on the
explicit forms of the tangent stiffness matrices and load vectors derived in Sec. 3.

L

x

z

L

x

z

Fig. 1. Pinned-pinned and clamped-clamped beam with uniform load.

As no analytical solutions exist for the examples considered, high precision
reference solutions with eight significant digits have been computed first by em-
ploying a very fine mesh of ne = 213 = 8192 dual-mixed elements with error
tolerance 1.0e−12 for the Euclidean norms of both the nodal displacements and
the residuals. These results, used for numerical comparisons, are summarized
in Tables 1 and 2 for the pinned-pinned beam and in Tables 3 and 4 for the
clamped-clamped beam.

In both cases, the central deflections, the axial and shear forces as well as the
bending moments are computed and listed (in absolute values) for beams with
slenderness ratios L/d = 100 and L/d = 1000. Note that results and comparisons
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Table 1. Reference solutions for the pinned-pinned beam with L/d = 100.

Load wmax N(x = L/2) Q(x = 0) M(x = L/2)

1.0 3.6849610e−01 1.0159354e+03 3.7941239e+01 8.7563176e+02
2.0 5.4540671e−01 2.2324695e+03 6.0499699e+01 1.2823961e+03
3.0 6.6394944e−01 3.3167713e+03 7.8143838e+01 1.5478316e+03
4.0 7.5548870e−01 4.3036046e+03 9.3390112e+01 1.7486754e+03
5.0 8.3118727e−01 5.2189471e+03 1.0715648e+02 1.9120776e+03
6.0 8.9634624e−01 6.0792915e+03 1.1989037e+02 2.0508499e+03
7.0 9.5392496e−01 6.8956178e+03 1.3184822e+02 2.1720981e+03
8.0 1.0057557e+00 7.6756295e+03 1.4319307e+02 2.2801922e+03
9.0 1.0530575e+00 8.4249708e+03 1.5403625e+02 2.3780212e+03
10.0 1.0966861e+00 9.1479240e+03 1.6445790e+02 2.4675989e+03

Table 2. Reference solutions for the pinned-pinned beam with L/d = 1000.

Load wmax N(x = L/2) Q(x = 0) M(x = L/2)

1.0 1.1603185e+00 1.0752867e+03 1.5239716e+00 2.3249613e+00
2.0 1.4619589e+00 1.7080321e+03 2.4176063e+00 2.9273455e+00
3.0 1.6735441e+00 2.2387518e+03 3.1667115e+00 3.3500810e+00
4.0 1.8419841e+00 2.7124628e+03 3.8350168e+00 3.6866865e+00
5.0 1.9842240e+00 3.1478448e+03 4.4489730e+00 3.9709709e+00
6.0 2.1085574e+00 3.5549331e+03 5.0227936e+00 4.2194887e+00
7.0 2.2197381e+00 3.9399055e+03 5.5652298e+00 4.4417309e+00
8.0 2.3207743e+00 4.3069057e+03 6.0821528e+00 4.6437051e+00
9.0 2.4137049e+00 4.6588838e+03 6.5777430e+00 4.8294830e+00
10.0 2.4999827e+00 4.9980339e+03 7.0551106e+00 5.0019669e+00

Table 3. Reference solutions for the clamped-clamped beam with L/d = 100.

Load wmax N(x = L/2) Q(x = 0) M(x = 0) M(x = L/2)

1.0 1.0348084e−01 7.8299930e+01 4.9999529e+01 8.2900906e+02 4.1288839e+02
2.0 2.0250814e−01 2.9986576e+02 9.9996404e+01 1.6342240e+03 8.0505072e+02
3.0 2.9424574e−01 6.3309357e+02 1.4998865e+02 2.4003218e+03 1.1633931e+03
4.0 3.7776371e−01 1.0435246e+03 1.9997516e+02 3.1220040e+03 1.4837903e+03
5.0 4.5337595e−01 1.5031599e+03 2.4995546e+02 3.8005729e+03 1.7679305e+03
6.0 5.2192918e−01 1.9922748e+03 2.9992945e+02 4.4402230e+03 2.0199507e+03
7.0 5.8438256e−01 2.4978704e+03 3.4989722e+02 5.0458275e+03 2.2444606e+03
8.0 6.4162628e−01 3.0116157e+03 3.9985892e+02 5.6219673e+03 2.4457010e+03
9.0 6.9442570e−01 3.5282232e+03 4.4981472e+02 6.1726183e+03 2.6272929e+03
10.0 7.4341852e−01 4.0443493e+03 4.9976481e+02 6.7011211e+03 2.7922347e+03
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Table 4. Reference solutions for the clamped-clamped beam with L/d = 1000.

Load wmax N(x = L/2) Q(x = 0) M(x = 0) M(x = L/2)

1.0 1.1417035e+00 1.0265467e+03 4.9854277e+01 7.5552613e+01 2.4353494e+00
2.0 1.4435657e+00 1.6465343e+03 9.9595073e+01 1.2008284e+02 3.0366814e+00
3.0 1.6552632e+00 2.1683013e+03 1.4926048e+02 1.5743162e+02 3.4589289e+00
4.0 1.8237774e+00 2.6348845e+03 1.9886378e+02 1.9076187e+02 3.7952327e+00
5.0 1.9660725e+00 3.0642476e+03 2.4841263e+02 2.2138764e+02 4.0793048e+00
6.0 2.0904500e+00 3.4660752e+03 2.9791221e+02 2.5001546e+02 4.3276615e+00
7.0 2.2016674e+00 3.8463438e+03 3.4736635e+02 2.7708050e+02 4.5497753e+00
8.0 2.3027352e+00 4.2090699e+03 3.9677801e+02 3.0287484e+02 4.7516436e+00
9.0 2.3956935e+00 4.5571172e+03 4.4614958e+02 3.2760649e+02 4.9373318e+00
10.0 2.4819961e+00 4.8926184e+03 4.9548317e+02 3.5143021e+02 5.1097383e+00

for the force and moment variables are very rare in the literature, despite the
fact that accurate computation of the stress variables has primary importance
in the design process of structural members and, also, in the convergence of the
nonlinear solution.

The convergence of the relative errors of the numerical solutions with an
increasing number of elements, presented and compared subsequently to the re-
ference solutions, has been obtained by the four formulations discussed in Sec. 3,
employing uniform mesh refinement. The results and their relative errors are
compared at the end of the final load step f0 = 10. The reference values for that
load step are listed in the last rows of Tables 1–4. Since each type of elements
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Fig. 2. Reference solution: the central deflection versus load for pinned-pinned and clamped-
clamped beams with L/d = 100 (a) and L/d = 1000 (b).
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has the same six degrees of freedom, according to (46), the convergence curves of
the relative errors are plotted with respect to the number of elements. The total
number of degrees of freedom of a mesh with ne beam elements is 3(ne + 1).

The reference solutions for the central deflection versus load are plotted in
Fig. 2. The convergence of the relative error in the maximum deflection at L/2 is
shown in Figs 3 and 4. The asymptotic rate of convergence of the relative error in
the displacements is of order two for all the four elements investigated. The over-
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Fig. 3. Convergence of the relative error in central deflection for the pinned-pinned beam with
L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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Fig. 4. Convergence of the relative error in central deflection for the clamped-clamped beam
with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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stiffening behavior of the standard beam element is clearly seen from the figures.
The mixed elements are not sensitive to the L/d ratio for the pinned-pinned
beam. The primal-mixed element seems to be the best choice for the displacement
computation.

The reference solutions for the central axial force versus load are plotted in
Fig. 5. The convergence of the relative error in the axial force at L/2 is shown
in Figs 6 and 7. The asymptotic rate of convergence of the relative error in
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Fig. 5. Reference solution: axial force versus load at L/2 for pinned-pinned and clamped-
clamped beams with L/d = 100 (a) and L/d = 1000 (b).
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with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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Fig. 7. Convergence of the relative error in axial force at x = L/2 for the clamped-clamped
beam with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.

the axial force is order of two, again, for each element investigated. The over-
stiffening behavior of the standard beam element is clearly seen from the figures.
The dual-mixed and the primal-dual mixed elements perform equivalently in this
case, they seems to be the best choice for the axial force computation.

The reference solutions for the shear force Q (perpendicular to the deformed
axis of the beam) versus load at x = 0 are plotted in Fig. 8. The conver-
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Fig. 8. Reference solution: shear force Q versus load at x = 0 for pinned-pinned and clamped-
clamped beams with L/d = 100 (a) and L/d = 1000 (b).
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gences of the relative error in the shear force Q at x = 0 are shown in Figs 9
and 10. The asymptotic rates of convergences depend on the boundary condi-
tions. For the pinned-pinned beam, the standard and the dual-mixed element has
second-order rates of convergence, the primal-mixed and the primal-dual mixed
elements lead to first-order rates of convergence, equivalently. For clamped-
clamped beam, all of the elements investigated give only first-order rates of
asymptotic convergences in the shear force computation. Even though the dual-
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Fig. 9. Convergence of the relative error in shear force Q at x = 0 for the pinned-pinned beam
with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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Fig. 10. Convergence of the relative error in shear force Q at x = 0 for the clamped-clamped
beam with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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mixed element behaves rather stiff for L/d = 1000 with a pinned-pinned bound-
ary condition for smaller number of elements, it appears to be the best choice
for the shear force computation.

The reference solutions for the central bending moment versus load are plot-
ted in Fig. 11. Figures 12 and 13 show the convergence curves of the relative error
in the bending moment at x = L/2. The dual-mixed and the primal-dual mixed
elements are equivalent in this case, they give a second-order rate of asymptotic
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Fig. 11. Reference solution: central bending moment versus load for pinned-pinned and
clamped-clamped beams with L/d = 100 (a) and L/d = 1000 (b).
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Fig. 12. Convergence of the relative error in bending moment at x = L/2 for the pinned-pinned
beam with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.
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Fig. 13. Convergence of the relative error in bending moment at x = L/2 for clamped-clamped
beam with L/d = 100 (a) and L/d = 1000 (b) at the final load step f0 = 10.

convergence for the bending moment, independently of the boundary conditions
applied. The standard and the primal-mixed elements give the first-order rate of
asymptotic convergence for the clamped-clamped beam. The best choice for the
bending moment computation, which is of primary interest in the design process
of beam structures, is the dual-mixed or the primal-dual mixed element.

5. Summary and conclusions

Analytical comparisons for the tangent stiffness matrices and the load vectors
of four variational formulations, and the numerical performance of the related
Galerkin-type finite element methods, have been presented for nonlinear shear-
deformable beams, assuming von Kármán-type geometric nonlinearity. The finite
element matrices of the standard displacement-based, a primal-mixed, a dual-
mixed and a special primal-dual mixed formulation have been derived in their
explicit forms by the computer algebra system MapleTM, using the lowest possible
order of approximation spaces. To obtain comparable matrices for the dual-mixed
and the primal-dual mixed elements, the λ-multiplier technique was applied.

The results of the direct comparisons of the element matrices showed that the
coupling terms between the axial and the shear-bending deformations appeared
only in the membrane part of the tangent stiffness matrices, the bending and
shear parts remained unchanged during the incremental solution procedure. This
means that the dual-mixed and the primal-dual mixed beam element operates
with the exact bending and shear stiffness matrices of the linear beam element,
independently of the slenderness of the beam.
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The analytical investigations and explicit comparisons of the system matrices
also show that the geometry-, material- and mesh-dependent constant Cs, given
by Eq. (106), can be used to transform the tangent stiffness matrices of both
the displacement-based and the primal-mixed beam element into the tangent
stiffness matrix of the dual-mixed element, according to Eqs (103) and (113).
The constant 1 ≤ Cs < ∞ can also be used as a shear locking indicator for the
standard beam element: the higher the value of Cs, the more serious the shear
locking is for the displacement-based element, and only Cs = 1 would indicate
absolutely locking-free behavior, which can, theoretically, never be reached.

The performance of the four finite element models considered has been com-
pared to each other through the numerical solutions of two simple model prob-
lems. As no analytic solutions for the nonlinear beam problems exist, high preci-
sion numerical solutions are computed for the displacements and the rarely listed
stress variables as well, using the dual-mixed elements on an extremely refined
mesh. These reference solutions are used for the numerical comparisons of the
elements. The numerical results have been presented and compared not only for
the deflections but also for the axial and shear forces, as well as the bending
moments. It has been demonstrated that only the dual-mixed and the primal-
dual mixed element gives the second-order rate of asymptotic convergence for
the bending moment.
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